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ABSTRACT

The character of the longitudinal low frequency (phugoid) mo-
tion of a rigid airplane with controls fixed is investigated for the flight
Mach number range frorr.x 1. 25 to 8. 0 using the physical and aerody-
namic data of the North American X-15 research airplane.

The validity of the simplifying assumptions made in most low
speed airplane stability investigations (symmetry of the airplane and -
of the air flow, small perturbations) is established for the problem
under consideration.

The equations of longitudinal motion have been solved for the
flight altitudes: sea level, 20,000 ft., 40, 000 ft., and 60, 000 ft.; and
in addition the roots of the simplified equations resulting from the phu-
goid approximationv have been calculated for the same flight situations.
It is found that the deviation of these approximate solutions from the
solutions of the complete longitudinal equations is below 5 per cent
throughout the considered range of flight conditions, and for most
calculated points is less than 2 per cent. The phugoid roots are com-
plex at 60, 000 ft, altitude and real at sea level, with transition from
one mode to the other at the intermediate flight altitudes. The real
part of the roots is always negative, i.e., there is no divergence of
the motion. Using the phugoid approximation, a criterion for the de=~
generation of the periodic phugoid mode into aperiodic modes is de-
rived in form of a critical value of the lift to drag ratio CL/CD;

In an appendix, the influence of an additional damping force
(thrust control by the auto-pilot) on the character of the phugoid roots

is shown.
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I. INTRODUCTION

The three equations of longitudinal motion of an airplane, rep-
resenting the three degrees of freedom in the plane of symmetry,
normally have two pairs of complex roots.

The behavior of a non-spinning missile is described by the
same equations, but the character of the motion is different because
of the different order of magnitude of some of the coefficients.

For a symmetric missile, a change of the pitching moment due
to a perturbation of the longitudinal speed, 9M/8u, is equal to zero,
and the same is true for the change of the transverse force due to a
perturbation of the longitudinal speed, 98Z/du .

This results in an uncoupling of the equations, such that the
pitch and transverse motions are independent of longitudinal perturba-
tions and represent the typical short period motion, while the remain~
ing pair of roots, the phugoid mode, degenerates to simple exponential
damping‘.‘

For most airplanes, 9M/8u alsc is very small, except in '
transsonic flight, but 82/8u normally must not be neglected. How-
ever, contrary to the behavior of most other coefficients, 9Z/%u de-
creases with increasing flight speed. Therefore, one can expect that
in the case of a conventional winged airplane, there exists a certain
flight speed at which a similar degeneration of the phugoid occurs.,

Theoretical and experimental investigations showed that this
poiﬁt will not be reached during normal operation of conventional air-
planes at subsonic speeds. Therefore, it has been undertaken in this

investigation to determine. the point of phugoid degeneration for super-
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sonic and hypersonic flight conditions.

To solve the equations of motion for a conventional airplane af
subsonic Mach numbers one usually makes the simplifying assump-
tions that the airplane is perfectly symmetric and that the' concept of
small perturbations can be used to linearize the equations. The
queétion whether the validity of these assumptions can be extended to
supersonic flight conditions is discussed first,

The investigation then is based on the data of the X~15 research
airplane. The X-15 is the only high-speed aircraft whose physical and
aerodynamic data are published in some detail. Moreover, its con-
figuration is such that the results obtained in the analysis of the longi-~
tudinal motion qualitatively can be adopted for most other supersonic

- and hypersonic aircraft as well.
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II. THE EQUATIONS OF MOTION

General Formulation

The six degrees of freedom of a body in space result in six
equations of motion, in which the inertial forces associated with one
degree of freedom are balanced by the corresponding aerodynamic and
gravity forces. For stability considerations, the equations of motion
of a flight vehicle normally are formulated with respect to an orthog~-
onal system of body-fixed stability axes (see Appendix A).

The aefodynamic forces and moments are functions of the mo-
tion components, and if the dependence is continuous they can be ex-
pressed as Taylor series in terms of these motion variables. Let A
be a typical aerodynamic reaction; then the associated Taylor series

would be:

2 52 Z 2 2
_ aA g 9°A
= -+ e o0 e ’ °
A=A_+t¢ “g n 5= . En E*g"“an Il—z 24, (2.1)

N

on
where £ and 7 stand for the deviations of the motion variables from a
reference state and for the time derivatives of these deviations on
whichever A depends; and all partial derivatives are to be evaluated
at the reference point,
Symmetry

Normally, an airplane is designed to be symmetric both geo-
metrically and in its mass distribution, with respect to the x-z plane,
defined in Appendix A. This symmetry éonceptua,lly admits pure
longitudinal motion, i.e., solutions of the equations of motion with the
non-symmetric motion components identically equal to zero.

Actually, however, this symmetry of motion is never exact
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because of gyroscopic effects, non-symmetries of the airflow, and
uneven load distribution. But handling qualities of the airplane re-
quire strongly that these coupling effects be kept extremely small,
so that for all practical purposes the symmetry of an airplane can
be considered as well established.

A first consequence then is that the moments of inertia I
and Iyz vanfsh. Secondly, all partial derivatives of non-symmetric
reactions with respect to longitudinal motion variables must be zero
and all first partial derivatives of symmetric reactions with respect
to lateral motion variables are also zero (symmetry demands even
functions). These conclusions are valid for all steady flight conditions
of an airplane with controls fixed. In actual flight tests made to in~-
vestigate the longitudinal motion of an airplane, the unavoidable later-
al motions alwa.ys can be kept very small by the human or automatic
pilot. This results in a very good agreement between the theoretical
pure longitudinal solutions and the experimental observations for
most flight conditions due to the fact that longitudinal forces and mo-
ments arising from lateral deviations can only be of second and high-
er order in these lateral small perturbations and therefore do not give
significant contributions. However, this agreement should not be ex-
pected in the transsonic flight regime, since in that case small non-
symmetries of the air flow can have large effects on the overall mo-
motion of the airplane bgcause of the phenomena associated with the
appearance of shocks.

Therefore, for that flight condition, higher order terms must

be taken into account in order to predict the behavior of the airplane,
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and correspondingly the complete set of equations of motion has to be
dealt with.

Outside the transsonic region, both in subsonic and supersonic
flight, discontinuities in the aerodynamic forces and moments practi-
cally do not occur (except in extreme situations, such as stall), so
that for these flight conditions the concept of pure longitudinal motion
is appropriate.

Then the equations of motion to be considered for our purposes
(longitudinal motion in subsonic, supersonic, and hypersonic flight)
beéome:

-mg sin 6 + EXae = mid + QW)
mg cos 8+ 5Z__ = m(¥ - qu) o (2.2)
IM = c'in
with no dependence of the aerodynamic reactions on lateral motion
variables. (Xae’ Zae = areodynamic forces, M = aerodynamic mo-
ments). These equations in general are nonlinear.

Small Perturbation Concept

For subsonic flight, experience showed (see refs. 1 and 2) that
in most cases the application of the method of small perturbations
from an equilibrium state gives results sufficiently accurate for sta-
bility and control considerations.

The restriction to small perturbations implies that all prod-
ucts of disturbance velocities (linear and angular) are of higher order
smallness,and terms in which they appeér therefore can be neglected.
This action linearizes the equations of motion. However, if some of

the higher order partial de rivatives joined with these products in the
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Taylor expansions are very 1arge; then the validity of the linearized
equations may possibly be restricted to such small perturbations only,
that any actual motion of the airplane would exceed this range of va-
lidity. In such a case, nonlinear terms must be taken into account in
order to arrive at an agreement between theoretical calculations and
flight tests.

| The necessary condition for a higher order partial derivative
to be very large is that the dependence of the corresponding aerody-
namic force on one of the variables be extremely nonlinear in the
neighborhood of the reference point.

For the longitudinal aerodynamic forces and moments in
supersonic flight, a strong nonlinearity does not exist as long as the
airplane under consideration is a conventional one in the sense that it
is designed to operate over a certain continuous range of flight condi-
tions a'.nd not only at one fixed flight regime, and that the reference
conditions lie well inside this operational range.

Under these restrictions, then, the linearization of the equa-
tions of motion based on the assumption of small perturbatidns is
permissible,and the obtained results constitute a correct representa-
tion of the motion of the airplane.

Final Form of the Equations

With the following notation:

U,6 = steady reference state flight velocity, flight path
- angle, respectively

u = velocity perturbation in the x~-direction

w = wvelocity perturbation in the z-direction
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w/U = @& = perturbation in angle of attack

¢ = flight path angle perturbation

q = ©® = angular velocity perturbation about the y-axis
X = x-direction force due to a perturbation
Z —

= z-direction force due to a perturbation
M = pitching moment due to a perturbation
and eliminating all the steady state forces and moments ’(they consti-
tute an equilibrium by themselves), the equations to be solved are:
mu + mggdcos 8 - )_;,X =0
m(¥ - Ud)+ mg dsin @ -ZZ = 0 (2.3)
be -IM = 0
Here, the aerodynamic forces, X, Z, and moments, M, are of the
form E(0A/OE )o s where A denotes one of the aerodynamic reactions,
£ is a disturbance, and the subscript zero indicates that the partial
derivative is to be evaluated at the steady reference point. Thus, the
equations are simultaneous ordinary differential equations with con-
stant coefficients.

It is convenient to transform these equations into nondimen-
sional form. There are a number of nondimensional systems in use;
the one adopted here is the NACA system with %E (c = mean aerody-
namic chord) as i:he characteristic length for longitudinal motion. For
detéils, see Appendix A and ref. 1.

Nontrivial solutions of the expected form u = uy ekt s Q= ale)‘t,
4= ﬂlem are possible only if the determinant of coefficients vanishes.

This condition results in the quartic characteristic equation for A :
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miiml+crl+pDr+E=0

whose coefficients are given in Appendix A.
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Iil. AIRPLANE DATA

Description of the Airplane

The phugoid motion of an airplane at supersonic speeds is in-
vestigated here using the numerical data of the X-15research airplane.
The X-15 is a rocket-powered, single place airplane designed to inves-
tigate the hypersonic flight regime. It has a 5 per cent thick, low as-
pect ratio, trapezc;idal wing mounted in the midposition on a fuselage
consisting of a body of revolution with large side fairings. The hori-
zontal tail has a 45° sweep, 'is all-movable, and may be deflected dif-
ferentially for roll control. The upper vertical tail is all-movable for
directional control, and a fixed lower vertical tail is provided for in-
creased di;ectional stability at high angles of attack and Mach number.
Both vertical tails have a 100 single wedge airfoil section. |

The flight tests are carried out at Edwards Air Force Base,
California. The X-15 is carried under the wing of 2 B-52 airplane to
an altitude of approximately 45, 000 feet and released to perférm its
flight mission. After the rocket fuel is used up, the X-15 glides to
a landing on a dry lakebed in the Mohave desert.

In ref. 7 a qualitative description of the airflow associated with
the X-15 in supersonic and hype;-sonic flight is given which indicé.tes
that discontinuous changes in the aerodynamic characteristics need not
be expected for the flight conditions under consideration.

| For the purpose of this investigation, it is assumed that the
power plant of the X-15 can be controlled such that the airplane is ca-
'pé.ble of maintaining a steady horizontal speed at all altitudes. Cor-:

respondingly, the airplane weight chosen for the calculations is that
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with about half of the fuel capacity left. These assumptions do not rep-
resent the actual flight performance of the X-15, which is accelerated
by a 1.5 minute run of the rockét engine and then performs most of its
test programs in the successive 10 minute power=-off gliding flight
phase. ﬁowever, since the aerodynamic characteristics are virtually
independent of the power setting of the engine as shown in flight tests
(ref. 8), the assumptions made do not restrict the validity of the aero-
dynamic data.

The physical characteristics of the X-15 airplane as used in
~ this investigation are given in Table 1 and were obtained from ref. 8.

Aerodynamic Characteristics

In ref. 8 the following longitudinal stability derivatives, as de-

termined from flight tests, are given for supersonic Mach numbers up

to 3. 4:
CN and Cm ; the partial derivatives of the normal force and of the
Q a pitching moment coefficient with respect to a change
in angle of attack,
(C + C ), the sum of the derivatives of the pitching momentco-
My Mg, efficient with respect to the pitching rate q=¢ and with

respect to the rate of change of the angle of attack.
Using the results of theoretical calculations and of wind tunnel experi-
ments {ref, 7), the values of these derivatives have been estimated up
ﬁo a Mach number of 8. 0. In Figures 1 and 2, the dependence of these
de‘rivatives on the Mach number as used in the present investigation is
shown {see also Table 3).
The aerodynamic data appearing in the final form of the equa-

tions of motion in Appendix A {eqn. A-3) are then obtained as follows.

CL is the steady flight lift coefficient and can be expressed as:



(for the airplane data used), where

vy = ratio of specific heat at constant pressure to specific heat
at constant volume of air,
P = air pressure (po = sea level value) .

CD is the steady flight drag coefficient which is assumed to be

of the form

where CD and CD1 are functidns of the Mach number. Their values
have been %etermined from wind tunnel tests for the Mach numbers
2,29, 2.98, and 4. 65 (ref. 6) and have been extrapolated in accord-
ance with theoretical and experimental results for this investigation.
In Figure 3, the dependence of CD and CD1 on the Mach number is
shown as it is used in the c:a,lcula.‘ti:;nso

Using the relations given in Appendix A, the derivatives ap-

pearing in the equations of motion can be expressed as:

C = C - C

L(I. Nd, D
C = - C

z, = TN,

3CD
Cx = Cp-3g = CL-%p CrLCy
o 1 o
8CD.

CX = --Z(CD + CLtan 8) - MW {in horizonﬁal flight 8=0)



8C ¥a Cp ) c. 9.

C, = M-t = -M @ - ML a

z, oM M c,__ oM
o4
9C

ol ( N, aCD)
ony 5M M/
o

With the assumed form of the drag coefficient, the derivative 3CD/3M

can be written as

9C ) %Ch " 8cC
D - 2 ic?tiac, € 52
BM M L M D,“L7
acDo ) acD1 CLZ acNcL ac,
= TM_‘LCL‘“SM‘*’ZCDICL (—%e - 332 ) -
o4
This can be solved for SCD/BM :
8C 85C 2 8C
D°+C2 D1+zc °L Mo
B T CL M D, T 3M
8C 1%L,
M P .
142G, CL
1 Co
(o4

NG/BM ) GCDOIBM , and BCDI/BM were obtained
from the figures 1 and 3 by graphical methods {(see Table 3).

The derivatives 8C

CZ s the change in normal force due to pitch rate, is influ-
enced by bgth the wing and the horizontal tail, although, when the air-
plane has a tail the wing contribution to CZ is normally small com-
pared to :that of the tail. Usually in such cages one increases the tail
eifect by an amount of the order of 10 per cent to allow for the wing
and body. Highly swept or low-aspect-ratio wings may give a more
significant contr‘ibﬁtion to CZ ; so that for the X-15 it is assumed

q
that:



C, = 1.15 {Cy )
4 1 TaL
Sty
with (CZ> = -2 — (CL ) (see ref, 1)
- St o TAIL
= - 2x0.8 (CL )
¢ TAIL
Then C,, = - 1.84 (C )
q e TAIL
(CL ) , the lift curve slope of the horizontal tail has been ob-
a” TAIL
tained from ref. 7 and is plotted over the Mach number in figure 1.
CZ , the change in normal force due to rate of change in angle
a

of attack again consists of two parts, the effect of unsteady motion of
the wing and the tail effect. The unsteady motion effect on the wing
lift can be very important as a forcing term in aeroelastic phenomena
but its value is always very small, therefore it is neglected here.

The contribution of the horizontal tail as a good approximation in most
cases can be attributed entirely to the fact that the downwash at the
talil does not respond instantaneously to changes in wing angle of at-

tack. Using this concept of downwash lag, one obtains:

S.4 |
(CZ‘) = -2 t....t (CL )i_ %,e-{ (see ref. 1)
G TAIL Sc CTAIL
¢ = downwash angle at the tail

The wing downwash parameter -g% , as estimated from the charts in
ref. 9, is found to be extremely small beyond a Mach number of two.
As a consequence, therefore, the derivative Cz&vis neglected com-

pletely.



-14-

Cm » the change in pitching moment due to a forward speed
Y ;

perturbation, is of significance only in the transonic regime where
the aerodynamic center shifts backward due to the transition of the

flow character from subsonic to supersonic. Consequently Cm can
u
be considered equal to zero outside the transonic region.

In reference 8 the sum of Cm and Cm. is given as determined
) :
from flight tests, The results of theoretical calculations and of wind

tunnel experiments as given in reference 7 show that Cm is very

a
small at Mach numbers greater than 3 and is small compared to Cm

q
at lower speeds,

Furthermore inthe characteristic equation, only the sum of
Cm and Cm. appears in terms of significance, so that it is reason=-
a

able to replace Cm in the equations of motion by the value of

(Cm + Cm&) »as given in figure 2 and to put Cm. = 0.

a
With these relations then and for horizontal flight, i.e. 8 =0,

the coefficients of the characteristic equation (A5) for the longitudinal

motion of the X-15 airplane finally become

2
A = 4 i
Mo
| 2
B = -2ui_ (C +C_}-4u¥C_ +C_ )
vy Z(l Xu mq Mo
C = i(€C_ C =-C_C +2C, C )+z2u{C_ +C +C
ly( X, Zq Xg 2 L x: ) my m&)(cza 5&1)
-2pc_c -4 c_ (3.1)
a “q a
D = 2uC_GC_ +C [Cm C, -C_ (C_ +C, )]
u Ta Fu~Ma %q %a ™Mq ™3

+C_ (CZ - ZCL) (Cm + Cmo)
a u q a
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E = -G C_ (26 -C,)
a u

The arguments used in the evaluation of the derivatives are quali-
tatively true in general for supersonic airplane configurations, so

that the coefficients of the characteristic equation in most cases will

be essentially of this form.
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IV. RESULTS

Representation and Discussion of the Solutions of the Complete

Longitudinal Equations

The three equations of longitudinal motion have been solved
numerically for a set of supersonic Mach numbers and different alti-
tudes with the aerodynamic data of the X-15 airplane. The appearing
strongly damped, high frequency motion, the so-called "'short period-
mode'!, not showing any particularities at the flight conditions under
consideration and its roots being well remote from the phugoid roots,
is ignored in this further discussion.

The obtained roots for the phugoid mode are given in table 5.
It can be seen that for high altitudes and moderate supersonic Mach
numbers, the roots are complex indicating an oscillotary motion
with a tendency to break apart into two aperiodic modes as the altitude
decreases or the Mach number increases.

The reai part of the roots is plotted over the Mach number for
different flight altitudes in figure 4. One observes that:

(1} The real roots and the real parts of the complex roots are
all negative implying that a divergence of a disturbance does not occur.

{(2) As long as the phygoid motion is periodic the value of the
real part representing the damping in the system .is changing only
little with the Mach number and is decreasing with iﬁcreasing altitude.

{3) Once degenerated into two apei'iodic modes, one of these
real roots increases in magnitude with increasing Mach number or
decreasing flight altitude, representing a pure convergence, while tile

other root asymptotically approachés Zexro,
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The observations (2) and (3) are confirmed in figure 5, showing the
location of the phygoid roots in the complex plane for the flight alti-
tudes 20, 000 ft., 40,000 ft., and 60, 000 ft. The imaginary part of
the roots, representing the frequency of the motion goes down with
increasing Mach number, while the real part remains almost constant
until the root locus reaches the real axis, From then on one root
rapidly approaches zero and the other root increases along the nega-

tive real axis.

- Phugoid Approximation

In the attempt to arrive at a closed form criterion for the phu-
goid degeneration, the simplifying concept of the phugoid approximation
has been applied.

Noting that the dimensionless coefficients for the airplane mass
and for the moment of inertia, W and iy’ are very large numbers, one
realizes that the coefficients A, B and C in the characteristic equation
[egs. (A6) or (3. 1)] are very large compared to the coefficients D and E.

Consequently then there must exist large roots dependent essen-
ltially on the values of A, B and C, and small roots determined approxi-
mately by the second order equation which results from neglecting the
first two terms of the characteristic equation.

Retaining only the domin#nt terms in the last three coefficients
one finds for the small phugoid roots the characteristic equation

| 5 |
x Cm A7 (2C-C C 1C =0

apfc_aPrauc
i : i a a- a

a
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and since Cm # 0 for statically stable airplanes
a

2 .2 2 ’
~4u A +2uC A=-2C +C. C = 0 : (4. 1)
xu L L zl‘1

A different approach leading to the same approximation of the |
phugoid is the following:

Expecting the phugoid roots to be very small, i, e. the phugoid
motion to be very siow, then the pitch rate and the acceleration in
pitch are going to be vanishingly small. But the pitching moment
equation then requires a, the angle-of-attack disfurbance, also to be
extremely small, since Cm is one of the larger derivatives.

Therefore an approx?mation for the phygoid motion would be
obtained by putting a = 0.

This is equivalent to assuming a very large value for Cm s
the restoring moment, such that the angle of attack remains virtgally
constant during the phugoid motion,

As a conseqﬁence then the third equation of the set (A3) can be
dropped (since Cm ~ 0} and the remaining equations are, for hori-

u
zontal flight (6 = 0),

i

(2Cp - Cgz ) t-2uDd =0 (Czq neglected)

The corresponding characteristic equation is

_4u2)\2+ zuc,;ux- ZCLZ+CLCZu = 0
and this is identical with equation (4. 1).

The roots of this extremely simplified characteristic equation
have been computed for the same flight conditions as before., ~ The
results are in very good agreement with the solutions of the complete

set of equations of longitudinal motion. The accuracy of the phugoid
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approximation is found to be within 2% for most of the calculated points.

Therefore any information obtained from the simple phugoid
approximation can be used with reasonable justification to describe the
actual behavior of the airplane in the investigated Mach number and
altitude range.

This statement should be valid in general, since in coming to
this point no qualitative arguments have been used which are true
specifically only for the X-15 airplane and not for most other conven-

tional configurations as well.

Derivation of a Criterion for the Phugoid Degeneration

The characteristic equation of the phugoid approximation then
provides a criterion for the degeneration of the normally periodic
phugoid motion into two aperiodic modes.

The roots of the quadratic equation (4. 1) will be real if:

ap?c? za.4p’2cl-c oc )
Sk, Y

With the identities

acD
Cx‘ = -2Cp- M M
u
T 2
z - T C;: ° THM the condition becomes:
a
2 aC
oC L
2( M D) 2 ( M a )
Cp &t c, M/ * tCL \PrT o oM
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2 + -———M aCD
. Cp Cp, ™ Condition for the
i. e, T = 5 1
D 2 (2_'_ M I-‘a)a phugoid degeneration
CLa oM to occur.

As the Mach number goes to zero this criterion approaches the form

C
E—L; < 2. 0. 707 which is in agreement with the known condition

D V2 CL 1 :
for critical damping, -CB = — , for the phugoid motion of a conven-
tional airplane in incompressible air flow, Therefore the criterion
given here can be considered valid over the whole Mach number rangé
starting from zero, except for the transonic region.

Using the aerodynamic data of the X-15 airplane, the critical
value of CL/CD as given above has been computed for all flight con-
ditions under consideration, and in addition the value of CL/CD which
corresponds to a trimmed steady flight of the X~15 under the same
 conditions has been obtained. The results are given in table 6 and
plotted in figure 6.

In the limiting vaiue of CL/ CD the only variation with altitude
appears in the lift depending part of CD' Since the lift coefficient CL
is very small at nearly all considered flight conditions this variation’

is extremely small and therefore the limiting value of CL/C marking

D
the degeneration of the phugoid is practically independent of the flight
altitude and a function only of the Mach number.

Comparing figures 6 and 4 one observes that the points of inter-

section in figure 6 lie at the same Mach numbers at which in figure 4

the splitting of the roots occurs. This confirms the good agreement
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of the degeneration criterion with the exact solutions of the equations
of motion,

Figure 6 indicates that at supersonic flight speeds at sea level
the phugoid mode is not likely to occur as the normal oscillator.y motion
However any economic operation of an airplané requires a value of the
ratio CL/CD greater than 3 at least, so that in all normal supersonic
as well as QUbsonic flight conditions the phugoid mode appears asa

low frequency periodic motion,
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APPENDIX A

Stability Axes

To describe the motion of a flight vehicle, in most cases
Newton's second law is expressed with respect to stability axes, i.e.
a body fixed orthogonal coordinate system x, y, z, with its origin
at the aircraét center of gfavity, the x-axis pointing forward in the
direction of the initial steady flight velocity, the z-axis pointing
- downward and the y-axis pointing outvthe right wing such that the

y = 0 plane coincides with the plane of symmetry of the airplane.

The General Equations of Motion

Denoting the scalar components of the linear velocity along
the x, y, and z axes by u, v, and w and the scalar components of the
angular velocity about the x, y, and z axes by p, q, and r, the motion

of a rigid airplane with controls fixed is described by the set of equa-

tions:
ZX = m(i+qw-~rv)
Y = m(x'r-l-ru-pw)» (A, 1a)
VA m (W + pv - qu)
£L = B +(rp-@I_-(F+pa)l_+(r’-qIL  +qr(l -I))
x Xy ZX vz zZ 'y
M = ‘olly + (PQ-I;‘)IYZ—(IO)_-QI')IXY + (PZ"?Z)IZX +rp(L-1) ¢ (A.1D)
’ZN =

. p o 2_2 .
£1,+ (qr-pM, -(@Frpll  + (a7-p )L + pa(l -L.)
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Here m is the mass of the airplane, the I's are the moments of in-

ertia, defined by Ix = %(y2+z2)dm, Ixz = sz dm , etc.,
A A |

X, Y, and Z are the external forces, consisting of aerodynamic
(including propulsive) and gravity forces, in the x, y, and z directions
and L, M, .and N are the external aerocdynamic moments about the
X, V, and z axes respectively.

Denoting the orientation of the body fixed coordinate system
with respect to an earth fixed system Xy Yoo Zg (xe Ve = plane = hori-
zontal plane, X, pointing forward in the nominal flight direction) in the
usual way by the angles ¥ {aximuth), 8 (pitch), and & (roll), the graviiy

forces take the form

Xg = - mg sinB Yg = mg cos B sin § Zg = mg cos § cosd

Nondimensionalization of the Equations of Motion and Final Form

To transform th;e equations of motion into nondimensional
form the following procedure has been applied: |

The aerodynamic forces are expressed as F’\\'= %— p VZ S CF

and the ’aerodynamic moments as ’M = %— p V2 S¢c CM
where

p = density of the air, ¢ = mean aerodynamic cord, S = wing
area, 'V2 = (U + u)2 + v2,+ wz

In the case of pure longitudinal motion v = 0.

The derivatives of the forces and moments with respect to a

perturbation € become:.



aC
@) - g ovsop ) +1evis ()
(A.2)
8C
(ilgl’[..o = M, =pVSECM<%Eo+ 70 VisT(50)

The perturbations & are made dimensionless using U as divisor for

velocity perturbations and -2;_9 for angular rate perturbations.
c

: , * T e X c
The time is nondimensionalized by t = ZC_'('J’ je. t=ft =f 5=

20U’
and derivatives with respect to the nondimensional time £ are denoted
. d * d
b D o €o — 2 D = t T— @
ol at dt |
The stability derivatives CF and C then represent partial

M
g g
derivatives of the force and moment coefficients CF and CM with re-
spect to the nondimensional form % of the perturbation g.

Further the mass of the airplane is expressed as m= | #EZS-E

and the moment of inertia about the y-axis as IY = iy -Eg—c— (see table 2).

Y

The transformation results in the nondimensional equations

0

il

(ZuD-—ZCLtanB -Cxu)u-cxaa + CL D2

(ZC‘L - CZ ya + (2uD - CZ“D-CZ Ja - (2uD+ Cz D-CLtan6)§= 0
u a a q
. o2 _
- C u-(Cm'D+Cm )a+(1yD -cmD)79—0

m
u a a q

where all derivatives with respect to acceleration quantities, except -
Cz and Cm ; are neglected as is Cx'” because these are normally

& [ ) .
very small compared to the other derivatives. Clearly, when it ap-

pears necessary to do so, any of the terms dropped can be restored

into the equations without difficulty.
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Assuming solutions of the form 1 = ﬁl e-ﬁ', a= ale)‘f, $= 191 e)‘t
one arrives at the characteristic etjuation
(201 - C, ) - G, CL
u a
ZCL- Cz (Zu)\-Cz. A - Cz ) -(ZM+CZ W = 0 (A.4)
u a a ' q
‘ . 42 g
- Cm _(Cm.l + Cm ) (1yk +Cm‘)‘)
u G a q

Here it is assumed that the reference condition is horizontal flight,
i.ec 8=0,

The expansion of the determinant leads to a quartic equation forA:

ar 4B +crlipisE = o0

the roots of which give the desired information about the motion of the
airplane.

The coefficients of the characteristic equation are:

A = 2pi (2u-C, )
- a
o . i ) a2
B = 2ui (C, +C ) +i C G, -2u(C, C_ -C_ C, )-4u%(C_ +C_ )
a u u “a qg a q “a a q
C=i(C_C_ -C_C_)+2uC C_-GC_C +C_C_+C_C_ }
vy p-4 Z p.4 Z Z m m Z X m X Me
u “a a “u a g a “q u T q u a
5 6 (A. 6)
-4°c_-C_(C_C_-C_C_}+2C.GC,_ i
my X, mg - zg zy mg X, Y
2 |
D = 2¢.%¢C +zu[c C_ -(C - C.)C u]+c (C C -C_C )
L me X, m, X, L m.a x, mg zq mq z,

-C (C_ c -C_ C )-C (C_C -C C yjy-2c.,C _C
X muzq quu-L m Ze Z, Mg Lquu

E:-C'[C (2C,-C_)+C_ C ]
; L ma L Zu muza
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Usually one wants to express the derivatives of the force
coefficients Cx and Cz in terms of the 1ift, drag, and thrust coeffi-
cients,

With the assumption that the thrust vector is aligned with the
x-axis and for small angles of attack a the following relations can

easily be verified:

C
x

L1

CT+CLa - CD

C
z

it

-CL - CDG

The thrust T is assumed to be independent of the motion variables

for rocket and jevt propulsion systems.
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APPENDIX B

The most efficient way to increase the damping of the phugoid
motion in subsonic flight is to apply an additional longitudinal force by
controlling the thrust proportional to (-u) or to a, both of which have
approximately the same phase.

To show the effect of such a damping force on the phugoid in
supersonic flight, an additional u-dependent term has been introduced
into the x-force equation.

Denoting the damping thrust force by FD = CF -;;pUZS \;vith

= o-ll.._
CF B CDF 2

CDF_,'.
u

then a constant CDF corresponds to a thrust force propbrtiona.l to u,

independent of U. The x-force equation then reads:

(zuD-CXu- >E)e-c a+c ¥ =0 .

o

The equations of motion have been solved with C taking the values

DF

30 and 300 in addition to the case without artificial damping, C 0.

DF ~
The effect of an increase of this damping term is essentially
the same as a decrease in flight altitude: the real part of the phugoid
is slightly increaséd compared to the undamped case as long as the
roots are complex,,Athe degeneration point occurs at a smaller Mach
number, and the successive departure of the two real roots is more

extreme, one of them going to zero and the other increasing with in- .

creasing Mach number.
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In Figure 7, the real part of the roots is plotted over the Mach
number for a flight altitude of 40, 000 ft. In this case, the dependence
of the results on the additional damping is most obvious, but the ten-
dency is the same at all other altitudes.

Considering the additional damping CDF/U as an increase of
Cx and noting that the main contribution to Cx comes from the drag
coélfﬁcient CD , then the introduction of the darr?ping term can be
throught of as an increase of the drag coefficient, where C = 30,

DF

300 corresponds to an increase of Cx by a factor of approximately
1.2, 2.2, respectively. :

Thus, the application of a damping thrust control reduces the
lift to drag ratio CL/CD as it appears in the criterion for phugoid de-
generation, see Part IV, bringing its value closer to the limiting value.

It should be noted, however, that the lift to drag ratio based on

the actual airplane shape and flight condition is not changed by the ad-

difional damping term.
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TABLE 1
X-~15, AIRPLANE DATA

WEIGHT W = 22,000 lbs.

(This inc¢ludes 7, 400 1bs. fuel.)

TOTAL WING AREA S = 200 sq. ft.

WING LOADING W - 100 1bs-
S sq. ft.

MEAN AERODYNAMIC CHORD c = 10.27 ft.
St{'t

"TAIL VOLUME" — = 0.55-1.46 = 0.8
Sc

St = horizontal tail area

4, = distance from airplane c. g. to
mean aerodynamic center of the
horizontal tail

MOMENT OF INERTIA Iy = 95,000 slug ftze
CONSIDERED SPEED RANGE: Mach 1.25 - 8.0

CONSIDERED FLIGHT ALTITUDE: Sea level
20, 000 ft.
40, 000 ft.
60, 000 ft.
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TABLE 2

X-15, MASS AND MOMENT OF INERTIA PARAMETERS

u p=d m g __W_ . 2 L[] _L [ ] 1
T S gt Po ple,
PS>
= 280.5—r
““elp,
I 8L . ]
i =y - ¥ ._2 o
y c S 23 Po PIPg
pS() .
= 1472 -
plp,
Sea level 20,000 ft, | 40,000 ft. | 60,000 ft,
p/p, 1 0. 4595 0. 1851 0.07078
p/p0 1 0. 5328 0. 2462 0. 09414
" 280. 5 526. 0 1140 2980
iy 1472 2760 5980 15630
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TABLE 5

PHUGOID ROOTS OF THE X-15
Sea Level 20, 000 ft. ' 40, 000 ft. 60, 000 ft.
Mach | Real ] Imaginary Real Imaginary Real Imaginary Real leaginary
-0.02108 '
1.25 0 }-0.01412]0.02610 -0. 006861 | 0. 03135 -0. 00477 | 0. 03194
-0. 03490 |
1.5 |~0-00879 0 |-0.01595 0. 01782 -0.007332 | 0. 02465 -0. 00407 | 0. 02549
~0. 05496
~0. 00338 ~0. 01050
2.0 0. 07285 0. 02742 0 |0 008402 [ 0. 01615 ~0. 00384} 0. 01782
0. 00134 -0. 00339
3.0 0. 080129 ~0.03702| 0 |-0- 008805 {0. 008187 | -0.00364 0. 01145 R’
i
-0. 000814 -0. 00199
4.0 0. 088549 0. 04231|0 [-0-009611 |0, 002113 | -0. 00386 |0. 00905
-0. 000538 -0. 00130 0. 00426
5.0 -0.09253 | © -0. 04483 | © -0.01570]0 | -0-00393}0.00718
-0. 000361 0. 000864 -0.00258
6.0 -0, 09736 -0, 04755 | ¢ -0.01833|0 | -0 00407 0. 00555
~0. 000257 ~0. 000615 -0. 00176
7.0 -0. 09854 |° -0. 04833 | © -0.01936/0 | -0.0040910.00419
-0. 000199 1-0. 000473 -0, 00134
8.0 -0. 10155 |° -0. 04993 | °© 0. 02040[0 | ~0- 00419 J0. 00313
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