MT System Combination by Confusion Forest

Taro Watanabe and Eiichiro Sumita NICT

MT System Combination

MT System Combination

- Better translation by combining multiple system outputs:
 - Sentence selection(Nomoto, 2004; etc.)
 - Phrasal combination (Frederking and Nirenburg, 1994; etc.)
 - Word level combination (Bangalore et al., 2001; Matusov et al., 2006; etc.)

MT System Combination

- Better translation by combining multiple system outputs:
 - Sentence selection(Nomoto, 2004; etc.)
 - Phrasal combination (Frederking and Nirenburg, 1994; etc.)
 - Word level combination (Bangalore et al., 2001; Matusov et al., 2006; etc.)
- This Work: Syntactic combination, not word-wise combination

```
I saw the forest
I walked the blue forest
I saw the green trees
the forest was found
```

```
I saw the forest
I walked the blue forest
I saw the green trees
the forest was found
```

- State-of-the-art: Confusion Network
- Choose a skeleton, compute word alignment against the skeleton
 - Edit-distance-based alignment (TER etc.) (Sim et al., 2007)
 - Model-based alignment(GIZA++ etc.) (Matsov et al., 2006)

```
I saw the forest
I walked the blue forest
I saw the green trees
the forest was found
```

- State-of-the-art: Confusion Network
- Choose a skeleton, compute word alignment against the skeleton
 - Edit-distance-based alignment (TER etc.) (Sim et al., 2007)
 - Model-based alignment(GIZA++ etc.) (Matsov et al., 2006)

```
★ I saw the forest
I walked the blue forest
I saw the green trees
the forest was found
```

- State-of-the-art: Confusion Network
- Choose a skeleton, compute word alignment against the skeleton
 - Edit-distance-based alignment (TER etc.) (Sim et al., 2007)
 - Model-based alignment(GIZA++ etc.) (Matsov et al., 2006)

- Construct a network with each arc representing alternative translation
 - Best path = Best translation
 - Syntactically different language pairs: i.e. active/passive voices
 - Spurious insertion/repetition due to alignment error
 - Incremental alignment/construction + merge multiple networks into one (Rosti et al., 2008)

- Construct a network with each arc representing alternative translation
 - Best path = Best translation
 - Syntactically different language pairs: i.e. active/passive voices
 - Spurious insertion/repetition due to alignment error
 - Incremental alignment/construction + merge multiple networks into one (Rosti et al., 2008)

- Construct a network with each arc representing alternative translation
 - Best path = Best translation
 - Syntactically different language pairs: i.e. active/passive voices
 - Spurious insertion/repetition due to alignment error
 - Incremental alignment/construction + merge multiple networks into one (Rosti et al., 2008)

- Parse each system output by a parser
- Extract rules from parsed trees: local grammar

- Parse each system output by a parser
- Extract rules from parsed trees: local grammar

- Parse each system output by a parser
- Extract rules from parsed trees: local grammar

- Parse each system output by a parser
- Extract rules from parsed trees: local grammar

Scan:

$$\frac{[\mathbf{X} \to \alpha \bullet x\beta, h] : u}{[\mathbf{X} \to \alpha x \bullet \beta, h] : u}$$

Predict:

$$\frac{[X \to \alpha \bullet Y\beta, h]}{[Y \to \bullet \gamma, h + 1] : u} \quad Y \stackrel{u}{\to} \gamma \in \mathcal{G}, h < H$$

Complete:

$$\frac{[\mathbf{X} \to \alpha \bullet \mathbf{Y}\beta, h] : u \quad [\mathbf{Y} \to \gamma \bullet, h+1] : v}{[\mathbf{X} \to \alpha \mathbf{Y} \bullet \beta, h] : u \otimes v}$$

- Generation from the extracted grammar
- Scanning always succeed: constraint by height

- Memorize the (partial) tree structures in each node
- Employ the sequence of Ealrye state as a node
 - Horizontal/Vertical Markovization (Klein and Manning, 2003)

- Memorize the (partial) tree structures in each node
- Employ the sequence of Ealrye state as a node
 - Horizontal/Vertical Markovization (Klein and Manning, 2003)

- Memorize the (partial) tree structures in each node
- Employ the sequence of Ealrye state as a node
 - Horizontal/Vertical Markovization (Klein and Manning, 2003)

- Memorize the (partial) tree structures in each node
- Employ the sequence of Ealrye state as a node
 - Horizontal/Vertical Markovization (Klein and Manning, 2003)

- Memorize the (partial) tree structures in each node
- Employ the sequence of Ealrye state as a node
 - Horizontal/Vertical Markovization (Klein and Manning, 2003)

- Memorize the (partial) tree structures in each node
- Employ the sequence of Ealrye state as a node
 - Horizontal/Vertical Markovization (Klein and Manning, 2003)

Forest Reranking

$$\hat{d} = \operatorname*{arg\,max}_{d \in D} \mathbf{w}^{\top} \cdot \mathbf{h}(d, F)$$

- Choose the best derivation d among all possible derivations D in a forest F
 - Terminal yield of the best derivation = the best translation
 - Approximately apply non-local features (ngram language models) by Cube Pruning (Huang and Chiang, 2007)
 - Efficient k-best by Algorithm 3 (Huang and Chiang, 2005)

Experiments

- WMT10 System Combination Task
 - Czech, German, Spanish, French → English
 - tune/test: 455/2,034 sentences

	cz-en	de-en	es-en	fr-en
systems	6	16	8	14
tune	10.6K	10.9K	10.9K	II.0K
test	50.5K	52.1K	52.1K	52.4K

Systems

Systems

- CF: Stanford parser + "cicada" (a hypergraph-based toolkit based on SEMIring parsing framework)
- CN: Single network by merging multiple networks + conversion into hypergraph by lattice parsing

Systems

- CF: Stanford parser + "cicada" (a hypergraph-based toolkit based on SEMIring parsing framework)
- CN: Single network by merging multiple networks + conversion into hypergraph by lattice parsing
- features: tuned by hypergraph-MERT(Kumar et al. 2009)
 - Language Models, # of terminals, # of hyperedges
 - # of rules in a derivation originally in nth system output
 - BLEUs by treating each system output as a reference translation
 - Network distance (only used for CN)

BLEU

	cz-en	de-en	es-en	fr-en
system min	14.09	15.62	21.79	16.79
max	23.44	24.10	29.97	29.17
CN	23.70	24.09	30.45	29.15
CF,v=∞,h=∞	24.13	24.18	30.41	29.57
CF,v=∞,h=2	24.14	24.58	30.52	28.84
CF,v=∞,h=I	24.01	23.91	30.46	29.32

Oracle BLEU

	cz-en	de-en	es-en	fr-en
rerank	29.40	32.32	36.83	36.59
CN	38.52	34.97	47.65	46.37
CF,v=∞,h=∞	30.51	34.07	38.69	38.94
CF,v=∞,h=2	30.61	34.25	38.87	39.10
CF,v=∞,h=I	31.09	34.65	39.27	39.51

Hypegraph size

	cz-en	de-en	es-en	fr-en
CN	2,222.68	47,231.20	2,932.24	11,969.40
CF,v=∞,h=I	230.08	540.03	262.30	386.79
CF,v=5,h=1	254.45	651.10	302.01	477.51
CF,v=4,h=1	286.01	802.79	349.21	575.17

- Average # of hyperedges
- (rough) estimates for speed

Conclusion

- System combination by Confusion Forest which employs syntactic distance, not word-level distance
- Forest construction by the grammar extracted from system outputs
 - Parser: assign tree structure to the similar expressions
- Compact date structure + comparable performance against Confusion Network
- Future work
 - Syntactic features