Extractors and Pseudorandom Generators

Luca Trevisan
University of California at Berkeley

We introduce a new approach to constructing extractors. Extractors are algorithms that transform
a “weakly random” distribution into an almost uniform distribution. Explicit constructions of
extractors have a variety of important applications, and tend to be very difficult to obtain.

We demonstrate an unsuspected connection between extractors and pseudorandom generators.
In fact, we show that every pseudorandom generator of a certain kind is an extractor.

A pseudorandom generator construction due to Impagliazzo and Wigderson, once reinterpreted
via our connection, is already an extractor that beats most known constructions and solves an
important open question. We also show that, using the simpler Nisan-Wigderson generator and
standard error-correcting codes, one can build even better extractors with the additional advantage
that both the construction and the analysis are simple and admit a short self-contained description.

Categories and Subject Descriptors: F.0 [Theory of Computation|; E.4 [Data]: Coding and
Information Theory

Additional Key Words and Phrases: Pseudorandomness, Extractors, Error-correcting Codes

1. INTRODUCTION

An extractor is an algorithm that converts a “weak source of randomness” into an
almost uniform distribution by using a small number of additional truly random
bits. Extractors have several important applications (see e.g. [Nisan 1996]). In this
paper we show that pseudorandom generator constructions of a certain kind are
extractors. Using our connection and some new ideas we describe constructions of
extractors that improve most previously known constructions and that are simpler
than previous ones.

1.1 Definitions

We now give the formal definition of an extractor and state some previous results.
We first need to define the notions of min-entropy and statistical difference.

We say that (the distribution of) a random variable X of range {0,1}" has min-
entropy at least k if for every x € {0,1}" it holds Pr[X = z] < 27%. If 2% is
an integer, then a canonical example of a distribution having min-entropy & is the
uniform distribution over a set S C {0,1}" of cardinality 2*. Indeed, it is implicit
in [Chor and Goldreich 1988] that if a distribution has min-entropy & then it is a
convex combination of distributions each one of which is uniform over a set of size 2*.
We will consider distributions of min-entropy & as the formalization of the notion of
weak sources of randomness containing k£ “hidden” bits of randomness. In the rest of

University of California at Berkeley, Computer Science Division

615 Soda Hall, Berkeley, CA 94720. luca@cs.berkeley.edu

An extended abstract of this paper appeared in the Proceedings of the 31st ACM Symposium on
Theory of Computing, 1999.

2 . Luca Trevisan

this paper we will often call (n, k)-source a random variable X ranging over {0, 1}"
and having min-entropy at least k. The use of min-entropy to measure “hidden
randomness” has been advocated by Chor and Goldreich [Chor and Goldreich 1988]
and, in full generality, by Zuckerman [Zuckerman 1990]. The statistical difference
between two random variables X and Y with range {0,1}" is defined as

X =Y

Pri7(X)=1-PrT(Y)=1
o [PET(X) = 1] - Pr(T(Y) = 1]

%Z|Pr[X:v]fPr[Y:v]\

and we say that X and Y are e-close if || X — Y| < e. For an integer [we denote
by U; a random variable that is uniform over {0, 1}.

A function Ezt : {0,1}" x {0,1}' — {0,1}™ is a (k,e)-extractor if for every
random variable X of min entropy at least k it holds that Fxt(X,U;) is e-close to
the uniform distribution over {0,1}™. A weaker kind of combinatorial construction
has also been considered: A function Disp : {0,1}" x {0,1} — {0,1}™ is a (k,&)-
disperser if for every subset S C {0,1}™ such that |S| > €2™ and for every X of
min-entropy k it holds Pr[Disp(X,U;) € S] > 0.

One would like to have, for every n and k, constructions where ¢ is very small
and m is as close to k as possible. There are some limitations towards this goal:
One can show that, if ¥ < n — 1 and ¢ < 1/2, then it must be the case that
t > max{log(1/e) — 1, log(n — k)} [Nisan and Zuckerman 1993], and also it must
be the case that m < k 4+t — 2log(1/e) + O(1) [Radhakrishnan and Ta-Shma
1997]. It is possible to show (non-constructively) that for every n,k,e, there is
a (k,e)-extractor Ext : {0,1}" x {0,1}* — {0,1}™ where t = O(logn/e) and
m=k+t—2log(l/e) — O(1). It is an open question to match such bounds with
polynomial-time computable functions Ext.

1.2 Previous Work and Applications

The natural application of extractors is to allow the simulation of randomized al-
gorithms even in (realistic) settings where only weak sources of randomness are
available. This line of research has a long history, that dates back at least to von
Neumann’s algorithm for generating a sequence of unbiased bits from a source of
biased but identically distributed and independent bits [von Neumann 1951]. More
recent work by Santha and Vazirani [Santha and Vazirani 1986] and Vazirani and
Vazirani [Vazirani and Vazirani 1985] considered much weaker sources of random-
ness (that they call “slightly random” sources) that are still sufficient to allow
simulations of arbitrary randomized algorithms. These results were generalized by
Chor and Goldreich [Chor and Goldreich 1988] and Cohen and Wigderson [Cohen
and Wigderson 1989], and finally by Zuckerman [Zuckerman 1990], who introduced
the current definition (based on min-entropy) of weak random sources and a con-
struction of extractors (although the term extractor was coined later, in [Nisan and
Zuckerman 1993]). The main question about simulation of randomized algorithms
using weak random sources can be stated as follows: suppose that for every n we
have access to a (n, k(n))-source, and that we are given a polynomial-time ran-
domized algorithm that we want to simulate given only one access to one of the

Extractors and Pseudorandom Generators . 3

sources: what is the most slowly growing function k(-) such that we can have a
polynomial-time simulations? For a “black-box” simulation, where the randomized
algorithm is given as an oracle, it is impossible to solve the simulation problem
in polynomial time with a family of (n,n°"))-sources. The best one can hope to
achieve is to have, for every § > 0, a simulation that works in polynomial time
given a (n,n%)-source. We will call such a simulation an entropy-rate optimal sim-
ulation. Improved constructions of extractors appeared in [Nisan and Zuckerman
1993; Srinivasan and Zuckerman 1994; Ta-Shma 1996; Zuckerman 1996b], but none
of these constructions implies an entropy-rate optimal simulation of randomized
algorithms. Dispersers are objects similar to, but less powerful than, extractors.
Randomized algorithms having one-sided error probability can be simulated by
using weak random sources and dispersers. Saks et al. [Saks et al. 1998] give a con-
struction of dispersers that implies an entropy-rate optimal simulation of one-sided
error randomized algorithms with weak random sources. Andreev et al. [Andreev
et al. 1999] show how to use the dispersers of Saks et al. in order to give entropy-rate
optimal simulations of general randomized algorithms using weak random sources.
The result of Andreev et al. leaves open the question of whether there exists a
construction of extractors that is good enough to imply directly such entropy-rate
optimal simulations.

Extractors are also used to derandomize randomized space-bounded computa-
tions [Nisan and Zuckerman 1993] and for randomness-efficient reduction of error
in randomized algorithms (see [Zuckerman 1996b; Goldreich and Zuckerman 1997]
and references therein). They yield oblivious samplers (as defined in [Bellare and
Rompel 1994]), that have applications to interactive proofs (see [Zuckerman 1996b]
and references therein). They also yield expander graphs, as discovered by Wigder-
son and Zuckerman [Wigderson and Zuckerman 1993], that in turn have applications
to superconcentrators, sorting in rounds, and routing in optical networks. Construc-
tions of expanders via constructions of extractors and the Wigderson-Zuckerman
connection appeared in [Nisan and Zuckerman 1993; Srinivasan and Zuckerman
1994; Ta-Shma 1996], among others. Extractors can also be used to give simple
proofs of certain complexity-theoretic results [Goldreich and Zuckerman 1997], and
to prove certain hardness of approximation results [Zuckerman 1996a]. An excel-
lent introduction to extractors and their applications is given by a recent survey by
Nisan [Nisan 1996] (see also [Nisan and Ta-Shma 1998], and [Goldreich 1999] for a
broader perspective).

In Table 1 we summarize the parameters of the previous best constructions, and
we state two special cases of the parameters arising in our construction.

1.3 Our Result
Q(1)

The extractors constructed in this paper work for any min-entropy & = n**\%),
extract a slightly sub-linear fraction of the original randomness (i.e. the length of
the output is m = k'~ for an arbitrarily small o > 0) and use O(logn) bits of
true randomness. In fact, a more general result holds, as formalized below.

THEOREM 1 (MAIN). There is an algorithm that on input parameters n, k < n,
36 < m < k/2, 0 < e < 27812 computes in poly(n,2') time a (k,e)-extractor

4 . Luca Trevisan

Reference Min entropy Output Additional
entropy k length m randomness t

[Goldreich and Wigderson 1997] n—a n — O(a) O(a)
[Zuckerman 1996b] Q(n) (1—-a)k O(logn)
[Ta-Shma 1996] any k k O((logn)?)
[Ta-Shma 1996] nf2(1) kl—o O(log nloglogn)
[Saks et al. 1998] (disperser) n(I) k1= O(logn)
[Ta-Shma 1998] (disperser) any k k — poly logn O(logn)
This paper nS(@) El-e O(logn)

any k ki O((log?n)/log k)
Optimal non-explicit any k k O(logn)
constructions

Table 1. Parameters in previous constructions and our construction of (k,e) extractors Ext :
{0,1}™ x {0,1}! — {0,1}™. In the expressions, ¢ is fixed and arbitrarily small, and « > 0 is an
arbitrarily small constant. O(-) notations hide dependencies on ¢ and «. The constructions in
[Saks et al. 1998; Ta-Shma 1998] only give dispersers, not extractors.

Ext: {0,1}" x {0,1}* — {0,1}™ where

(logn/e)? In m
t = Ao T oTog(k/2m)
O (logtony

In particular, for any fixed constants ¢ > 0 and 0 < v < v < 1 we have
for every n an explicit polynomial-time construction of an (n?,e)-extractor Ext :
{0,1}" x {0,1}CUegm) _, 1 117",

It should be noted that the running time of our extractor is exponential in the
parameter ¢ (additional randomness), and so the running time is super-polynomial
when the additional randomness is super-logarithmic. However, the 2¢ factors in the
running time of the extractor is payed only once, to construct a combinatorial object
(a “design”) used by the extractor. After the design is computed, each evaluation
of the extractor can be implemented in linear time plus the time that it takes to
compute an error-correcting encoding of the input of the extractor. It is possible
to generate designs more efficiently, and so to have a polynomial-time extractor
construction for every min-entropy. We omit the details of such construction, since
the construction of “weak designs” in [Raz et al. 1999] (see below) give better
extractors and is also more efficiently computable.

Our construction improves on the construction of Saks, Srinivasan and Zhou [Saks
et al. 1998] since we construct an extractor rather than a disperser, and improves
over the constructions of Ta-Shma [Ta-Shma 1996] since the additional randomness
is logarithmic instead of slightly super-logarithmic. The best previous construction
of extractors using O(log n) additional randomness was the one of Zuckerman [Zuck-
erman 1996b], that only works when the min-entropy is a constant fraction of the
input length, while in our construction every min-entropy of the form n” is admis-
sible. (On the other hand, the extractor of [Zuckerman 1996b] extracts a constant
factor of the entropy, while we only extract a constant root of it.) Our construc-
tion yields an entropy-rate optimal simulation of randomized algorithms using weak
random sources. In contrast to the result of [Andreev et al. 1999] we can use a weak
random source to generate almost uniformly distributed random bits independently

Extractors and Pseudorandom Generators . 5

of the purpose for which the random bits are to be used.'

Our construction is not yet the best possible, since we lose part of the randomness
of the source and because the additional randomness is logarithmic only as long as
k =n®1 . (See also discussion in Section 1.6 below.)

1.4 Techniques

This paper contains two main contributions.

The first one is a connection (outlined in Section 2) between pseudorandom gen-
erators of a certain kind and extractors. Our connection applies to certain pseu-
dorandom generator constructions that are based on the (conjectured) existence of
predicates (decision problems) that can be uniformly computed in time t(n) but
cannot be solved by circuits of size much smaller than t(n). The analysis of such
constructions shows that if the predicate is hard, then it is also hard to distin-
guish the output of the generator from the uniform distribution. This implication
is proved by means of a reduction showing how a circuit that is able to distinguish
the output of the generator from the uniform distribution can be transformed into
a slightly larger circuit that computes the predicate. (Impagliazzo and Wigder-
son [Impagliazzo and Wigderson 1997] present one such construction with very
strong parameters.) Our result is that if the (truth table of the) predicate is chosen
randomly, according to a distribution with sufficiently high min-entropy, then the
output of the generator is statistically close to uniform. This statement is incompa-
rable with standard analyses: we use a stronger assumption (that the predicate is
random instead of fized and hard) and prove a stronger conclusion (that the output
is statistically close to, instead of indistinguishable from, the uniform distribution).
An immediate application is that a pseudorandom generator construction of this
kind is an extractor. Our result has a straightforward proof, based on a simple
counting argument. The main contribution, indeed, is the statement of the result,
rather than its proof, since it involves a new, more general, way of looking at pseu-
dorandom generator constructions. The Impagliazzo-Wigderson generator, using
our connection, is an extractor that beats some previous constructions and that is
good enough to imply entropy-rate optimal simulations of randomized algorithms.
We stress that although the Impagliazzo-Wigderson generator is known to be a
pseudorandom generator only under unproved conjectures, it is unconditionally a
good extractor (i.e. we do not use any complexity-theoretic assumption in our
work).

Our second contribution is a construction that is simpler to describe and anal-
yse (the generator of Impagliazzo and Wigderson is quite complicated) and that
has somewhat better parameters. Our idea is to use a pseudorandom generator
construction due to Nisan and Wigderson [Nisan and Wigderson 1994], that is
considerably simpler than the one of Impagliazzo and Wigderson (indeed the con-
struction of Impagliazzo and Wigderson contains the one of Nisan and Wigderson as
one of its many components). The Nisan-Wigderson generator has weaker proper-

L Andreev et al. [Andreev et al. 1999] show how to produce a sequence of bits that “look random”
to a specific algorithm, and their construction works by having oracle access to the algorithm. So
it is not possible to generate random bits “offline” before fixing the application where the bits will
be used.

6 . Luca Trevisan

ties than the Impagliazzo-Wigderson generator, and our ideas outlined in Section 2
would not imply that it is an extractor as well. In Section 3 we show how to use
error-correcting codes in order to turn the Nisan-Wigderson generator into a very
good extractor. Section 3 contains a completely self-contained treatment of the
construction and the analysis.

1.5 Perspective

For starters, our construction improves upon previous ones and solves the question
of constructing extractors that use a logarithmic amount of randomness, work for
any min-entropy that is polynomially related to the length of the input and have an
output that is polynomially related to the amount of entropy. Such a construction
has been considered an important open question (e.g. in [Nisan and Ta-Shma
1998; Goldreich 1999]), even after Andreev et al. [Andreev et al. 1999] showed
that one does not need such extractors in order to develop an entropy-rate optimal
simulation of randomized algorithms via weak random sources. Indeed, it was not
clear whether the novel approach introduced by Andreev et al. was necessary in
order to have optimal simulations, or whether a more traditional approach based
on extractors was still possible. Our result clarifies this point, by showing that the
traditional approach suffices.

Perhaps more importantly, our construction is simpler to describe and analyse
then the most recent previous constructions, and it uses a very different approach.
Hopefully, our approach offers more room for improvement than previous, deeply
exploited, ones. Raz et al. [Raz et al. 1999] have already found improvements to
our construction (see below). Tight results may come from some combination of
our ideas and previous ones.

Our use of results about pseudorandomness in the construction of extractors may
come as a surprise: pseudorandom generation deals with (and takes advantage of) a
computational definition of randomness, while extractors are combinatorial objects
used in a framework where information-theoretic randomness is being considered.
In the past there have been some instances of (highly non-trivial) results about com-
putational randomness inspired by (typically trivial) information-theoretic analogs,
e.g. the celebrated Yao’s XOR Lemma and various kind of “direct product” results
(see e.g. [Goldreich et al. 1995]). On the other hand, it seemed “clear” that one
could not go the other way, and have information-theoretic applications of compu-
tational results. This prejudice might be one reason why the connection discovered
in this paper has been missed by the several people who worked on weak ran-
dom sources and on pseudorandomness in the past decade (including those who did
foundational work in both areas). Perhaps other important results might be proved
along similar lines.

1.6 Related Papers

The starting point of this paper was an attempt to show that every disperser can
be modified into an extractor having similar parameters. This was inspired by the
fact (noted by several people, including Andrea Clementi and Avi Wigderson) that
every hitting set generator can be transformed into a pseudorandom generator with
related parameters, since the existence of hitting set generators implies the exis-
tence of problems solvable in exponential time and having high circuit complexity

Extractors and Pseudorandom Generators . 7

[Andreev et al. 1998] and the existence of such problems can be used to build pseu-
dorandom generators [Babai et al. 1993; Impagliazzo and Wigderson 1997]. The
fact that an information-theoretic analog of this result could be true was suggested
by the work done in [Andreev et al. 1999], where proof-techniques from [Andreev
et al. 1998] were adapted in an information-theoretic setting. We were indeed able
to use the Impagliazzo-Wigderson generator in order to show that any construction
of dispersers yields a construction of extractors with slightly worse parameters.
Oded Goldreich then pointed out that we were not making any essential use of
the disperser in our construction, and that we were effectively proving that the
Impagliazzo-Wigderson generator is an extractor (this result is described in Section
2). The use of error-correcting codes and of the Nisan-Wigderson generator (as in
Section 3) was inspired by an alternative proof of some of the results of [Impagliazzo
and Wigderson 1997] due to Sudan et al. [Sudan et al. 1999).

Shortly after the announcement of the results of this paper, Raz, Reingold and
Vadhan [Raz et al. 1999] devised an improvement to our construction. In our
construction, if the input has min-entropy £ and the output is required to be of
length m, and ¢ is a constant, then the additional randomness is O(m!/0g(k/2m)
(logn)?/log(k/2m)), which is very bad if, say, m = k/3. In [Raz et al. 1999], the
dependency is O((logn)?/log(k/m)), so the randomness is bounded by O(log®n)
even when k = m/3. Furthermore, the running of the extractors of [Raz et al. 1999]
is poly(n, t) rather than poly(n,2') as in the construction presented in this paper.
Raz et al. [Raz et al. 1999] also show how to recursively compose their construction
with itself (along the lines of [Wigderson and Zuckerman 1993]) and obtain an-
other construction where k = m and the additional randomness is O(log® n). Con-
structions of extractors with parameters & = m have applications to the explicit
construction of expander graphs [Wigderson and Zuckerman 1993]. In particular,
Raz et al. [Raz et al. 1999] present constructions of expander graphs and of su-
perconcentrators that improve previous ones by Ta-Shma [Ta-Shma 1996]. Raz et
al. [Raz et al. 1999] also improve the dependency that we have between additional
randomness and error parameter €.

Organization of the Paper

We present in Section 2 our connection between pseudorandom generator con-
structions and extractors. The main result of Section 2 is that the Impagliazzo-
Wigderson generator [Impagliazzo and Wigderson 1997] is a good extractor. In
Section 3 we describe and analyse a simpler construction based on the Nisan-
Wigderson generator [Nisan and Wigderson 1994] and on error correcting codes.
Section 3 might be read independently of Section 2.

2. THE CONNECTION BETWEEN PSEUDORANDOM GENERATORS AND EX-
TRACTORS

This section describes our main idea of how to view a certain kind of pseudorandom
generator as an extractor. Our presentation is specialized on the Impagliazzo-
Wigderson generator, but results might be stated in a more general fashion.

8 . Luca Trevisan

2.1 Computational Indistinguishability and Pseudorandom Generators

We start by defining the notion of computational indistinguishability, and pseu-
dorandom generators, due to Blum, Goldwasser, Micali and Yao [Goldwasser and
Micali 1984; Blum and Micali 1984; Yao 1982].

Recall that we denote by U,, the uniform distribution over {0,1}". We say that
two random variables X and Y with the same range {0, 1}™ are (.5, ¢)-indistinguishable
if for every T : {0,1}" — {0, 1} computable by a circuit of size S it holds

|Pr[T(X)=1] - Pr[T(Y) =1]| < ¢

One may view the notion of e-closeness (that is, of statistical difference less than
¢) as the “limit” of the notion of (5, €)-indistinguishability for unbounded S.

Informally, a pseudorandom generator is an algorithm G : {0,1}' — {0,1}™
where t << m and G(Uy) is (S, €)-indistinguishable from U,,, for large S and small
€. For derandomization of randomized algorithms, one looks for generators, say,
G : {0,1}00em) _ {0 1}™ where G(Uo(ogm)) 18 (m©™) | 1/3)-indistinguishable
from U,,. Such generators (if they were uniformly computable in time poly(m))
would imply deterministic polynomial-time simulations of randomized polynomial-
time algorithms.

2.2 Constructions of Pseudorandom Generators Based on Hard Predicates

Given current techniques, all interesting constructions of pseudorandom generators
have to rely on complexity-theoretic conjectures. For example the Blum-Micali-
Yao [Blum and Micali 1984; Yao 1982] construction (that has different parameters
from the ones exemplified above) requires the existence of strong one-way permu-
tations. In a line of work initiated by Nisan and Wigderson [Nisan 1991; Nisan and
Wigderson 1994], there have been results showing that the existence of hard-on-
average decision problems in F is sufficient to construct pseudorandom generators.
(Recall that FE is the class of decision problems solvable deterministically in time
20(") where n is the length of the input.) Babai et al. [Babai et al. 1993] present a
construction of pseudorandom generators that only requires the existence of deci-
sion problems in F having high worst-case complexity. An improved construction
of pseudorandom generators from worst-case hard problems is due to Impagliazzo
and Wigderson [Impagliazzo and Wigderson 1997], and it will be the main focus of
this section. The constructions of [Nisan and Wigderson 1994; Babai et al. 1993;
Impagliazzo and Wigderson 1997] require non-uniform hardness, that is, use circuit
size as a complexity measure. (Recent work demonstrated that non-trivial construc-
tions can be based on uniform worst-case conditions [Impagliazzo and Wigderson
1998].)

The main result of [Impagliazzo and Wigderson 1997] is that if there is a decision
problem solvable in time 2°(") that cannot be solved by circuits of size less than
27" for some v > 0, then P = BPP, i.e. every randomized polynomial time
algorithm has a deterministic polynomial-time simulation. A precise statement of
the result of Impagliazzo and Wigderson follows.

THEOREM 2 ([IMPAGLIAZZO AND WIGDERSON 1997]). Suppose that there ex-
ists a family {P,}1>0 of predicates Py : {0,1}! — {0,1} that is decidable in time
200) " and a constant v > 0 such that, for every sufficiently large 1, P, has circuit

Extractors and Pseudorandom Generators . 9

complezity at least 27°.

Then for every constant € > 0 and parameter m there ezists a pseudorandom
generator IW (™) : {0,1}90e8™) — £0 1}™ computable in time poly(m) such that
IW™ (Uprogm)y) is (O(m), €)-indistinguishable from the uniform distribution, and
P = BPP.

Results about pseudorandomness are typically proved by contradiction. Impagli-
azzo and Wigderson prove Theorem 2 by establishing the following result.

LEMMA 3 ([IMPAGLIAZZO AND WIGDERSON 1997]). For every pair of constants
e >0 and & > 0 there exists a positive constant 0 < a = a(e,d) < § and an al-
gorithm that on input a length parameter I and having oracle access to a predicate
P:{0,1} — {0,1} computes a function IWp : {0,1}* — {0,1}™ in poly(m) time,
where t = O(1) and m = 2% such that for every T : {0,1}™ — {0, 1}, if

|Pr[T(IWp(U)) =1] = Pr[T(Uy) =1]| > ¢
then P is computed by a circuit A that uses T-gates and whose size is at most 2°¢.

By a “circuit with T-gates” we mean a circuit that can use ordinary fan-in-2 AND
and OR gates and fan-in-1 NOT gates, as well as a special gate (of fan-in m) that
computes 1" with unit cost. This is the non-uniform analog of a computation that
makes oracle access to T

It might not be immediate to see how Theorem 2 follows from Lemma 3. The
idea is that if we have a predicate P : {0,1} — {0,1} that cannot be computed by
circuits of size 22%', then IWp(Uy) is (2%, ¢)-indistinguishable from uniform. This
can be proved by contradiction: if T is computed by a circuit of size 2% and is such
that

|Pr[T(IWp(Uy)) = 1] — Pr[T(U,,) =1]| > ¢

then there exists a circuit A of size at most 2% that uses T-gates such that A
computes P. If each T-gate is replaced by the circuit that computes 7', we end up
with a circuit of size at most 229! that computes P, a contradiction to our initial
assumption.

We stress that Lemma 3 has not been stated in this form by Impagliazzo and
Wigderson [Impagliazzo and Wigderson 1997]. In particular, the fact that their
analysis applies to every predicate P and to every function T, regardless of their
circuit-complezity, was not explicitly stated. On the other hand, this is not a pecu-
liar or surprising property of the Impagliazzo-Wigderson construction: in general
in complexity theory and in cryptography the correctness of a transformation of
an object with certain assumed properties (e.g. a predicate with large circuit com-
plexity) into an object with other properties (e.g. a generator whose output is
indistinguishable from uniform) is proved by “black-box” reductions, that work by
making “oracle access” to the object and making no assumptions about it.

We also mention that three recent papers exploit the hidden generality of the
pseudorandom generator construction of Impagliazzo and Wigderson, and of the
earlier one by Nisan and Wigderson [Nisan and Wigderson 1994]. Arvind and
Kobler [Arvind and Kébler 1997] observe that the analysis of the Nisan-Wigderson
generator extends to “non-deterministic circuits,” which implies the existence of

10 . Luca Trevisan

pseudorandom generators for non-deterministic computations, under certain as-
sumptions. Klivans and Van Melkebeek [Klivans and van Milkebeek 1999] observe
similar generalizations of the Impagliazzo-Wigderson generator for arbitrary non-
uniform complexity measures having certain closure properties (which does not
include non-deterministic circuit size, but includes the related measure “size of cir-
cuits having an NP-oracle”). The construction of pseudorandom generators under
uniform assumptions by Impagliazzo and Wigderson [Impagliazzo and Wigderson
1998] is also based on the observation that the results of [Babai et al. 1993] can be
stated in a general form where the hard predicate is given as an oracle, and the
proof of security can also be seen as the existence of an oracle machine with certain
properties.

A novel aspect in our view (that is not explicit in [Impagliazzo and Wigderson
1997; Arvind and Ké&bler 1997; Klivans and van Milkebeek 1999; Impagliazzo and
Wigderson 1998]) is to see the Impagliazzo-Wigderson construction as an algorithm
that takes two inputs: the truth-table of a predicate and a seed. The Impagliazzo-
Wigderson analysis says something meaningful even when the predicate is not fized
and hard (for an appropriate complexity measure), but rather supplied dynamically
to the generator. In the rest of this section, we will see that if the (truth table
of the) predicate is sampled from a weak random source of sufficiently large min-
entropy, then the output of the Impagliazzo-Wigderson generator is statistically
close to uniform: that is, the Impagliazzo-Wigderson generator is an extractor.

2.3 Using a Random Predicate Instead of a Hard One

Let us introduce the following additional piece of notation: let n = 2!, for a string
x € {0,1}" we denote by (z) : {0,1}! — {0,1} the predicate whose truth-table is
x.

LEMMA 4. Fix constants €, > 0, and an integer parameter [. Consider the
function Ext : {0,1}" x {0,1}¢ — {0,1}™ defined as

Ext(z,s) = IVV((;;)(S) (1)

where t = O(l) = O(logn) and m = 20009 = pn®. Then Ext, as defined in
Equation (1) is a (mdén®logn + log 1/e, 2¢)-extractor.

PrROOF. We have to prove that for every random variable X of min entropy
k > mén?logn + log1/e and for every T : {0,1}™ — {0,1} we have

| Pr{T(Eat(X,U)) = 1] - Pr[T(U,,) = 1] < 2 (2)

Let us fix X and T and prove that Expression (2) holds for them. Let us call
B C {0,1}™ the set of bad strings x for which

|Pr[T(Ext(x,U)) = 1] = Pr[T(Uy,) =1]| > ¢ (3)

For each such z, the analysis of Impagliazzo and Wigderson implies that there is a
circuit of size 29! = n? that uses T-gates and that computes (x). Since T is fixed, and
any two different predicates are computed by two different circuits, we can conclude

Extractors and Pseudorandom Generators . 11

that the total number of elements of B is at most the number of circuits of size
S = 29! with gates of fan-in at most m. So we have |B| < 2mSlos§ — gmdn’logn,

Since X has high min-entropy, and B is small, the probability of picking an
element of B when sampling from X is small, that is

Pr[X € B] < |B|- 27" < gmin’losn . g=(mén’lognlog/e) — (4)

Then we have

| Pr[T(Ext(X,Uy)) = 1] — Pr[T(Up) = 1
E [| Pr[T(Bat(z,U,)) = 1] — Pr[T(Uy,) = 1]

<
T ozeXx
= Z Pr(X =z |Pr[T(Ext(x,U;)) = 1] = Pr[T(U,,) = 1]|
zEB
+ > Pr[X = 2] | Pr[T(Ext(z,U})) = 1] = Pr[T(Uy,) = 1]|
z¢B
< 2

where the first inequality is an application of the triangle inequality and the third
inequality follows from Expression (4) and the definition of B. [J

If we translate the parameters in a more traditional format we have the following
extractor construction.

THEOREM 5. For every positive constants v and € there is a v > 0 and an
explicit construction of (k,e)-extractor Ext, : {0,1}" x {0,1}* — {0,1}"™ where
t=0(ogn), k=nY and m =k" .

PrOOF. We proved that for every constant ¢ > 0 and § > 0 thereisa 0 < a < 9§
such that there is a (k,2¢)-extractor construction where k = O(n®*%) = O(n%)
and the output length is m = n®. We can then set 6 = v/2 and 7' = « to get the
parameters claimed in the theorem. [

This is already a very good construction of extractors, and it implies an entropy-
rate optimal simulation of randomized algorithms using weak random sources.

We mentioned in Section 2.2 that Babai et al. [Babai et al. 1993] were the
first to give a construction of pseudorandom generators based on worst-case hard
predicates. In particular, a weaker version of Lemma 3 is proved in [Babai et al.
1993], with similar parameters except that ¢t = O(I?) instead of ¢t = O(l). The
analysis of this section applies to the construction of Babai et al. [Babai et al.
1993], and one can show that their construction gives extractors with the same
parameters as in Theorem 5, except that one would have ¢ = O((logn)?).

By deriving a more accurate estimation of the parameters in the Impagliazzo-
Wigderson construction, it would be possible to improve on the statement of The-
orem 5. More specifically, it could be possible to have an explicit dependency of
the parameter ¢ from 6 and €, and an explicit expression for «(4,~y). However, such
improved analysis would not be better than the analysis of the construction that
we present in the next section, and so we do not pursue this direction.

12 . Luca Trevisan

3. MAIN RESULT

In this section we present a construction of extractors based on the Nisan-Wigderson
generator and error-correcting codes. The Nisan-Wigderson generator is simpler
than the Impagliazzo Wigderson generator considered in the previous section, and
this simplicity will allow us to gain in efficiency.

The advantages of the construction of this section over the construction of the
previous section are better quantitative parameters and the possibility of giving a
self-contained and relatively simple presentation. The subsequent work of Raz et
al [Raz et al. 1999] took the construction of this section as a starting point, and
improved the primitives that we use.

3.1 Overview

The Nisan-Wigderson generator works similarly to the Impagliazzo-Wigderson one:
it has access to a predicate, and its output is indistinguishable from uniform pro-
vided that the predicate is hard (but, as will be explained in a moment, a stronger
notion of hardness is being used). This is proved by means of a reduction that shows
that if T' is a test that distinguishes the output of the generator with predicate P
from uniform, then there is a small circuit with one T-gate that approximately com-
putes P. That is, the circuit computes a predicate that agrees with P on a fraction
of inputs noticeably bounded away from 1/2.

Due to this analysis, we can say that the output of the Nisan-Wigderson generator
is indistinguishable from uniform provided that the predicate being used is hard to
compute approximately, as opposed to merely hard to compute exactly, as in the
case of the Impagliazzo-Wigderson generator.

We may be tempted to define and analyse an extractor Ext based on the Nisan-
Wigderson generator using exactly the same approach of the previous section.
Then, as before, we would assume for the sake of contradiction that a test T dis-
tinguishes the output Ext(X,U;) of the extractor from the uniform distribution,
and we would look at how many strings « are there such that | Pr[T(Ext(x,U;)) =
1] =Pr[T(U,,) = 1]| can be large. For each such x we can say that there is a circuit
of size S that describes a string whose Hamming distance from x is noticeably less
than 1/2. Since there are about 2° such circuits, the total number of bad strings =
is at most 2° times the number of strings that can belong to a Hamming sphere of
radius about 1/2. If X is sampled from a distribution whose min-entropy is much
bigger then the logarithm of the number of possible bad x, then we reach a con-
tradiction to the assumption that T was distinguishing Fxt(X,U;) from uniform.
When this calculation is done with the actual parameters of the Nisan-Wigderson
generator, the result is very bad, because the number of strings that belong to a
Hamming sphere of the proper radius is huge. This is, however, the only point
where the approach of the previous section breaks down.

Our solution is to use error-correcting codes, specifically, codes with the property
that every Hamming sphere of a certain radius contains a small number of code-
words. We then define an extractor Ext that on input = and s first encodes = using
the error-correcting code, and then applies the Nisan-Wigderson generator using
s as a seed and the encoding of x as the truth table of the predicate. Thanks to
the property of the error-correcting code, the counting argument of the previous

Extractors and Pseudorandom Generators . 13

section works well again.

3.2 Preliminaries

In this section we state some known technical results that will be used in the analysis
of our extractor. For an integer n we denote by [n] the set {1,...,n}. We denote
by ujus the string obtained by concatenating the strings u; and us.

3.2.1 Error-correcting codes. Error-correcting codes are one of the basic primi-
tives in our construction. We need the existence of codes such that few codewords
belong to any given Hamming ball of sufficiently small radius.

LEMMA 6 (ERROR CORRECTING CODES). For everyn and d there is a polynomial-
time computable encoding EC : {0,1}" — {0,1}™ where i = poly(n,1/8) such that
every ball of Hamming radius (1/2—6)7 in {0,1}" contains at most 1/6% codewords.
Furthermore i can be assumed to be a power of 2.

Stronger parameters are achievable. In particular the length of the encoding can
be i = npoly(1/4). However, the stronger bounds would not improve our construc-
tions. Standard codes are good enough to prove Lemma 6. We sketch a proof of
the lemma in the Appendix.

3.2.2 Designs and the Nisan- Wigderson Generator. In this section we cite some
results from [Nisan and Wigderson 1994] in a form that is convenient for our appli-
cation. Since the statements of the results in this section are slightly different from
the corresponding statements in [Nisan and Wigderson 1994], we also present full
proofs.

DEFINITION 7 (DESIGN). For positive integersm, 1, a <1, andt > 1, a (m,t,l,a)
design is a family S = Sy, ..., Sm of sets such that

*Si g [t];
—|Sil =1,
—for every i # j € [m], |S; N S| < a.

LEMMA 8 (CONSTRUCTION OF DESIGN [NISAN AND WIGDERSON 1994]). For ev-

ery positive integers m, 1, and a < [there exists a (m,t,l,a) design where t =
lamiy 12

e —. Such a design can be computed deterministically in O(2'm) time.

The deterministic construction in Lemma 8 was presented in [Nisan and Wigder-
son 1994] for the special case of a = logm. The case for general a can be proved by
using the same proof, but a little care is required while doing a certain probabilistic
argument. The proof of Lemma 8 is given in Appendix 3.4.

The following notation will be useful in the next definition: if S C [¢], with
S = {s1,...,s1} (where s1 < s3 < --- <) and y € {0,1}!, then we denote by
Ys € {07 1}l the string Ys1Ysa " Ysy -

DEFINITION 9 (NW GENERATOR [NISAN AND WIGDERSON 1994]). For a func-
tion f : {0,1} — {0,1} and an (m,t,l,a)-design S = (S1,...,Sm), the Nisan-
Wigderson generator NWy s : {0,1} — {0,1}™ is defined as

NWys(y) = f(ys,) - f(ys,.)

14 . Luca Trevisan

Intuitively, if f is a hard-on-average function, then f(-) evaluated on a random point
x is an “unpredictable bit” that, to a bounded adversary, “looks like” a random
bit. The basic idea in the Nisan-Wigderson generator is to evaluate f(-) at several
points, thus generating several unpredictable output bits. In order to have a short
seed, evaluation points are not chosen independently, but rather in such a way that
any two points have “low correlation.” This is where the definition of design is
useful: the random seed y for the generator associates a truly random bit to any
element of the universe [¢] of the design. Then the i-th evaluation point is chosen
as the subset of the bits of y corresponding to set S; in the design. Then the
“correlation” between the i-th and the j-th evaluation point is given by the < a
bits that are in S; N.S;. It remains to be seen that the evaluation of f at several
points having low correlation looks like a sequence of random bits to a bounded
adversary. This is proved in [Nisan and Wigderson 1994, Lemma 2.4], and we will
state the result in a slightly different form in Lemma 10 below.

For two functions f,g : {0,1}' — {0,1} and a number 0 < p < 1 we say that g
approxzimates within a factor p if f and g agree on at least a fraction p of their
domain, i.e. I;r[f(x) =g(z)] = p.

LEMMA 10 (ANALYSIS OF THE NW GENERATOR [NISAN AND WIGDERSON 1994]).
Let S be an (m,l,a)-design, and T : {0,1}™ — {0,1}. Then there exists a family
Gr (depending on T and S) of at most 272" H198™+2 functions such that for every
function f:{0,1} — {0,1} satisfying

Pr [T(NW T
|y6{0f‘1}t[(f,S(y)) } T€{07[1‘}7”[(7") H_E

there exists a function g : {0,1} — {0,1}, g € Gr, such that g(-) approzimates f(-)
within 1/2 4+ ¢/m.

ProoOF OF LEMMA 10. We follow the proof of Lemma 2.4 in [Nisan and Wigder-
son 1994]. The main idea is that if T distinguishes NW; s(-) from the uniform dis-
tribution, then we can find a bit of the output where this distinction is noticeable.

In order to find the “right bit”, we will use the so-called hybrid argument of
Goldwasser and Micali [Goldwasser and Micali 1984]. We define m+1 distributions
Dy, ...,Dp; D; is defined as follows: sample a string v = NW; s(y) for a random
y, and then sample a string r € {0, 1} according to the uniform distribution, then
concatenate the first ¢ bits of v with the last m — ¢ bits of . By definition, D,, is
distributed as NWy s(y) and Dy is the uniform distribution over {0,1}™.

Using the hypothesis of the Lemma, we know that there is a bit by € {0,1} such
that

Pr(T'(NWys(y)) = 1) = Pr{T'()] > ¢
where T'(z) = by & T (z).
We then observe that
e < PrlT'(NWys(y)) = 1] — Pr(T'(+)]

= Pr[I"(D,,) = 1] — Pr[T"(Dy) = 1]

Extractors and Pseudorandom Generators . 15

= S (Pr(1(Dy) = 1] - Pr[T"(Di1) = 1))
i=1
In particular, there exists an index i such that
Pr[T'(D;) = 1] = Pr[T"(D;y1) = 1] > ¢/m (5)
Now, recall that

Dy = f(ys,) - fWs,_)rimivr - Tm

and

D; = f(yISl) T f(y|si,1)f(y\si)7‘z'+1 *Tm .

We can assume without loss of generality (up to a renaming of the indices) that
S; ={1,...,1}. Then we can see y € {0,1}" as a pair (z, z) where z = ys, € {0, 1}/
and z = yjp—s; € {0,1}~". For every j <i and y = (z, 2), let us define h;(z, 2) =
Y|s,: note that h;(z,z) depends on |S;NS;| < a bits of z and on I —[S;NS;| > —a
bits of z.

Using this notation (and observing that for a 0/1 random variable the probability
that the random variable is 1 is equal to the expectation of the random variable)
we can rewrite Expression (5) as

E [T/(f(hl(xa Z))v f(hQ(xv Z))v ce f(hifl(xa 2))7 f(x)v cee ,Tm)]

-];} i Z[T'(f(hl(x, 2)), f(ha(z,2))y ... f(hic1(x,2)), 7oy 7))
=]Ti) i Z[T’(f(hl(x, 2)), f(ha(x, 2)), ... f(hi—1(x, 2)), f(x),...,rm)
_T/(f(h'l(xv Z))a f(hg(x, Z))7 v f(hifl(x7 Z)),TZ‘, .o 7rm)] > 5/m
We can use an averaging argument to claim that we can fix r;41,..., 7, to some

values ¢;jy1 -+ - cm, as well as fix z to some value w, and still have

E [T'(f(hi(z,w)), f(ha(z,w)),... f(hi—1(z,w)), f(z),Cit1 .-\ Cm)

Ti, X

- T/(f(hl(x’w))v f(hQ(ma w))v s f(hi—l(wi))a Tiy Citly o 7cm)] > E/m (6)

Let us now consider a new function F : {0,1}!* — {0,1}™ defined as F(z,b) =
f(hl ('7;7 ’LU)), f(hg(l', w))7 s f(hifl(mv ’LU)), ba Citl---,Cm. USil’lg Fa renaming Ty as
b, and moving back to probability notation, we can rewrite Expression (6) as

Pr[T"(F(z, f(2))) = 1] = Pr[["(F(x,b)) = 1] > e/m

That is, using 77 and F it is possible to distinguish a pair of the form (z, f(x))
from a uniform string of length I+ 1. We will now see that, given F(-) and T"(-), it
is possible to describe a function g(-) that agrees with f(-) on a fraction 1/2+¢/m
of the domain.

Consider the following approach: on input z, pick a random b € {0,1}, and
compute T"(F(x,b)); if T'(F(x,b)) = 1 then output b, otherwise output 1 — b. Let

16 . Luca Trevisan

us call gp(z) the function performing the above computation, and let us estimate
the agreement between f(-) and g,(-), averaged over the choice of b.

= Prlo(@) = f(2)lb = £(2)] Prlo = /(&)

+Prigy(z) = f(@)b# f(2)] Prb # f(x)]

= S PrlT(F@h) = 11 () = 8]+ 5 Pr{I'(F(z,) = 01f(@) # 1
1 1 , _ _ , _
= g+ 3 (PrIT(F.0) = 1(0) = 1] - PrT(Flob) = 1) # 1)
= L PT(Fe (@) = 1] - PYT(F(,) = 1
1, e
-2 m

Over the choices of = and b, the probability that we guess f(z) is > 1/2 + ¢/m,
hence there is a bit b; € {0,1} such that g,, approximates f to within 1/2 + ¢/m.
Once T and F are given, we can specify gp, using two bits of information (the bit
b1, plus the bit by such that 77(-) = by & T'(+)).

We now observe that F' can be totally described by using no more than logm +
(1 —=1)2% 4+ (m — i) < logm + m2® bits of information. Indeed, we use logm bits to
specify ¢, then for every j < ¢ and for every we have to specify f(h;(z,w)). Since
hj(z,w) only depends on the bits of « indexed by S; NS}, we just have to specify
2% values of f for each such j. For j > ¢ we have to specify c;.

Overall, we have a function ¢(-) that approximates f to within 1/2+&/m and that,
given T, can be described using 2 4 log m + m2® bits. We define Gy as containing
all functions g(-) that can be defined in this way, over all possible description. [

3.3 Construction

The construction has parameters n, k < n, 36 < m < k/2 and 0 < ¢ < o—k/12
It can be verified that the constraints on the parameters imply that 2 + 3logm +
3log(1/e) < k/2 (because we have k/4 > 3log1/e and k/4 > m/2 > 2+ 3logm for
m > 36).

Let EC : {0,1}" — {0,1}" be as in Lemma 6, with § = ¢/m, so that n =
poly(n,1/e), and define [= logn = O(logn/e).

For an element u € {0,1}", define u = (EC(u)) : {0,1}} — {0,1}. Let S =
S1,...,8, be as in Lemma 8, such that

7|S%| =1,
—|5; N S;| < a=log(k/2m), and

Inm 2
= Tog(k/zmy . — L
t=0 (6 s(k/2m) log(k/2m))*

By our choice of parameters, and by choosing ¢ appropriately, we have that m > t.

Extractors and Pseudorandom Generators . 17

Then we define Ext : {0,1}" x {0,1}* — {0,1}™ as
Ext(u,y) = NWas(y) = u(ys,) - - u(ys,,) - (7)
3.4 Analysis

LEMMA 11. Let Ext be as in Equation (7). For every fized predicate T : {0,1}™ —
{0,1}, there are at most 222" . (m3/e?) strings u € {0,1}" such that

|Pr[T(Ext(u,Uy)) =1 = Pr[T(Upy) =1]| > ¢ (8)

Proor. It follows from the definition of Ext and from Lemma 10 that if « is such
that (8) holds, then there exists a function g : {0,1} — {0,1}™ in Gy and a bit
b € {0,1} such that the function b & T(g(-)) approximates u(-) within 1/24+¢/m =
1/2+ 6.

There are at most 22T1°8™m+m2% functions g € Gr. Furthermore, each such func-
tion can be within relative distance 1/2 —&/m from at most (m/e)? functions @(-)
coming from the error correcting code of Lemma 6.

We conclude that 22+2log(m/e)+logm+m2® i an ypper bound on the number of
strings u for which Expression (8) can occur. [

THEOREM 12. Ezt as defined in Equation (7) is a (k,2¢)-extractor.

PROOF. We first note that, by our choice of parameters, we have m2% = k/2.
Also, k/2 > 2 + 3log(m/e).

Now, fix a predicate T' : {0,1}" — {0,1}. From Lemma 11 we have that the
probability that sampling a u from a source X of min-entropy k we have

|Pr[T(Ext(u,U)) = 1] — Prr[T(Um) =1]|>¢

is at most 22tm2"+3logm+2log(1/e) . 9=k which is at most ¢ by our choice of param-
eters. A Markov argument shows that

| Pr[T(Ext(X,U,)) = 1] — Pr[T(Uy,) = 1]] < 2
1

Theorem 1 now follows from Theorem 12 and by the choice of parameters in the
previous section.

Acknowledgments

Oded Goldreich contributed an important idea in a critical phase of this research;
he also contributed very valuable suggestions on how to present the results of this
paper. I thank Oded Goldreich, Shafi Goldwasser, Madhu Sudan, Salil Vadhan,
Amnon Ta-Shma, and Avi Wigderson for several helpful conversations. This paper
would have not been possible without the help of Adam Klivans, Danny Lewin, Salil
Vadhan, Yevgeny Dodis, Venkatesan Guruswami, and Amit Sahai in assimilating
the ideas of [Nisan and Wigderson 1994; Babai et al. 1993; Impagliazzo 1995;
Impagliazzo and Wigderson 1997]. Thanks also to Madhu Sudan for hosting our
reading group in the Spring’98 Complexity Seminars at MIT. This work was mostly
done while the author was at MIT, partially supported by a grant of the Italian
CNR. Part of this work was also done while the author was at DIMACS, supported
by a DIMACS post-doctoral fellowship.

18

Luca Trevisan

REFERENCES

ANDREEV, A., CLEMENTI, A., AND RoLIM, J. 1998. A new general derandomization method.
Journal of the ACM 45, 1, 179-213.

ANDREEV, A., CLEMENTI, A., RoLiMm, J., AND TREVISAN, L. 1999. Weak random sources,
hitting sets, and BPP simulations. SIAM Journal on Computing 28, 6, 2103—-2116. Prelim-
inary version in Proc of FOCS’97.

ARVIND, V. AND KOBLER, J. 1997. On resource-bounded measure and pseudorandomness. In
Proceedings of the 17th Conference on Foundations of Software Technology and Theoretical
Computer Science (1997), pp. 235-249. LNCS 1346, Springer-Verlag.

BaBal, L., FOrRTNOW, L., NIsAN, N., AND WIGDERSON, A. 1993. BPP has subexponential
time simulations unless EXPTIME has publishable proofs. Computational Complexity 3, 4,
307-318.

BELLARE, M., GOLDREICH, O., AND SUDAN, M. 1998. Free bits, PCP’s and non-
approximability — towards tight results. SIAM Journal on Computing 27, 3, 804-915.
Preliminary version in Proc. of FOCS’95.

BELLARE, M. AND ROMPEL, J. 1994. Randomness-efficient oblivious sampling. In Proceed-
ings of the 85th IEEE Symposium on Foundations of Computer Science (1994), pp. 276—
287.

Brum, M. AND MicaLl, S. 1984. How to generate cryptographically strong sequences of
pseudorandom bits. SIAM Journal on Computing 13, 4, 850-864. Preliminary version in
Proc. of FOCS’82.

CHOR, B. AND GOLDREICH, O. 1988. Unbiased bits from sources of weak randomness and
probabilistic communication complexity. SIAM Journal on Computing 17, 2 (April), 230—
261.

COHEN, A. AND WIGDERSON, A. 1989. Dispersers, deterministic amplification, and weak
random sources. In Proceedings of the 30th IEEE Symposium on Foundations of Computer
Science (1989), pp. 14-19.

GOLDREICH, O. 1999. Modern Cryptography, Probabilistic Proofs and Pseudorandommness.
Springer-Verlag.

GOLDREICH, O., NisaN, N.; AND WIGDERSON, A. 1995. On Yao’s XOR lemma. Technical
Report TR95-50, Electronic Colloquium on Computational Complexity.

GOLDREICH, O. AND WIGDERSON, A. 1997. Tiny families of functions with random proper-
ties: A quality-size trade-off for hashing. Random Structures and Algorithms 11,4, 315-343.

GOLDREICH, O. AND ZUCKERMAN, D. 1997. Another proof that BPP C PH (and more).
Technical Report TR97-045, Electronic Colloquium on Computational Complexity.

GOLDWASSER, S. AND MICALI, S. 1984. Probabilistic encryption. Journal of Computer and
System Sciences 28, 2, 270-299. Preliminary Version in Proc. of STOC’82.

IMPAGLIAZZO, R. 1995. Hard-core distributions for somewhat hard problems. In Proceedings
of the 36th IEEE Symposium on Foundations of Computer Science (1995), pp. 538-545.

IMPAGLIAZZO, R. AND WIGDERSON, A. 1997. P = BPP unless FE has sub-exponential cir-
cuits. In Proceedings of the 29th ACM Symposium on Theory of Computing (1997), pp.
220-229.

ImpPAGLIAZZO, R. AND WIGDERSON, A. 1998. Randomness versus time: De-randomization
under a uniform assumption. In Proceedings of the 39th IEEE Symposium on Foundations
of Computer Science (1998), pp. 734-743.

KLIVANS, A. AND VAN MILKEBEEK, D. 1999. Graph non-isomorphism has subexponential
size proofs unless the polynomial hierarchy collapses. In Proceedings of the 31st ACM
Symposium on Theory of Computing (1999), pp. 659-667.

LEigHTON, F. 1992. Introduction to Parallel Algorithms and Architectures. Morgan Kauf-
mann.

MAcCWILLIAMS, F. AND SLOANE, N. 1977. The Theory of Error-Correcting Codes. North-
Holland.

NisaN, N. 1991. Pseudorandom bits for constant depth circuits. Combinatorica 12, 4, 63-70.

Extractors and Pseudorandom Generators . 19

NisaN, N. 1996. Extracting randomness: How and why. In Proceedings of the 11th IEEE
Conference on Computational Complezity (1996), pp. 44-58.

Ni1sAN, N. AND TA-SHMA, A. 1998. Extrating randomness : A survey and new constructions.
Journal of Computer and System Sciences. To appear. Preliminary versions in [Nisan 1996;
Ta-Shma 1996].

NisaN, N. AND WIGDERSON, A. 1994. Hardness vs randomness. Journal of Computer and
System Sciences 49, 149-167. Preliminary version in Proc. of FOCS’88.

NisAN, N. AND ZUCKERMAN, D. 1993. More deterministic simulation in Logspace. In Pro-
ceedings of the 25th ACM Symposium on Theory of Computing (1993), pp. 235-244.
RADHAKRISHNAN, J. AND TA-SHMA, A. 1997. Tight bounds for depth-two superconcentra-
tors. In Proceedings of the 38th IEEE Symposium on Foundations of Computer Science

(1997), pp. 585-594.

RaAz, R., REINGOLD, O., AND VADHAN, S. 1999. Extracting all the randomness and reducing
the error in Trevisan’s extractors. In Proceedings of the 81st ACM Symposium on Theory
of Computing (1999), pp. 149-158.

SAKS, M., SRINIVASAN, A., AND ZHOU, S. 1998. Explicit OR-dispersers with polylogarithmic
degree. Journal of the ACM 45, 1, 123-154. Preliminary version in Proc. of STOC’95.
SANTHA, M. AND VAZIRANI, U. 1986. Generating quasi-random sequences from slightly ran-

dom sources. Journal of Computer and System Sciences 33, 75-87.

SRINIVASAN, A. AND ZUCKERMAN, D. 1994. Computing with very weak random sources. In
Proceedings of the 35th IEEE Symposium on Foundations of Computer Science (1994), pp.
264-275.

SUDAN, M., TREVISAN, L., AND VADHAN, S. 1999. Pseudorandom generators without the
XOR lemma. In Proceedings of the 31st ACM Symposium on Theory of Computing (1999),
pp. 537-546.

TA-SHMA, A. 1996. On extracting randomness from weak random sources. In Proceedings
of the 28th ACM Symposium on Theory of Computing (1996), pp. 276—285.

TA-SHMA, A. 1998. Almost optimal dispersers. In Proceedings of the 30th ACM Symposium
on Theory of Computing (1998).

VAZIRANI, U. AND VAZIRANI, V. 1985. Random polynomial time is equal to slightly random
polynomial time. In Proceedings of the 26th IEEE Symposium on Foundations of Computer
Science (1985), pp. 417-428.

VON NEUMANN, J. 1951. Various techniques used in connection with random digits. National
Bureau of Standards, Applied Mathematics Series 12, 36—38.

WIGDERSON, A. AND ZUCKERMAN, D. 1993. Expanders that beat the eigenvalue bound:
Explicit construction and applications. In Proceedings of the 25th ACM Symposium on
Theory of Computing (1993), pp. 245-251.

Yao, A. 1982. Theory and applications of trapdoor functions. In Proceedings of the 23th
IEEE Symposium on Foundations of Computer Science (1982), pp. 80-91.

ZUCKERMAN, D. 1990. General weak random sources. In Proceedings of the 31st IEEE
Symposium on Foundations of Computer Science (1990), pp. 534-543.

ZUCKERMAN, D. 1996a. On unapproximable versions of NP-complete problems. STAM Jour-
nal on Computing 25, 6, 1293-1304. Preliminary Version in Proc. of Structures’93.

ZUCKERMAN, D. 1996b. Randomness-optimal sampling, extractors and constructive leader
election. In Proceedings of the 28th ACM Symposium on Theory of Computing (1996), pp.
286—295.

APPENDIX

A Discussion on Lemma 6

It is a standard result that if an error-correcting code has large minimum distance
then there can be few codewords in every large ball. In particular, the following
bound holds.

20 . Luca Trevisan

LEMMA 13. Suppose C is an error-correcting code with (relative) minimum dis-
tance > 1/2—(3/2. Then every Hamming ball of (relative) radius 1/2—+/B contains
at most 1/383 codewords.

A proof can be found e.g. in [Bellare et al. 1998, Lemma A.1]. The following result
is well known, even if we do not know of a source where it is clearly stated in this
way.

LEMMA 14. For every d and n there exists an error-correcting code with 2™ code-
words of length i = poly(n, 1/§) and with minimum distance (1/2 — 6)n. The code
admits a polynomial-time encoding algorithm.

Several constructions meet this requirement. In particular one can use a Reed-
Solomon code concatenated with a Hadamard code. See e.g. [MacWilliams and
Sloane 1977] for a treatment of error correcting codes. Lemma 6 follows from
Lemmas 13 and 14.

Proof of Lemma 8

The following version of the Chernoff bound will be used (this is Lemma 1.7 in
[Leighton 1992]).

LEMMA 15. Let X4,...,X, be 0/1 mutually independent random variables such
that B[, Xi] = p. Then, for every o > 1 it holds

Pr

ZXi > O‘/’(“| < e—((lna)+%—1)o¢,u

7

We can now give the proof of Lemma 8. The proof is essentially the same as
in [Nisan and Wigderson 1994], and uses some improvements appeared in [Raz
et al. 1999], in particular, the use of a particularly clean probabilistic argument,
that is credited to Zuckerman in [Raz et al. 1999].

We view the set [t] as made by ! intervals, each of size ¢/I. We call a subset
S C [t] structured if it contains exactly one element in each interval.

We consider an algorithm that sequentially chooses m structured subsets of [t]
such that, at any step, the chosen subset has intersections of size less than a with
all the previously chosen subsets.

In order to prove that at each step it is possible to choose a new subset with the
required properties, we use a probabilistic argument.

LEMMA 16. Let Si,...,Sk with k < m be a collection of structured subsets of
2
[t], where t = & - eM™)/a_ Then there exists a structured subset S C [t] such that
S| =1and|S;NS|<afori=1,... k.

PrOOF. We choose S randomly among structured sets, i.e. for every interval
we pick an element at random and we put it into S. Now we claim that for every
i, Pr[|SNS;| > a] < 1/m. Indeed, the random variable |S N S;| can be seen as
the sum of [independent 0/1 random variables, one for every interval (the random
variable being 1 iff S and S; share an element in the corresponding interval). For
each of these random variables, the average is precisely the inverse of the length of
the interval, that is [/t. It follows that the average of |S N S;| is u = [2/t.

Extractors and Pseudorandom Generators . 21

Using the Chernoff bound, we have
Pr[|SNS;| > a] < e—al(lna/pw)+a/p=1) ~ ,—a((lna/pn)-1)
and since we have a/u = at/I? = eltnm)/a the expression above is equal to
ema((T+nm)/a)=1) _ 1 /p,
Using a union bound, we can now conclude that
Pr[3ie{l,...,k}|SN S| >a] <k/m< 1

and so there exists a structured set .S having small intersections with each of the
S;. O

A set S satisfying the statement of the above Lemma can be found in poly(2t,m)
time using O(m + t) space, just by trying all possible structured subsets.

	Introduction
	Definitions
	Previous Work and Applications
	Our Result
	Techniques
	Perspective
	Related Papers

	The Connection Between Pseudorandom Generators and Extractors
	Computational Indistinguishability and Pseudorandom Generators
	Constructions of Pseudorandom Generators Based on Hard Predicates
	Using a Random Predicate Instead of a Hard One

	Main Result
	Overview
	Preliminaries
	Error-correcting codes
	Designs and the Nisan-Wigderson Generator

	Construction
	Analysis

	Appendix

