
Phrase-based Models 
for SMT

Taro Watanabe

1



Why Phrases?

• Use phrases as a unit of translations

• Directly handle many-to-many word 
correspondence + local reordering

• Allow local context + non-compositional phrases

• Employed in many systems, including Google, and 
open-source, Moses (http://www.statmt.org/moses/)
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Phrase-based Model

• Generative story:

• f is segmented into phrases

• Each phrase is translated

• Translated phrases are reordered

(An example from Chap. 5, Koehn, 2009)
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Phrase-based Models

• Maximization of a log-linear combination of 
multiple feature functions h(e, Φ, f)

• Φ: phrasal partition of f and e

• w: weight of feature functions

ê = argmax
e

exp
�
w� · h(e,φ, f)

�
�

e�,φ� exp (w� · h(e�,φ�, f))

= argmax
e

w� · h(e,φ, f)
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Questions

• Training: How to learn phrases and 
parameters (Φ and h)? 

• Decoding (or search): How to find the best 
translation (argmax)? 

• Tuning (or optimization): How to learn the 
scaling of features (w)?
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Training

• Learn phrase pairs from 

• A standard heuristic approach

• Compute word alignment

• Extract phrase pairs

• Score phrases

D = 〈F , E〉
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Word alignment

(Example from Huang and Chiang, 2007)
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Extract Phrase Pairs

• From word alignment, extract a phrase pair 
consistent with word alignment
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Consistent Phrases

• a phrase pair (f, e) is consistent:

(Example from Koehn, 2009)

∀ei ∈ ē : (ei, fj) ∈ a → fj ∈ f̄
∀fj ∈ f̄ : (ej , fj) ∈ a → ei ∈ ē
∃ei ∈ ē, fj ∈ f̄ : (ej , fj) ∈ a
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Exhaustive Extraction

• Exhaustively extract phrases from f, e
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Features from Phrases

• Collect all the phrase pairs from the data

• Maximum likelihood estimates by relative 
frequencies

• Employ scores in two directions

log pφ(f̄ |ē) = log
count(ē, f̄)�
f̄ � count(ē, f̄

�)

log pφ(ē|f̄) = log
count(ē, f̄)�
ē� count(ē�, f̄)
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Features from Alignment

• Lexical weighing which scores by word translation 
probabilities

• Idea: counts for rare phrase pairs are unreliable

• Smoothing effect by decomposing into word pairs

log plex(f̄ |ē, ā) = log

|ē|�

i

1

| {j|(i, j) ∈ ā} |
�

∀(i,j)∈ā

t(ei|fj)

log plex(ē|f̄ , ā) = log

|f̄ |�

j

1

| {i|(j, i) ∈ ā} |
�

∀(j,i)∈ā

t(fj |ei)
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Features for Distortion

• Distance-based distortion modeling
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+2
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-5

d(f ,φ, e) = |+ 2|+ |0|+ |− 5| = 7
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Features for Reordering

• Fine grained reordering features:

• Either monotone, swap, discontinuous

log po(o ∈ {m, s, d} |f̄ , ē)
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Other Features

• log of ngram language model(s)

• word count: bias for ngram language model(s)

• phrase count: shorter or longer phrases
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Direct Training
• Instead of word alignment + extraction pipeline, 

directly learn phrase-pairs (Marcu and Wong, 2002)

• Bayesian approach + blocked Gibbs sampling to learn 
parameters (Blunsom et al., 2009)

• Initialize derivations of D

• For each pair f, e, sample new derivation

• Update statistics

• Exhaustively memorize longer phrases (Neubig et 
al., 2011)
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Questions

• Training: How to learn phrases and 
parameters (Φ and h)? 

• Decoding (or search): How to find the best 
translation (argmax)? 

• Tuning (or optimization): How to learn the 
scaling of features (w)?
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Decoding

• Given an input sentence f and phrasal model h and w, 
seek e with the highest score

• Potential errors:

•  Search error: we cannot find the best scored 
hypothesis

• Translation error: highest scored hypothesis is bad

ê = argmax
e

exp
�
w� · h(e,φ, f)

�
�

e�,φ� exp (w� · h(e�,φ�, f))

= argmax
e

w� · h(e,φ, f)

20



Enumerate Phrase Pairs

• Given a input sentence f, we can enumerate all 
possible phrases that match with the source side

• Choose the best phrase pair + ordering

bushi yu shalong juxing le huitan
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Phrase-based Search Space

• Node: bit-vector representing covered source words

• Edge: phrasal translations, strictly left-to-right

• Search space: O(2n),Time: O(2nn2) (Why?)
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Traveling Salesman Problem
• NP-hard problem: visit each city only once

• MT as a Traveling Salesman Problem (Knight, 1999)

• Each source word corresponds to a city

• A Dynamic Programming solution:

• State: visited cities (bit-vector)

• Search space: O(n2)

• Distortion limit to reduce search space

●----- ●----●i.e. long distortion:
23



Non-local features

• Features that requires scoring out of phrases: bigram 
language model

• Additional state representation required for “future 
scoring”: 1-word for bigram LM

• Space: O(2n Vm-1), Time: O(2nVm-1n2) for m-gram LM
24
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Phrase-based Decoding

• Re-organize the search space by the cardinality (= # 
of covered source words)

• Expand hypotheses from the smallest cardinality first
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Pruning

• Prune hypotheses in a bin sharing the same 
cardinality

• Expand survived hypotheses only
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Questions

• Training: How to learn phrases and 
parameters (Φ and h)? 

• Decoding (or search): How to find the best 
translation (argmax)? 

• Tuning (or optimization): How to learn the 
scaling of features (w)?
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Tuning

• Three popular objectives (in SMT) for tuning w

• (Direct) Error Minimization (Och, 2003)

• Maximum Entropy (Och and Ney, 2002)

• Large Margin (Watanabe et al., 2007; Chiang 
et al., 2008; Hopkins and May, 2011)

ê = argmax
e

exp
�
w� · h(e,φ, f)

�
�

e�,φ� exp (w� · h(e�,φ�, f))

= argmax
e

w� · h(e,φ, f)
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(Direct) Minimum Error

• MERT (Minimum ERror Training)

• Standard in SMT (but not in other NLP areas, such 
as tagging etc.)

• We can incorporate arbitrary error functions, l

• “Summation” can be replaced by document-wise 
BLEU specific summation

• 10+ real valued features

ŵ = argmin
w

S∑

s=1

l(argmax
e

w! · h(e, fs), es)
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n-best Approximation

• N iterations, with each iteration, n-bests are 
generated and merged

• K iterations, with each iteration, M dimensions are 
tried (M = # of features), and w is updated

1: procedure MERT({(es, fs)}Ss=1)
2: for n = 1...N do
3: Decode and generate nbest list using w
4: Merge nbest list
5: for k = 1...K do
6: for each parameter m = 1...M do
7: Solve one dimensional optimization
8: end for
9: update w

10: end for
11: end for
12: end procedure
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Efficient Line Search

• If we choose one dimension m, and others fixed, 
we can treat each hypothesis e as a “line”

• Compute convex hull of a set of “lines”

ê = argmax
e

w!
m · hm(e, fs)︸ ︷︷ ︸

slope

+w!
m · hm (e, fs)︸ ︷︷ ︸

constant
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Figure 1: Shape of error count and smoothed error count for two different model parameters. These curves
have been computed on the development corpus (see Section 7, Table 1) using alternatives per source
sentence. The smoothed error count has been computed with a smoothing parameter .

and try to find a better scoring point in the param-
eter space by making a one-dimensional line min-
imization along the directions given by optimizing
one parameter while keeping all other parameters
fixed. To avoid finding a poor local optimum, we
start from different initial parameter values. A major
problem with the standard approach is the fact that
grid-based line optimization is hard to adjust such
that both good performance and efficient search are
guaranteed. If a fine-grained grid is used then the
algorithm is slow. If a large grid is used then the
optimal solution might be missed.

In the following, we describe a new algorithm for
efficient line optimization of the unsmoothed error
count (Eq. 5) using a log-linear model (Eq. 3) which
is guaranteed to find the optimal solution. The new
algorithm is much faster and more stable than the
grid-based line optimization method.

Computing the most probable sentence out of a
set of candidate translation (see
Eq. 6) along a line with parameter
results in an optimization problem of the following

functional form:

(8)

Here, and are constants with respect to .
Hence, every candidate translation in corresponds
to a line. The function

(9)

is piecewise linear (Papineni, 1999). This allows us
to compute an efficient exhaustive representation of
that function.
In the following, we sketch the new algorithm

to optimize Eq. 5: We compute the ordered se-
quence of linear intervals constituting for ev-
ery sentence together with the incremental change
in error count from the previous to the next inter-
val. Hence, we obtain for every sentence a se-
quence which denote the
interval boundaries and a corresponding sequence
for the change in error count involved at the corre-
sponding interval boundary .
Here, denotes the change in the error count at

(Och, 2003)



MERT in Practice

• Many random starting points (Macherey et al., 2008; 
Moore and Quirk, 2008)

• Many random directions (Macherey et al., 2008)

• Error count smoothing (Cer et al., 2008)

• Regularization (Hayashi et al., 2009)

• Multi-dimensional search by efficiently computing 
convex hull (Galley and Quirk, 2011)
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Maximum Entropy

• Minimize the negative log-likelihood of generating 
good translations (Och and Ney, 2002) 

• ORACLE is a subset of GEN, a set of hypotheses 
with minimum loss

• Optimized by L-BFGS or SGD

• Potentially large # of features as in NLP tasks

ŵ = argmin
w

λ

2
||w||2 −

S∑

s=1

log

∑

e∗∈ORACLE(fs)

exp
(
w" · h(e∗, fs)

)

∑

e′∈GEN(fs)

exp
(
w" · h(e′, fs)

)
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Why Not MaxEnt?

• In Och and Ney (2002), they used

• WER to select oracle translations

• n-best merging approach to approximate 
summation as in MERT

Table 3: Effect of different error criteria used in training on the test corpus. Note that better results corre-
spond to larger BLEU and NIST scores and to smaller error rates. Italic numbers refer to results for which
the difference to the best result (indicated in bold) is not statistically significant.

error criterion used in training mWER [%] mPER [%] BLEU [%] NIST # words
confidence intervals +/- 2.7 +/- 1.9 +/- 0.8 +/- 0.12 -

MMI 68.0 51.0 11.3 5.76 21933
mWER 68.3 50.2 13.5 6.28 22914

smoothed-mWER 68.2 50.2 13.2 6.27 22902
mPER 70.2 49.8 15.2 6.71 24399

smoothed-mPER 70.0 49.7 15.2 6.69 24198
BLEU 76.1 53.2 17.2 6.66 28002
NIST 73.3 51.5 16.4 6.80 26602

recognition community (Duda and Hart, 1973;
Juang et al., 1995; Schlüter and Ney, 2001).
Paciorek and Rosenfeld (2000) use minimum clas-
sification error training for optimizing parameters
of a whole-sentence maximum entropy language
model.
A technically very different approach that has a

similar goal is the minimum Bayes risk approach, in
which an optimal decision rule with respect to an
application specific risk/loss function is used, which
will normally differ from Eq. 3. The loss function is
either identical or closely related to the final evalua-
tion criterion. In contrast to the approach presented
in this paper, the training criterion and the statisti-
cal models used remain unchanged in the minimum
Bayes risk approach. In the field of natural language
processing this approach has been applied for exam-
ple in parsing (Goodman, 1996) and word alignment
(Kumar and Byrne, 2002).

9 Conclusions

We presented alternative training criteria for log-
linear statistical machine translation models which
are directly related to translation quality: an un-
smoothed error count and a smoothed error count
on a development corpus. For the unsmoothed er-
ror count, we presented a new line optimization al-
gorithm which can efficiently find the optimal solu-
tion along a line. We showed that this approach ob-
tains significantly better results than using the MMI
training criterion (with our method to define pseudo-
references) and that optimizing error rate as part of
the training criterion helps to obtain better error rate

on unseen test data. As a result, we expect that ac-
tual ’true’ translation quality is improved, as previ-
ous work has shown that for some evaluation cri-
teria there is a correlation with human subjective
evaluation of fluency and adequacy (Papineni et al.,
2001; Doddington, 2002). However, the different
evaluation criteria yield quite different results on our
Chinese–English translation task and therefore we
expect that not all of them correlate equally well to
human translation quality.
The following important questions should be an-

swered in the future:

How many parameters can be reliably esti-
mated using unsmoothed minimum error rate
criteria using a given development corpus size?
We expect that directly optimizing error rate for
many more parameters would lead to serious
overfitting problems. Is it possible to optimize
more parameters using the smoothed error rate
criterion?

Which error rate should be optimized during
training? This relates to the important question
of which automatic evaluation measure is opti-
mally correlated to human assessment of trans-
lation quality.

Note, that this approach can be applied to any
evaluation criterion. Hence, if an improved auto-
matic evaluation criterion is developed that has an
even better correlation with human judgments than
BLEU and NIST, we can plug this alternative cri-
terion directly into the training procedure and opti-
mize the model parameters for it. This means that
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Large Margin

• Structured output learning approach

• Very hard to enumerate all possible e’ and oracle 
translations e*

• Solution: online learning or n-best approximation

w� · h(e∗s, fs)−w� · h(e�s, fs) ≥ l(e�s, e
∗
s)− ξs,e∗

s ,e
�
s

e∗s ∈ ORACLE(fs)

e�s ∈ GEN(fs)

ŵ = argmin
w

λ

2
||w||2 +

S∑

s=1

∑

e∗
s

∑

e′
s

ξs,e∗
s ,e

′
s
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Online Learning

• Averaged perceptron (Liang et al., 2006)

• Scale to large data, but each iteration requires 
decoding + weight update

Require: {(fs, es)}Ss=1
1: w1 = {0}
2: t = 1
3: for 1...N do
4: s ∼ random(1, S)
5: ê ∈ GEN(fs,wt−1)
6: if l(ê, es) ≥ 0 then
7: wt+1 = wt + h(es, fs)− h(ê, fs)
8: t = t+ 1
9: end if

10: end for
11: return wt or 1

N

�N
i=1 w

j
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Online Large Margin

• line 7 is replaced by the solution of the above 
equation

• Still, requires decoding + update in each iteration

• Hard to determine when to stop (watch another 
dev data)

ŵ = argmin
w′

λ

2
||w′ −w||2 +max

(
ls −w′" ·∆hs

)

ês = argmax
e

w� · h(e, fs)

ls = l(ês)− l(e∗s)

∆hs = h(ês, fs)− h(e∗, fs)
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Ranking Approach

• An n-best approximation approach (Hopkins and 
May, 2011)

• Pair-wise comparison of all the hypotheses

• logistic-loss (or 0-1 loss): use an off-the-shelf binary 
classifier

ŵ = argmin
w

λ

2
||w||2 +

S∑

s=1

∑

e′′
s

∑

e′
s

ξs,e′′
s ,e

′
s

− log
�
1 + exp(−w� ·∆he��

s ,e
�
s
)
�
≥ −ξs,e��

s ,e
�
s

e��s , e
�
s ∈ GEN(fs)

l(e�s, e
��
s ) > 0

∆he��
s ,e

�
s
= h(e��s , fs)− h(e�s, fs)

40



Results

• Reranking is competitive to MERT and MIRA, 
and scales to large # of features
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Figure 5: Comparison of MERT, PRO, and MIRA on tuning Urdu-English SBMT systems, and test results at every

iteration. PRO performs comparably to MERT and MIRA.

We used the following feature classes in PBMT

extended scenarios only:

• Unigram word pair features for the 80 most fre-

quent words in both languages plus tokens for

unaligned and all other words (cf. Watanabe et

al. (2007), Section 3.2.1)
11

• Source, target, and joint phrase length fea-

tures from 1 to 7, e.g. “tgt=4”, “src=2”, and

“src/tgt=2,4”

The feature classes and number of features used

within those classes for each language pair are sum-

marized in Table 3.

5.4 Tuning settings

Each of the three approaches we compare in this

study has various details associated with it that may

prove useful to those wishing to reproduce our re-

sults. We list choices made for the various tuning

methods here, and note that all our decisions were

made in keeping with best practices for each algo-

rithm.

5.4.1 MERT

We used David Chiang’s CMERT implementation

of MERT that is available with the Moses system

(Koehn et al., 2007). We ran MERT for up to 30 it-

erations, using k = 1500, and stopping early when

11
This constitutes 6,723 features in principle (822 − 1 since

“unaligned-unaligned” is not considered) but in practice far

fewer co-occurrences were seen. Table 3 shows the number of

actual unigram word pair features observed in data.

the accumulated k-best list does not change in an it-

eration. In every tuning iteration we ran MERT once

with weights initialized to the last iteration’s chosen

weight set and 19 times with random weights, and

chose the the best of the 20 ending points according

to G on the development set. The G we optimize

is tokenized, lower-cased 4-gram BLEU (Papineni et

al., 2002).

5.4.2 MIRA

We for the most part follow the MIRA algorithm

for machine translation as described by Chiang et al.

(2009)
12

but instead of using the 10-best of each of

the best hw, hw +g, and hw-g, we use the 30-best

according to hw.
13

We use the same sentence-level

BLEU calculated in the context of previous 1-best

translations as Chiang et al. (2008b; 2009). We ran

MIRA for 30 iterations.

5.4.3 PRO

We used the MegaM classifier and sampled as de-

scribed in Section 4.2. As previously noted, we used

BLEU+1 (Lin and Och, 2004) for g. MegaM was

easy to set up and ran fairly quickly, however any

linear binary classifier that operates on real-valued

features can be used, and in fact we obtained simi-

12
and acknowledge the use of David Chiang’s code

13
This is a more realistic scenario for would-be implementers

of MIRA, as obtaining the so-called “hope” and “fear” transla-

tions from the lattice or forest is significantly more complicated

than simply obtaining a k-best list. Other tests comparing these

methods have shown between 0.1 to 0.3 BLEU drop using 30-

best hw on Chinese-English (Wang, 2011).
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Conclusion

• Training: How to learn phrases and 
parameters (Φ and h)? 

• Decoding (or search): How to find the best 
translation (argmax)? 

• Tuning (or optimization): How to learn the 
scaling of features (w)?
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