
Android Security

(C) 2016 Jonathan Levin & Technologeeks.com - Share freely, but please cite source!

Android Security:
Same-ol’, Same-ol’ (but worse)

Jonathan Levin
http://NewAndroidBook.com

http://Technologeeks.com

About this talk

• Covered in “Android Internals: A Confectioner’s Cookbook”

• Provides tour of Android security, and insecurity

- Chapter 8, to be exact

- .

• Updates Last Year’s talk

- Last year : Features This year: Vulnerabilities

- http://Technologeeks.com/files/AnSec2.0.pdf

Android Internals::about
“Android Internals: A Confectioner’s Cookbook”

– 深入解析Android 操作系统 - Coming in Chinese (soon)

– “ ” – In Korean (Oct!)

– Volume I (Available now): Power User’s view

– Volume II (Available with N): Developer’s View

– Unofficial sequel to Karim Yaghmour’s “Embedded Android”, different focus:

• More on the how and why Android frameworks and services work

• More on Security (this talk is an excerpt from Volume I)

• (presently) only in-depth books on the subject

– http://www.NewAndroidBook.com/ :
• Free and powerful tools, plus bonus materials

– Android Internals & Reverse Engineering: Oct 10th-14th,, NYC
• http://Technologeeks.com/AIRE

• Threat models for mobiles consider three main vectors:

Attack Surface

Mobile Security

- Rogue applications (malware)
- Sandbox applications

- Enforce Strong Permissions

- Harden OS Component Security

- Rogue user (device theft, or unauthorized root)

- Secure Boot Process

- Encrypt User Data

- Lock Screen

App Security

Device Security

- Drive-By/Targetted
- Code Injection via some malicious file format

REMOTE

Attack Vectors (simplified)

Mobile Security

Total Compromise

Defeat SELinux

Kernel Code Exec

Get rootGet system

Abuse system call

3rd party daemonFramework vulnerability

Get Personal Data

system_server runs all services
in same address space!

Linux kernel APIs
Unfettered access

Any App

HTML/Plugin/MIME/etc Malformed SMS/MMS

Arbitrary Code Execution

Insecure, root

Subverted Trusted App

Trusted app may be
compromised as well

User carelessness

As of L, SELinux in
Enforcing Mode provides
another layer of protection

Permission mistake

(C) 2016 Jonathan Levin & Technologeeks.com - Share freely, but please cite source!

Attack Vectors (exploited)

Mobile Security

Total Compromise

Defeat SELinux

Kernel Code Exec

Get rootGet system

Abuse system call

3rd party daemonFramework vulnerability

Get Personal Data

Don’t get me started

Towelroot (futex bug)
Other kernel 0-days

Any App

HTML/Plugin/MIME/etc Malformed SMS/MMS

Permission mistake

Arbitrary Code Execution

HTC WeakSauce

Suberted Trusted App

Mediaserver compromise

User carelessness

Mediaserver compromise

(C) 2016 Jonathan Levin & Technologeeks.com - Share freely, but please cite source!

GOAL: Total Compromise

Defeat SELinux

Get rootGet system

Abuse system call

3rd party daemonFramework vulnerability

GOAL: Get Personal Data

system_server runs all services
in same address space!

Linux kernel can be
Attacked via syscalls

HTML/Plugin/MIME/etc Malformed SMS/MMS

Arbitrary Code Execution

3rd party daemons often less
secure, and run as root/system

Trusted app may be
compromised as well

User carelessness

As of L, SELinux in
Enforcing Mode provides
another layer of protection

Permission mistake

Subverted Trusted App

Local Attacks (rogue app, malware) Remote Attacks (input channels)

Remote attacks become local when arbitrary code can be
executed successfully in the context of some vulnerable app

Kernel Code Exec

Any App

Mobile Security

CVEs

Android Security

• “Common Vulnerability Exposure” index

• Publishes and standardized security vulnerabilities

• Goal: Uniquely define particular and specific bugs

• Main database is at http://cve.mitre.org *

• Searchable database is at http://www.cvedetails.com/

(C) 2016 Jonathan Levin & Technologeeks.com - Share freely, but please cite source!

https://www.cvedetails.com/product/19997/Google-Android.html?vendor_id=1224

* - (pronounced: might-er)

A little history

Android Security

(C) 2016 Jonathan Levin & Technologeeks.com - Share freely, but please cite source!

Android Security

Google Response

(C) 2016 Jonathan Levin & Technologeeks.com - Share freely, but please cite source!

• Android’s security is derived from that of Linux and Java

Android Application Security Model

Android Security

• Linux inheritance:

• Java Inheritance:

- Applications run as separate UIDs

- Kernel supports miscellaneous tweaks

- Dalvik VM provides sandbox for applications

- Declarative security model for operations

- Network access filtered in kernel by UserID

- SELinux (“SEAndroid”) policies used extensively

(C) 2016 Jonathan Levin & Technologeeks.com - Share freely, but please cite source!

Android Architecture

Contacts
PII

SMS

Most malware

RootKits

System level attacks

Android Security

SELinux,
Kernel Hardening

TrustZone

Unix permissions,
Capabilities

Dalvik Permissions

Code Signatures

Bionic

JNI . Dalvik VM Native
Binaries

Frameworks

Applications

Linux 2.6.21-3.x Kernel

Hardware

Native Libraries

HAL

(C) 2016 Jonathan Levin & Technologeeks.com - Share freely, but please cite source!

Android Code Bases

Android Security

SELinux,
Kernel Hardening

TrustZone

Unix permissions,
Capabilities

Dalvik Permissions

Code Signatures

Bionic

JNI . Dalvik VM Native
Binaries

Frameworks

Applications

Linux 2.6.21-3.x Kernel

Hardware

Native Libraries

HAL

AOSP

Vendor

Linux
(C) 2016 Jonathan Levin & Technologeeks.com - Share freely, but please cite source!

3rd Party

Scope of Vulnerabilities

Android Security

AOSP

Vendor

Linux
(C) 2016 Jonathan Levin & Technologeeks.com - Share freely, but please cite source!

3rd Party

• : Affects only devices with installed App

• AOSP: : Affects ALL Android devices (global)

• Vendor: : Affects device vendor or chipset vendor

• Linux: : Universal (also desktops, servers)

- Recommended: Monoculture on back of envelope (Geer, Usenix 2005)

3rd Party

AOSP

Vendor

Linux

Updates (or lack thereof)

• Android is becoming Windows of the mobile world

Microsoft , 2004 : Google : 2016

• Android’s Update Policy is simply horrendous

– Getting better with N (finally)

– Still problematic due to existing fragmentation

– Exacerbated by vendor, carrier policies

• Impact: 70-80% devices left vulnerable, unpatched

Android Security

(C) 2016 Jonathan Levin & Technologeeks.com - Share freely, but please cite source!

Tour of Android Vulnerabilities

Prelude: Vectors for Code Injection

• Buffer Overflows (stack: rare, heap: uncommon)
– Example: char *c = malloc(10); strcpy (c, str...);

• Integer Overflows (common)
– Example: int a; int b; int c = a+b

– Lethal when used as basis for malloc()

• Use-After-Free (ubiquitous)
– Example: char *c = malloc(..); free (c); *c =....;

(C) 2016 Jonathan Levin & Technologeeks.com - Share freely, but please cite source!

Code Injection

CounterMeasures for Code Injection

– isolation/sandboxing, pray SELinux works

– ASLR (ELF PIE + randomize_va_space)

– DEP

– Stack Canaries and compiler level protections.

– PXN (Privileged eXecute Never)

– Restrict dmesg and kernel pointers (via sysctl)
• kernel.kptr_restrict = 2

(C) 2016 Jonathan Levin & Technologeeks.com - Share freely, but please cite source!

Code Injection

CounterMeasures for Code Injection

– isolation/sandboxing, pray SELinux works

– ASLR (ELF PIE + randomize_va_space)

– DEP

– Stack Canaries and compiler level protections.

– PXN (Privileged eXecute Never)

– Restrict dmesg and kernel pointers (via sysctl)
• kernel.kptr_restrict = 2

Opt-in, still not tight enough, keep praying

Info Leaks, Feng Shui, sprays

Return Oriented Programming (ROP)

Directed overwrite

Overflow in kernel

Info Leaks, sprays in kernel

Counter-

(C) 2016 Jonathan Levin & Technologeeks.com - Share freely, but please cite source!

Code Injection

Top 3 risks - #3: File Formats

Top 3 Risks

• File Formats: Codec, HTML/CSS, JS

– Vector: Remote (and also Local)

– Impact: Privilege Escalation – usually media/drm/system

– Reason: overly complex formats, interpreters
• Particularly, CSS/JS parsing, media files

– Countermeasures:
• Standard Code Injection Countermeasures

• SELinux

(C) 2016 Jonathan Levin & Technologeeks.com - Share freely, but please cite source!

Top 3 risks - #3: File Formats

• Case Study:

– (Another) StageFright Bug (CVE-2015-3864)
– http://googleprojectzero.blogspot.com/2015/09/stagefrightened.html

– https://github.com/NorthBit/Metaphor

– https://www.exploit-db.com/exploits/38226/

(C) 2016 Jonathan Levin & Technologeeks.com - Share freely, but please cite source!

Top 3 Risks

https://www.blackhat.com/docs/asia-
16/materials/asia-16-He-Hey-Your-Parcel-
Looks-Bad-Fuzzing-And-Exploiting-
Parcelization-Vulnerabilities-In-Android.pdf

Top 3 risks - #2: Binder

• Binder: Deliberately Malformed parcels

- Vector: Local

- Impact: Privilege Escalation – system, likely root

- Reason: LOUSY NATIVE CODE, NO AIDL

- CounterMeasures: q.v. Code Injection

(C) 2016 Jonathan Levin & Technologeeks.com - Share freely, but please cite source!

Top 3 Risks

Top 3 risks - #2: Binder

https://www.blackhat.com/docs/asia-16/materials/asia-16-He-Hey-Your-Parcel-Looks-Bad-
Fuzzing-And-Exploiting-Parcelization-Vulnerabilities-In-Android.pdf

• Case Study #1:

– LibCUtils–CVE-2015-1528 (< 5.1)
– http://seclists.org/fulldisclosure/2015/Mar/63

– https://www.blackhat.com/docs/us-15/materials/us-15 -Gong-Fuzzing-
Android-System-Services-By-Binder-Call-To-Escalate- Privilege-wp.pdf

• Case Study #2:

– “Hey, Your Parcel Looks Bad” (BlackHat Asia ‘16)

(C) 2016 Jonathan Levin & Technologeeks.com - Share freely, but please cite source!

Top 3 Risks

Top 3 risks - #1: Linux Kernel

• Linux Kernel: vulnerable system calls, or network stack

- Vector: Local (usually), Remote (very rare)

- Impact: Full system compromise

- Reason: Too many cooks, with too many features

• Solution: SELinux

• Limited scope, not designed for app security

(C) 2016 Jonathan Levin & Technologeeks.com - Share freely, but please cite source!

Top 3 Risks

Top 3 risks - #1: Linux Kernel

• Case Study #1:

– TowelRoot (CVE-2014-3153) – futex bug

• Case Study #2:

– PingPong Root (CVE-2015-3636) – ICMP sockets

• Case Study #3: (SELinux blocks this one)

– Keyrings (CVE-2016-0728)

– https://www.exploit-db.com/exploits/40003/

(C) 2016 Jonathan Levin & Technologeeks.com - Share freely, but please cite source!

Top 3 Risks

Bonus Risk: TrustZone

• ARMv7/v8 memory separation at bus level

• SCR separates “secure world” from non secure

– In ARMv8, coupled with Exception Levels (ELx)

• “Secure World” runs own OS(!), providing:

– Keystore Access (“hardware backed cryptography)

– Gatekeeper Functionality (crypto-tokens)

– PRNG

– Boot/System Integrity verification (e.g. Samsung TIMA)

(C) 2016 Jonathan Levin & Technologeeks.com - Share freely, but please cite source!

Untrustworthy TrustZone

com.android.application

keystore

gatekeeper

HAL

HAL

TZ Daemon
(e.g. qseecomd)

Kernel

TZ Driver

SMC指令

SVC指令

TZ OS

Linux

Vendor

3rd Party

Android

Android & TrustZone

(C) 2016 Jonathan Levin & Technologeeks.com - Share freely, but please cite source!

Untrustworthy TrustZone

TrustZone Vulnerabilities

• Problem: TZ OS is often vendor defined, closed source
– Google trying to standardize with “Trusty OS”
– Qualcomm (most common) has own, and BUGGY

• http://bits-please.blogspot.com
– AMAZING detail of trustzone exploitation on MSM, step-by-step
– Particularly as of /2015/03/getting-arbitrary-code-execution-in.html

(C) 2016 Jonathan Levin & Technologeeks.com - Share freely, but please cite source!

Untrustworthy TrustZone

Android Vulnerabilities

(C) 2016 Jonathan Levin & Technologeeks.com - Share freely, but please cite source!

Untrustworthy TrustZone

Hindsight is 20/20

Android Security

• All the CVEs discussed are obvious, in retrospect:

“Reports that say that something hasn't happened are always interesting to
me, because as we know, there are known knowns; there are things we
know we know. We also know there are known unknowns; that is to say we
know there are some things we do not know. But there are also unknown
unknowns – the ones we don't know we don't know. And if one looks
throughout the history of our country and other free countries, it is the latter
category that tend to be the difficult ones.

D. Rumsfeld, 2002,
http://archive.defense.gov/Transcripts/Transcript.aspx?TranscriptID=2636

• Known knowns = CVEs, Past Vulnerabilities
• Known unknowns = Vulnerabilities we suspect
• Unknown unknowns = 0-days in the wild

(C) 2016 Jonathan Levin & Technologeeks.com - Share freely, but please cite source!

So, overall..

• Sad Truth: Android “spitballs” Linux features together

• Sometimes it sticks. More often than not.. It doesn’t.
(C) 2016 Jonathan Levin & Technologeeks.com - Share freely, but please cite source!

Resources

• The Book website: http://NewAndroidBook.com

• Technologeeks.com: http://Technologeeks.com/

• Android Internals: http://Technologeeks.com/AIRE

