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ABSTRACT 

The character of the longitudinal low frequency (phugoid) mo- 

tion of a rigid airplane with controls fixed is investigated for the flight 

Mach number range from 1. 25 to  8.0 using the physical and aerody- 

namic data of the North Ame rican X- 15 research airplane. 

The validity of the simplifying assumptions made in most low 

speed airplane stability investigations (symmetry of the airplane and 

of the a i r  flow, small  perturbations) i s  established for the problem 

under consideration. 

The equations of longitudinal motion have been solved for the 

flight altitudes: sea  level, 20, 000 ft., 40, 000 ft., and 60, 800 ft. ; and 

in addition the roots of the simplified equations resulting from the phu- 

goid approximation have been calculated for  the same flight situations. 

It is  found that the deviation of these approximate solutions from the 

solutions of the complete longitudinal equations is  below 5 per  cent 

throughout the considered range s f  flight conditions, and for  most 

calculated points i s  less  than 2 per  cent. The phugoid roots a r e  corn- 

plex a t  60 ,  080 ft. altitude and real a t  sea  level, with transition from 

one mode to the other a t  the intermediate Plight altitudes. The r e d  

par t  of the roots is always negative, i. e. , there i s  no divergence of 

the motion. Using the phugoid approximation, a criterion for the de- 

generation of the periodic pkugoid mode into aperiodic modes is de- 

rived in form of a critical value of the lift to drag ratio c ~ / c ~ .  

K an appendix, the influence of an additional damping force 

(thrust control by the auto-pilot) on the character of the phugoid roots 

i s  shown. 
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I. INTRODUCTION 

The three equations of longitudinal motion of an airplane, rep- 

resenting the three degrees of freedom in  the plane of symmetry, 

normally have two pairs  of complex roots. 

The behavior of a non-spinning missile is  described by the 

same equations, but the character sf the motion is different because 

of the different order of magnitude of some of the coefficients. 

F o r  a symmetric missile, a change of the pitching moment due 

to a perturbation of the longitudinal speed, aM/8u , i s  equal to zero, 

and the same i s  true for the change of the transverse force due to a 

perturbation sf the longitudinal speed, aZ/9u . 
This results in an uncoupling of the equations, such that the 

pitch and transverse motions a r e  independent of longitudinal perturba- 

tions and represent the typical short period motion, while the remain- 

ing pair of roots, the phugoid mode, degenerates to  simple exponentid 

damping. 

For  most airplanes, 8M/au also is very small, except in 

transsonic flight, but 8 ~ / 8 \ n  normally must not be neglected. How- 

ever, contrary t o  the behavior of most other coefficients, aZ/au de- 

creases  with increasing flight speed. Therefore, one can expect that 

in the case of a conventional winged airplane, there exists a certain 

flight speed a t  which a similar  degeneration of the phugoid occurs. 

Theoretical and experimental investigations showed that this 

point will not be reached during normal operation of conventional a i r -  

planes at subsonic speeds. Therefore, it has been undertaken in  this 

investigation to  dete rmina  the point of phugsid degeneration POP supe r- 
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sonic and hypersonic flight conditions. 

To solve the equations of motion for a conventional airplane at 

subs onic Mach numbers one usually makes the simplifying as surnp- 

tions that the airplane i s  perfectly symmetric and that the concept of 

small perturbations can be used to linearize the equations, The 

question whether the validity of these assumptions can be extended to 

supersonic flight conditions i s  discussed first. 

The investigation then is based on the data s f  the X- 15 research 

airplane. The X- 1 5 i s  the only high- speed aircraft  whose physical and 

aerodynamic data a r e  published in some detail. Moreover, i ts con- 

figuration i s  such that the results obtained in the analysis of the longi- 

tudinal motion qualitatively can be adopted for most other supersonic 

and hypersonic a i rcraf t  as well. 



II. THE EQUATIONS OF MOTION 

General Formulation 

The six degrees of freedom of a body in space result in six 

equations of motion, in which the inertial forces associated with one 

degree of freedom are balanced by the corresponding aerodynamic and 

gravity forces. For stability considerations, the equations of motion 

of a flight vehicle normally are  formulated with respect to ara orthog- 

onal system of body-fixed stability axes (see Appendix A). 

The aerodynamic forces and moments a re  functions of the mo- 

tion components, and if the dependence is continuous they can be ex- 

pressed as Taylor series in terms 02 these motion variables. Let A 

be a typical aerodynamic reaction; then the associated Taylor series 

would be: 

where 6 and stand for the deviations of the motion variables from a 

reference state and for the time derivatives of these deviations on 

whichever A depends, and all partial derivatives a re  to be evaluated 

at  the reference point. 

Symmetry 

Normally, an airplane is designed to be symmetric both geo- 

metrically and in its mass distribution, with respect to the x-z plane, 

defined in Appendix A. This symmetry conceptually admits pure 

longitudinal motion, i. e, , solutions of the equations of motion with the 

nsn-symmetric motion components identically equal to zero. 

Actually, however, this symmetry of motion i s  never exact 



because of gyroscopic effects, non-symmetries of the airflow, and 

uneven load distribution. But handling qualities of the airplane re- 

quire strongly that these coupling effects be kept extremely small, 

so that for all practical purposes the symmetry of an airplane can 

be considered as well established. 

A f i rs t  consequence then is that the moments of inertia I 
XY 

and I vanish. Secondly, all partial derivatives of non-symmetric 
YZ 

reactions with respect to longitudinalq motion variables must be zero 

and all f irst  partial derivatives of symmetric reactions with respect 

to lateral motion variables a re  also zero (symmetry demands even 

functions ). These conc~usions are  valid for a11 steady flight conditions 

of aam airplane with controls fixed. h actual flight tests made to in- 

vestigate the longitudinal motion of an airplane, the unavoidable later- 

a l  motions always can be kept very small by the human or automatic 

pilot. This results in a very good agreement between the theoretical 

pure longitudinal solutions and the experimental observations for 

most flight conditions due to the fact that longitudjinnd forces and mo- 

ments arising from lateral deviations can only be of second and high- 

e r  order in these lateral s m d l  perturbations and therefore do not give 

significant contributions. However, this agreement should not be ex- 

pected in the transsonic flight regime, since in that case small non- 

symmetries of the air  flow cain have large effects on the overall mo- 

motion of the airplane because of the phenomena associated with the 

appearance of shocks, 

Therefore, for  that flight condition, higher order terms must 

be taken into account in order to predict the behavior of the airplane, 



and correspondingly the complete set of equations of motion has to be 

dealt with. 

Outside the trans s onic region, both in subsonic and supersonic 

flight, discontinuities in the aerodynamic forces and moments practi- 

cally do not occur (except in extreme situations, such as  stall), so 

that for these flight conditions the concept of pure longitudinal motion 

i s  appropriate. 

Then the equations of motion to be considered for our purposes 

(longitudinal motion in subsonic, supersonic, and hypersonic flight) 

become: 

-mg s ine  + XXae = m(d + qw) 

rng cos €l + CZae = rn(+ - qu) 
CM = 4: 

with no dependence of the aerodynamic reactions on lateral motion 

variables. (Xae, Zae = areodynamic forces, M = aerodynamic mo- 

ments). These equations in gene ral are  nonlinear. 

Small Perturbation Concept 

For subsonic flight, experience showed (see refs. l and 2) that 

in most cases the application s f  the metl~od of s m d l  perturbations 

from an equilibrium state gives results sufficiently accurate for sta- 

bility and control considerations. 

The restriction to small perturbations implies that all prod- 

ucts of disturbance velocities (linear m d  angular) a re  of higher order 

smallness,and terms in which they appear therefore can be neglected. 

This action linearizes the equations of motion. However, if some of 

the higher order partial derivatives joined with these products in the 
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Taylor expansions a r e  very large, then the validity of the linearized 

equations may possibly be restricted to such small  perturbations only, 

that any actual motion of the airplane would exceed this range of va- 

lidity. In such a case, nonlinear terms must be taken into account in 

order to arr ive  at an agreement between theoretical calculations and 

flight tests. 

The necessary condition for a higher order partial derivative 

to be very large i s  that the dependence of the corresponding aerody- 

namic force on one of the variables be extremely nonlinear in the 

neighborhood of the reference point, 

For  the longitudinal aerodynamic forces and moments in 

supersonic flight, a strong nonlinearity does not exist a s  long as  the 

airplane under consideration is  a conventional one in the sense that it 

is designed to operate over a certain continuous range of flight condi- 

tions and not only a t  one fixed flight regime, and that the reference 

conditions lie well inside this operational range. 

Under these restrictions, then, the linearization of the equa- 

tions of motion based on the assumption of small perturbations is 

permis sible,and the obtained results constitute a correct  representa- 

tion of the motion of the airplane. 

Final Form of the Equations 

With the following notation: 

U, 8 = steady reference state flight velocity, flight path 
angle, respectively 

u = vePoeity perturbation in the x-direction 

w = velocity perturbation in the a-direction 
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w/U = a = perturbation in angle of attack 

t9 = flight path angle perturbation 

q = 8 = angular velocity perturbation about the y-axis 

X = x-direction force due to a perturbation 

Z = z-direction force due to a perturbation 

M = pitching moment due to a perturbation 

and eliminating all the steady state forces and moments (they consti- 

tute an equilibrium by themselves), the equations to be solved are: 

m6 4-mgt9cos8-CX = 0 

m(6  - uQ) 4- rng 9 sin 0 - CZ = O (2 .3  b 

1 9 ' - C M  = 0 
Y 

Here, the aerodynamic forces, X, Z ,  and moments, M, a re  of the 

form {(aA/ag) where A denotes one s f  the aerodynamic reactions, 
0 $ 

is  a disturbance, and the subscript zero indicates that the partial 

derivative is to be evaluated at the steady reference point. Thus, the 

equations are  simultaneous ordinary differential equations with con- 

stant coefficients. 

It is  convenient to transform these equations into nondimen- 

sional form. There are  a number of nondimensional systems in use; 

the one adopted here is  the NACA system with 4; (F = mean aerody- 

namic chord) as the characteristic length for longitudinal motion. For 

details, see Appendix A and ref, I. 

A e x t Nontrivial solutions of the expected form u = u e , a= q e  B 

8 = aleht are  possible only if the determinant of coefficients vanishes. 

This condition results in the quartic characteristie equation for 1 : 
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 AX^ + ~h~ + ch2 + Dh + E = 0 

whose coefficients are given in Appendix A. 
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111. AIRPLANE DATA 

Description of the Airplane 

The phugoid motion of an airplane at supersonic speeds is in- 

vestigated he re  using the numerical data of the X- 15 research airplane. 

The X-15 i s  a rocket-powered, single place airplane designed to  inves- 

tigate the hypersonic flight regime. It has a 5 p e r  cent thick, low as- 

pect ratio, trapezoidal wing mounted in the midposition on a fuselage 

consisting of a body of revolution with large side fairings. The hori- 

zontal tail has a 45O sweep, i s  all-movable, and may be deflected dif- 

ferentially for roll control. The upper vertical tail is all-movable for 

directional control, and a fixed lower vertical tail is  provided for in- 

creased directional stability a t  high angles of attack and Mach number. 

Both vertical tails have a lo0 single wedge airfoil section. 

The flight tests a r e  carried out a t  Edwards Air Force Base, 

California. The X- 15 is  carried under the wing of a B- 52 airplane to 

an altitude of approximately 45, 000 feet and released to  perform its 

flight miss ion. After the rocket fuel i s  used up, the X- H 5 glides to 

a landing on a dry lakebed in the Mohave desert. 

In ref. 7' a qualitative description of the airflow associated with 
- 

the X-B5 in supersonic and hypersonic flight i s  given which indicates 

that discontinuous changes in the aerodynamic characteris tics need not 

be expected for the flight conditions under consideration. 

For  the purpose of this investigation, i t  i s  assumed that the 

power plant of the X-l5 can be controlled such that the airplane is ca- 

pable of maintaining a steady horizontal speed a t  all altitudes. Cor- 

respondingly, the airplane weight chosen for the caPedations is that 



with about half of the fuel capacity left. These assumptions do not rep- 

resent  the actual flight performance of the X-15, which is  accelerated 

by a 1.5 minute run of the rocket engine and then performs most of its 

test  programs in the successive 10 minute power-off gliding flight 

phase. However, since the aerodynamic characteristics a r e  virtually 

independent of the power setting of the engine as  shown in flight tests  

(ref. 8), the assumptions made do not res t r ic t  the validity of the aero- 

dynamic data. 

The physical characteristics of the X-15 airplane a s  used in 

this investigation a r e  given in Table 1 and were obtained f rom ref, 8. 

Ae rodpamic  Characte r ist ics 

In ref. 8 the following longitudinal stability derivatives, as de- 

termined f rom flight tests,  a re  given for supersonic Mach numbers up 

C and Cm the partial derivatives of the normal force and of the 
% a pitching moment coefficient with respect t o  a change 

in angle of attack, 

('rn 
+ C the sum of the derivatives of the pitching moment co- 

m 
¶ ti efficient with respect to  the pitching rate = 9 and with 

respect to the rate of change of the angle of attack. 

Using the results sf theoretical ealcula t i~ns  and of wind tunnel experi- 

ments (ref. %), the values s f  these derivatives have been estimated up 

to a Mach number sf 8.0. In Figures P and 2, the dependence of these 

derivatives on the Mach number as  used in the present investigation is 

shown (see also Table 39. 

The aerodynamic data appearing in the final form of the equa- 

tions sf motion in Appendix A (eqn. 8-31 a re  then obtained as follows. 

CL i s  the steady flight lift coefficient and can be expressed as: 



(for the airplane data used), where 

y = ratio of specific heat a t  constant pressure  to specific heat 

at constant volume of a i r ,  

p = air pressure  (po = s e a  level value) 

CD is  the steady flight drag coefficient which i s  assumed to be 

of the form 
-n 

where CD and CD a re  functions of the Mach number. Their values 
0 B 

have been determined f rom wind tunnel tests  for  the Mach numbers 

2. 29, 2.98, and 4.65 (ref. 4 )  and have been extrapolated in accord- 

ance with theoretical and experimental results for this investigation. 

h Figure 3,  the dependence of CD and CD on the Mach number is 
o ]I 

shown as  it  i s  used in the calculations, 

Using the relations given inn Appendix A, the derivatives ap- 

pearing in the equations of motion can be expressed as: 

OCXl  
Cx = -2(C + C L t a n O ) -  D (in horizontal flight 0 = 0 )  

u 



With the assumed form of the drag coefficient, the derivative a c D / B M  

can be written as  

This can be solved for B C ~ I B M  : 

The derivatives BC / B M ,  8C, /8M , and 8CD / aM were obtained 
Na 0 B 

from the figures P and 3 by graphical methods (see Table 3). 

C Z  "he change in normal force due to pitch rate, i s  influ- 

eneed by both the wing and the horizontal tail, although, when the air- 

plane has a tail  the wing contribution to C is  normaIly small com- a. 
I 9 

pared to that sf the tail. Usually in such cases one increases the tail 

effect by an amount of the order of PO pe r  cent to allow for the wing 

and body. Highly swept o r  Pow-aspect-ratio wings may give a more 

significant contribution to @ , s o  that for  the X- 15 it is assumed z 
a 
A 

that: 



with (cZ  ) = 
TAIL 

TAIL 
(see ref. 1 )  

Then CZ - is - la  84 (CL ) 
(11 a TAIL 

( C ~ J T A I L  
the lift curve slope of the horizontal tai l  has been ob- 

tained f rom red. 7 and is plotted over the Mach nwnber in figure 1. 

CZ,, the change in normal force due to ra te  of change in angle 
a 

of attack again consists  of two parts, the effect of unsteady motion of 

the wing and the tai l  effect. The unsteady motion effect on the wing 

lift can be very important a s  a forcing t e r m  in aeroelast ic  phenomena 

but i t s  value i s  always; very small, therefore i t  i sneglec ted  here. 

The contri'bution of the horizontal tail a s  a good approximation in  most  

c a se s  e m  be attributed entirely to  the fact that the downwash at the 

tail does not respond instantaneously to changes in wing angle of at- 

tack. Using this  concept of downwash lag, one obtains: 

( see  ref ,  1)  

e = downwash angle a t  the tai l  

The wing downwash par a m  eter a s  estimated f rom the char ts  in 

ref. 9, is found to  be extremely small  'beyond a Mach number of two. 

As a consequence, therefore, the derivative CZ, is neglected com- 
a 

pletely. 



Cm 
the change in pitching moment due to a forward speed 

u 
perturbation, i s  of significance only in the transonic regime where 

the  aerodynamic center shifts backward due to  the transition of the 

flow character frern subsonic to supersonic. GonsequentIy &: can 

be considered equal to zero outside the transonic region. 

Ih reference 8 the sum of Cm and Cm is given as determined 
?l t i  

from flight tests. The results  of the'oretical ca~culations and sf wind 

tunnel experiments as  given in reference 7 show that Cm is very 
a 

small  a t  Mach numbers greater than 3 and i s  small  compared to C m 
?l 

at lower speeds. 

Fur t h e r m r e  in the characteristic equation, only the sum of 

Cm and Cm appears in terms of significance, s o  that it is reason- 
9 & 

able to replace C in the eqLatisns of motion by the value of 
Pn 

ci 
(Crn + C ) a s  given in figure 2 and to put C = OO. 

P n e  
9L a 

me a 
With these relations then and for horizontal flight, i. e. 8 0, 

the coefficients sf the c ~ r a c t s r i s t i e  equation (85) for the longitudinal 

motion sf the X- 115 airplane finally become 



The arguments used in the evaluation of the derivatives are quali- 

tatively true in general for supersonic airplane configurations, es 

that the coefficients of the characteristic equation in most cases will 

be essentially of this form. 
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IV. RESULTS 

Representation and Discussion of the Solutions of the Complete 

Longitudinal Equations 

The three equations of longitudinal motion have been solved 

numerically for a se t  of supersonic Mach numbers andl different alti- 

tudes with the aerodynamic data of the X-15 airplane. The appearing 

strongly damped, high frequency motion, the so-called "short period 

modes', not showing any particularities a t  the flight conditions under 

consideration and i ts  roots being well remote f rom the phugoid roots, 

i s  ignored in this further discussion. 

The obtained roots for the ph~goid mode a r e  given in table 5. 

It can be seen that for high altitudes and moderate supersonic Mach 

numbers, the roots a r e  complex indicating an oscillotary motion 

with a tendency to  break apart  into two aperiodic modes as the altitude 

decreases or the Mach nauniber increases. 

The real  part of the roots i s  plotted over the Mach number for 

different flight altitudes in figure 4. One observes that: 

( 1 )  The rea l  roots and the real  parts  of the complex roots a r e  

ill negative implying that a divergence of a disturbance does not occur. 

( 2 )  As long a s  the phygsid motion is  periodic the value of the 

real  part repr esenting the damping in the system is changing only 

little with the Mach number and i s  decreasing with increasing altitude. 

(3)  Once degenerated into two aperiodic modes, one of these 

r ea l  'roots increases in magnitude with increasing Mach number or 

decreasing flight altitude, representing a pure convergence, while the 

other root asymptotically appr sache s zero. 



The observations (2)  and (3)  a r e  confirmed in figure 5, showing the 

location of the phygoid roots in the complex plane for the flight alti- 

tudes 20,000 f t . ,  40,000 f t . ,  and 60,000 ft.  The imaginary part  of 

the roots, representing the frequency of the motion goes down with 

increasing Mach number, while the real  part remains almost constant 

until the root locus reaches the rea l  axis. F r o m  then on one root 

rapidly approaches zero  and the other root increases along the nega- 

tive rea l  axis. 

Phugoid Approximation 

In the attempt to a r r ive  at a closed form criterion for the phu- 

goid degeneration, the simplifying concept s f  the phugoid approximation 

has been applied. 

Noting that the dimensionless coefficients for the airplane m a s s  

and for the moment of inertia, p and i a r e  very large nunib ers ,  one 
Yo 

real izes that the coefficients A, I3 and C in the characteristic equation 

[eqs, (A6) or (3, I ) ]  a r e  very  large compared to the coefficients D and E. 

Consequently then there must exist large roots dependent essen- 

tially on the values of A, B and C, and small  roots determined approxi- 

mately by the second order equation which results  f rom neglecting the 

f i r s t  two t e rms  of the characteristic equation. 

Retaining only the dominant t e rms  in the las t  three coefficients 

one finds for  the small phugoid roots the characteristic equation 



and since Cm f 0 for statically stable airplanes 
a 

A different approach leading to the sanze approximation of the 

phugoid is the following: 

Expecting the phugoid roots to be very small, i. e. the phugoid 

motion to be very  slow, then the pitch ra te  and the acceleration in 

pitch a r e  going to  be vanishingly small. But the pitching moment 

equation then requires a, the angle-of-attack disturbance, also to be 

extremely small, since C i s  one of the larger  derivatives. m 
a 

Therefore an approximation for  the phygoid motion would be 

obtained by putting a = 0. 

This i s  equivalent to assuming a very large value for  C 
ma 

the restoring moment, such that the angle of attack remains virtually 

@onstant during the phugoid motio;. 

As a consequence then the third equation of the set (A31 can be 

dropped (since C w 0) and the remaining equations are,  for hori- 
m u  

zsntal flight ( 8  = 01, 

(2pD - C,,) 6 + CL 9 = 0 

( ~ C L  - GZU) 8 -  Z(dDS = 0 (C, neglected) 
Q 

The corresponding characteristic equation i s  

and this i s  identical with equation (4. 1). 

The roots of this extremely simplified characteristic equation 

have been computed for the same flight conditions a s  before. The 

results  a r e  in very good agreement with the solutions of the complete 

se t  of equations sf longitudinal motion, The accuracy sf the phugoid 



approximation is found to be within 2% for most of the calculated points. 

Therefor e any information obtained from the simple phtsgoid 

approximation can be used with reasonable justification to describe the 

actual behavior of the airplane in the investigated Mach number a d  

altitude range. 

This statement should be valid in general, since in coming to 

this point no qualitative arguments have been used which a r e  true 

specifically only for the X-15 airplane and not for  most other conven- 

tional configurations a s  well. 

Derivation of a Criterion for the Phugoid Degeneration 

The characteristic equation of the phugoid approximation then 

provides a criterion for the degeneration of the normally periodic 

phugoid motion into two aperiodic modes, 

The roots of the quadratic equation (4. 1) will be real if: 

With the identities 

the condition becomes : 



Condition for the 

phugoid degeneration 

to occur. 

As the Mach number goes to zero  this criterion approaches the form 
C, 

1 
S - = 0.707 which i s  in agreement with the known condition 

C, 3 

L - 1 for  cri t ical  damping, - - , for the phugoid motion of a csnven- 
T"d f l  

tional airplane in incompressi'ble air flow. Therefore the criterion 

given here can be considered valid over the whole Mach number range 

starting f rom zero, except for  the transonic region. 

Using the aerodynamic data of the X-15 airplane, the critical 

value of CL/CD a s  given above has been computed for all flight con- 

ditions under consideration, and in addition the value of CL/CD which 

corresponds to a trimmed steady flight sf  the X-15 under the same 

conditions has been obtained, The results  a r e  given in table 6 and 

plotted in figure 4. 

In the limiting value of cL/cD the only variation with altitude 

appears in the lift depending part of GD. Since the lift coefficient CL 

is very small a t  nearly all  considered flight conditions this variation 

i s  extremely small and therefore the limiting value of C /C marking 
k D 

the degeneration of the phugoid is practically independent of the flight 

altitude and a function only of the Mach nm'ber .  

Comparing figures 4 and 4 one observes that the points of inter- 

seetion in figure 6 l ie  a t  the same Mach numbers at which in figure 4 

the splitting sf the roots occurs. This confirms the good agreement 
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of the degeneration criterion with the exact solutions of the equations 

of motion. 

Figure 6 indicates that a t  supersonic flight speeds at sea level 

the phugoid mode i s  not likely to occur a s  the normal oscillatory motion 

However any economic operation of an airplane requires a value of the 

ratio cL/cD greater  than 3 at least. so that in al l  normal supersonic 

a s  well as  subsonic flight conditions the phugoid mode appears as a 

low frequency periodic motion. 



-22- 

APPENDIX A 

Stability Axes 

To describe the motion of a flight vehicle, in  most cases  

Newton's second law i s  expressed with respect to stability axes, i. e. 

a body fixed orthogonal coordinate system x, y, z, with i t s  origin 

at the aircraft  center of gravity, the x-axis pointing forward in the 

direction of the initial steady flight velocity, the z-axis pointing 

downward and the y-axis pointing out the right wing such that the 

y = 0 plane coincides with the plane of symmetry of the airplane. 

The General Equations of Motion 

Denoting the scalar components s f  the linear velocity along 

the x, y, and z axes by u, v, and w and the scalar components of the 

angular velocity about the x, y-, and z axes by p, q, andl r, the motion 

of a rigid airplane with controls fixed is described 'by the set of equa- 

tions : 

8:x = m ( ~ + q w - r v )  

Z:Y = rn(6-b r u -  pw) (A. l a )  



Here m i s  the mass  of the airplane, the 1's a r e  the moments of in- 

2 2 ertia, defined by Ix = (; (y +z )dm, IXz = 1 Xz dm , etc., 

X A 

X, Y, and Z a r e  the external forces, consisting of aerodynamic 

(including propulsive) and gravity forces, in the x, y, and z directions 

and L, M, .and N a r e  the external aerodynamic moments about the 

x, y, qnd z axes respectively. 

Denoting the orientation of the body fixed coordinate system 

with respect to an earth fixed system xe9 y , Z, (xe ye - plane = hori- 
e? 

zontal plane, x pointing forward in the nominal flight direction) in the 
e 

usual way by the angles f (aximuth), 0 (pitch), and l (roll), the 

forces take the form 

X = - m g  sine Y = m g c o s 8  s i n %  Z = m g c s s 8 c o s @  
8 g g 

Nondimensionalization of the Equations of Motion and Final Fo rm 

To transform the equations of motion into nondirnensional 

form the following procedure has been applied: 

1 2 
The aerodynamic forces a r e  expressed as F = - p V S CF 2 

P 2 
and the aerodynamic moments as  M = - p V S CM 2 

wher e 
- 

p = density of the air, c = mean aerodynamic cord, S = wing 

2 
area, V' = (U + ulZ+ v + w 2 

In the case of pure longitudinal motion v = 0. 

The derivatives of the forces and moments with respect to a 

perturbation 5 become: 



The' perturbations 5 a r e  made dimensionless using U a s  divisor for 

velocity perturbations and 9 - for angular rate perturbations. 

* e * - 
The time i s  nondimensionalized by t = Tus c i.e. t =  iFt =t-- 

ZUO 
and derivatives with respect to the nondimensional time 9 a r e  denoted 

The stability derivatives C and C then represent partial 
F, Mi2 
5 '3 

derivatives of the force and moment coefficients C and CM with r e -  F 
A 

spect to the nondirnensionaf form 5 of the perturbation 5 .  
p S F  Further the mass  of the airplane i s  expressed a s  m = u -Z 

-3 
and the moment of inertia about the y-axis a s  I = i * (see table 2 ) .  

Y Y 8  . 

The transf ormation results in the nondimenasional equations 

(2cL - C z )B+ (2pD - G a; o D - C  z )a - (Z@D+CZ D-CLtan8)tY= 0 
U a Q Q 

where all. derivatives with respect to acceleration quantities, except 

C and C a r e  neglected as  i s  Cx because these a r e  normally 
Z r ~ 1 ~ 1 .  a Q ?l 

very small compared to the other derivatives. Clearly, when it  ap- 

pears necessary to do so, any of the terms dropped can be restored 

into the equations without difficulty, 



Assuming solutions of the form ?I = A u1 e A€ , a =  a e Xt , 9 = a 1 e  he 
1 

one a r r ives  a t  the characteristic equation 

Here i t  i s  assumed that the reference condition i s  horizontal flight, 

i.e. 0 - 0 .  

The expansion of the determinant leads to a quartic equation for X: 

the roots of which give the desired information about the motion of the 

airplane. 

The coefficients of the characteristic equation are:  
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Usually one wants to express the derivatives of the force 

coefficients Cx and C in te rms  of the lift, drag, and thrust coeffi- 
z 

cients. 

W i t h  the assumption that the thrust vector is aligned with the 

x-axis and for small  angles of attack a the following relations can 

easily be verified: 

The thrust '9; is assumed to be independent s f  the motion variables 

for rocket and jet propulsion systems. 



APPENDIX B 

The most efficient way to increase the damping of the phugoid 

motion in subsonic flight i s  to apply an additional longitudinal force by 

controlling the thrust proportional to (-u) o r  to a , both of which have 

approximately the same phase. 

To show the effect of such a damping force on the phugoid in 

supersonic flight, an additional u-dependent t e rm has been introduced 

into the x-force equation. 

2 Denoting the damping thrust force by F = CF Spu S with D 

then a constant C corresponds to  a thrust force proportional to  u ,  BF 

independent of U. The x-force equation then reads: 
b* 

The equations of motion have been solved with C taking the values D F  

30 and 300 in addition to the case without artificial damping, CDF = 0. 

The effect of an increase of this damping t e rm is essentially 

the same as  a decrease in flight altitude: the real par t  of the phugoid 

i s  slightly increased compared to the undamped case as  long a s  the 

roots are complex, the degeneration point occurs a t  a smal ler  Mach 

number, and the successive departure of the two real  roots i s  more 

extreme, one sf them going to zero and the other increasing with in- 

creasing Mach number. 



1n Figure 7, the real par t  of the roots i s  plotted over the Mach 

number for a flight altitude of 40, 000 ft. In this case, the dependence 

of the results on the additional damping is most obvious, but the ten- 

dency is the same a t  all other altitudes. 

Considering the additional damping CDF/u as an increase of 

C and noting that the main contribution to C comes from the drag 
X X u u 

coefficient CD,  then the introduction of the damping t e r m  can be 

throughe of as  an increase of the h a g  coefficient, where C = 30, D F  

300 corresponds to an increase of C by a factor of approximately 
X 
tB 

B, 2, 2. 2 , respectively. 

Thus, the application of a damping thrust control reduces the 

lift to drag rat io CL/CD as  i t  appears in the criterion for phugoid de- 

generation, see P a r t  XV, bringing its value closer to the limiting value. 

It should be noted, however, that the l i f t  to  drag ratio based on 

the actual airplane shape and flight condition is not changed by the ad- 

ditional damping term. 



REFERENCES 

B. Etkin, Dynamics of Flight, John Wiley ,and Sons, New York 
(1959). 

2. E. Seckel, Stability and Control of Airplanes and Helicopters, 
Academic P r e s s ,  New York (1964). 

3. H. Schlichting , E. Truckenbrodt, Ae rodynamik des Flug- 
zengesI Vol. 2, Springer (1960). 

4. U. S. A. F. , Stability and Control Datcom. , October 1960 ( re -  
vised Nov. 1965). 

5. R. S. Osborne, 'Re rodynamic Characteristics of a 0.067- 
Scale Model of the N. A. X- 15 Research Airplane at Trans- 
sonic Speeds," NASA TA4 X-24 (Sept. 1959). 

6 ,  A. E. Franklin, R. M. Lust, "Investigation of the Aerodynamic 
Characteristics of a 0.067-Scale Model of the X-15 Airplane a t  
Mach Numbers of 2.29, 2.98, and 4.65, 'WASA TM X-38 (Nov. 
19 59 ). 

7 , H. J. Walker, @. H. Wolowicz, s'Theoretical Stability Deriva- 
tives for the X- 15 Research Airplane a t  Supersonic and Hyper- 
sonic Speeds Encluding a Comparison with Wind Tunnel Re- 
sults, '' NASA TM X-287 (Aug. 1960). 

8. R. B. Yancey, He A. Rediess, @. H. Robinson,"Aerodynamic 
Derivative Characteristics of the X- 15 Re search Airplane a s  
Determined f rom Flight Tests for  Mach Numbers f rom 0 . 6  to 
3 .4 ,  NASA TN D- 1060 (Jan. 1962). 

9. R. C. HaefePi, EL MirePs, J, L. Cummingso "Charts for Es-  
timating Downwash behind Rectangular, Trapezoidal, and Tri-  
angular Wings at  Supersonic Speeds, I t  NACA TN 2141 (Aug. 
1950). 



TABLE 1 

X- 15, AIRPLANE DATA 

WJ3IGHT W = 22, 000 lbs. 

(This includes 7, 400 lbs,  fuel. ) 

TOTAL WING AREA S = 200 sq. ft. 

WING LOADING 
W lbs. - = 100 - 
S sq. ft. 

- 
MEAN AERODYNAMIC CHORD c = 10. 27 ft. 

"TAIL VOLUME" 

St = horizontal tail a r e a  

at = distance f r o m  airplane c. g. t o  
mean aerodynamic cen te r  of the 
horizontal tail 

MOMENT OF INERTIA 
2 

1 = 95,808 slug ft  * 
Y 

CONSIDERED SPEED RANGE: Mach 1. 2% - $. 0 

CONSIDERED FLIGHT ALTITUDE: Sea level  

20, 000 ft, 

40, 000 Pt. 

60,000 ft. 



TABLE 2 

X-15, ' MASS AND MOMENT O F  INERTIA PARAMETERS 







TABLE 5 

PHUGOID ROOTS OF THE X- 15 







II - 
red. 

Mach Number 

FIG. Ib Cm, AS A FUNCTION OF THE MACH NUMBER 









Mach Number 

FIG. 4 REAL PART OF THE PHUGOID ROOTS 
FOR DIFFERENT FLIGHT ALTITUDES 



FIG. 5 THE PMUGQID ROOTS SHOWN IN %HIE 
COMPLEX PLANE 



60000 Ft. Trimmed Flight 
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FIG. 6 LIFT TO DRAG RATIO OF THE X - 15 
QTW lMM ED FLIGHT AND CRITICAL VALUE 1 




