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ABSTRACT  

Power transformations are often suggested as a means to  

"normalize" univariate data which may be skewed left or right, or as a 

way to "straighten out" a bivariate curvilinear relationship in a regres-

sion model.  

This talk will focus on identifying when transformations are appropri-

ate and how to choose the proper transformations using SAS®  and 

new features of the ODS.  

There is also a discussion of why, or why not, you may choose the 

"optimal" transformation identified by SAS. 

INTRODUCTION (WHEN AND WHY) 

Transformations of variables have been recommended as a solution 

for asymmetry and for non-linearity for decades.  A search of the 

literature reveals dozens of paper in the last fifty years related to 

these types of transformations. 

The most common transformations are power transformations, and 

the most common of power transformations are Box-Cox power 

transformations.  Power transformations (Cleveland, 1993) follow the 

form of: 
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whereas the so-called “Box-Cox” family of power transformations 

(Box & Cox, 1964) were first described as: 
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In both cases the values of x must be positive in order for the func-

tion to be defined everywhere.  Furthermore, for the functions to 

produce reasonable results, x’s must be greater than one.  If x is 

between zero and one, and is raised to a power, then very different 

things happen to the distribution as opposed to when x is greater 

than one (i.e. squaring a number between zero and one reduces the 

value of that number, while squaring a number greater than one 

increases it’s value).  

PROC TRANSREG has incorporated mean shift of the variable and 

a change in spread of the transformed variable in a more general 

form of the transform: 

  1
0

( )

ln( ) / =0

x c

f x g

x c g








  
 

  
 

 

 

 

Here c is used to shift the values of x so that it is always greater than 

zero. The parameter g is used to change the spread of the final 

variable.  By default, c = 0 and g = 1. 

The univariate objective is generally to create a transformed variable 

that is more “normally” distributed.   For example, consider the data 

in Figure 1, which is clearly skewed to the right.  A simple power 

transformation of this variable with  < 1 will “shrink” the larger val-

ues more than the smaller values, resulting in a distribution that is 

more nearly symmetric, and therefore closer to a normal distribution. 

FIGURE 1: 

P

e

r

c

e

n

t

0

5

10

15

20

25

r esponse

1 2 3 4 5 6 7 8 9

 

In Figure 2 below, the distribution of the square root of the original 

variable is plotted.  It is clear that this simple transformation has 

resulted in a variable that is more nearly normal.  Statistical tests 

available in PROC UNIVARIATE or PROC CAPABILITY support 

this observation. 
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However, if the “optimal” transformation is made, based on the likeli-

hood function described by Box and Cox (1964), then the value of  

is around 0.2.  The plot of the original variable raised to the power of 

0.2 is shown in Figure 3. 

FIGURE 3: 

P

e

r

c

e

n

t

0. 0

2. 5

5. 0

7. 5

10. 0

12. 5

15. 0

17. 5

r esponse

0. 75 0. 88 1. 00 1. 13 1. 25 1. 38 1. 50 1. 63 1. 75

 

When this idea is applied to the regression problem, the objective 

becomes to create a transformed dependent or independent variable 

such that the relationship between the dependent and independent 

variable(s) is more nearly “linear”.   Figure 4 shows a curvilinear 

relationship between two variables. 

FIGURE 4: 
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In this case, simple squaring the value of the response variable 

yields the plot in Figure 5.  This relationship is much more linear 

than the original plot.  In this case, the “optimal” transformation is 

also  = 2.0. 

FIGURE 5: 
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Transformation can also be applied in the context of regression, or 

general linear models, to “simplify” the model.  That is, transforming 

the dependent, or independent, variable in a regression model can 

often reduce the complexity of the model required to fit the data.  

This simplicity is often seen as reducing the degree of the polynomi-

al required to fit a “curve”, as was illustrated in the previous example, 

or, more subtlety, eliminating the need for interactions between vari-

ables a designed experiment. 

SAMPLE DATA 

For the remainder of the paper the examples are based on car data 

that will be familiar to many.  PROC CONTENTS reveals the follow-

ing variables: 

Alphabetic List of Variables and Attributes 

# Variable Type Len Label 

8 acceleration Num 8 acceleration 

4 cylinders Num 8 cylinders 

5 displacement Num 8 displacement 

6 horsepower Num 8 horsepower 

1 make Char 30  

2 model Char 30  

9 model_year Num 8 model_year 

3 mpg Num 8 mpg 

10 origin Num 8 origin 

7 weight Num 8 weight 

 

The response variable in this dataset is mpg, or miles per gallon.  

Most of the other numeric variables will be considered as potential 

predictors of mileage.  The only variable that requires special expla-

nation is the origin variable, which contains an integer that identifies 

whether the car originated in the United States, Europe, or Japan.  

Since that variable does not represent an interval or ratio scale varia-

ble, it will not be used in our examples.  
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USING SAS TO TRANSFORM FOR NORMALITY 

(HOW) 

A histogram of the original response variable, mpg, created with 

PROC CAPABILITY, is shown in Figure 6.  It is clear from this his-

togram that a transformation of mpg with  < 1 is likely to produce a 

distribution that is more symmetric. 

FIGURE 6: 

 

The solution for the univariate Box Cox transform was presented by 

Dimakos (SUGI 22, Paper 95) as a IML macro.  The macro 

(%bctrans) searches for the optimal value of , transforms the data, 

and tests the transformed data for the assumption of normality.  I 

was able to get this macro to run in SAS, Version 9.1.3 with only a 

couple changes.  Dimakos’s macro, with the minor changes, is in-

cluded in APPENDIX A.  The optimal value for  identified depends 

somewhat on what options are chosen with the macro.  For instance, 

if a very fine grid search on  is done, the optimal value is  = 0.2.  

However, less fine grid search results in  = 0, which corresponds to 

the log transform.   The histogram of the log transformed variable is 

shown in Figure 7. 

FIGURE 7: 

 

It turns out that SAS, PROC IML, is not included in the SAS Learn-

ing Edition, which is what many of my students are using, so I had a 

need to modify the macro to work without PROC IML. 

I also wanted to separate out the testing of the fit to normality, so that 

users with access to SAS/QC® would be able to use PROC CA-

PABILITY, rather than PROC UNIVARIATE, in order to get better 

histograms with normal curves overlaid in high resolution graphics.  

For those interested, I’ve included that macro (bctrans2) in Appendix 

B.  The revised macro only takes three arguments, the entering SAS 

dataset, the exiting SAS dataset, and the variable to be “optimally” 

transformed. 

 

USING SAS TO TRANSFORM FOR LINEARITY 

(HOW) 

SAS has implemented the Box Cox transformation for regression in 

PROC TRANSREG.   In this procedure the optimal is chosen, the 

data is transformed, and the regression model is fit.  In this imple-

mentation, the transformation is limited to the dependent variable in 

the model. 

In the cars data, suppose that we want to fit a simple linear regres-

sion where mpg is the dependent variable, and weight is the inde-

pendent variable.  Figure 8 shows the bivariate scatter plot of mpg 

versus weight.   

FIGURE 8: 

 

There is clearly a curvilinear relationship between the two variables, 

and we could choose to add a weight*weight 2
nd

 degree polynomial 

term into the model which would undoubtedly improve the fit.  How-

ever, if we want to approach this problem by seeking a transfor-

mation of mpg that will result in a “more linear” relationship, we 

would execute code similar to this: 

 proc transreg details; 

 model boxcox(mpg/convenient  

    lambda=-3 to 3 by .125)=identity(weight); 

 output out=two; 

 run; 

 

The resulting scatter plot of the relationship between the trans-

formed mpg variable and weight is shown in Figure 9.  The actual 

transformation chosen was  = -0.5, which corresponds to the recip-

rocal square root transformation. 

FIGURE 9: 
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This procedure assumes that one transformation of the response 

variable is will “fix” the model.   In this case, taking a log transfor-

mation of the weight variable will yield similar results as shown in 

Figure 10. 

FIGURE 10: 

 

In multiple regressions, the best solution may require transforming 

more than one independent variable, and that each independent 

variable may actually require a different transformation.   

An improvement to this procedure would be to allow for independent 

variables to be optimally, and independently, transformed.  Of 

course, this may lead to many relatively equivalent solutions, where 

going “up” in the power of the response variable is the same as go-

ing “down” in the power of the independent variable.  This may be 

why more extensive statistical, or algorithmic solutions, have not 

been implemented.   There may be no substitution of really knowing 

your data. 

KNOWING YOUR DATA (HOW) 

As we have see, if the bivariate relationship between two variables is 

shown on a scatter plot, then transformation required for linearity 

becomes more apparent.   While “optimal” statistical solutions are 

useful, it is always useful to understand why a solution is optimal, 

and what other solutions might be considered.  Figure 11 shows how 

the shape of the curve between the dependent and independent 

variable can be “straightened” by taking power transformations of 

either variable. 

FIGURE 11: 

 

Some of the new features in ODS GRAPHICS are particularity use-

ful in understanding the relationships between continuous variables.  

For example, the MATRIX plot in PROC CORR can be used to 

quickly study the relationship between many variables in one display 

(Figure 12). 

FIGURE 12: 

 
 

We can see very quickly from this scatter plot matrix not only that the 

same curvilinear relationship exists between mpg and at least three 

of the independent variables, but that those three independent varia-

bles are very highly correlated (and linearly related).  It is apparent 

from this matrix, that one transformation of the dependent variable 

may well solve the regression “problem”.  The alternative would be to 

transform multiple independent variables, or add numerous polyno-

mial terms for the independent variables.  Even still, there will be a 

significant issue with colinearity among the predictors, leading to 

inflated standard errors for the regression weights… 

In this case, it would make good sense to make use of PROC 

TRANSREG to find the “optimal” transform of mpg for this model.  

However, making use of a few data transformations in a DATA 

STEP, followed by another MATRIX plot, can be used to understand 

the effect of various power transformations on the dependent varia-

ble (see Figure 13). 

FIGURE 13: 
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It is apparent from this plot that the reciprocal of mpg will work quite 

well for all the independent variables in the model.   

The SAS code to produce these two plots is: 

proc corr plots=(matrix); 

var mpg cylinders displacement horsepower 

weight acceleration; 

run; 

 

proc corr plots=(matrix); 

with mpg2 mpg logmpg rmpg rmpg2; 

var cylinders displacement horsepower   

    weight acceleration; 

run; 

Applying those transformations in the data step to each of the inde-

pendent variable in a DATA STEP, followed by a MATRIX plot, can 

be used to understand the effect of various power transformations 

on each of the independent variables.  For example, transformations 

of the weight variable are shown in Figure 14. 

FIGURE 14: 

 

Of course, you could consider transformations of one response 

variable, along with transformation of one predictor variable in a 

matrix scatterplot.  This plot is shown in Figure 15. 

FIGURE 15: 

 

 
 

A plot that cannot be obtained with current software would be one 

that plotted the dependent variable against each of the independent 

variables, where the row of the matrix was determined by the in the 

power transformation.  In this matrix you could see the “optimal” 

choice of transformation for each independent variable.  An example 

of what the plot might look like is shown in Figure 16.  Note that only 

a subset of the data was used for this plot, and that the independent 

variables are plotted in a different order. 

FIGURE 16: 

 

I’ve programmed this plot using native PROC IML graphing capabili-

ties, but the program is ready for general distribution.   

SHOULD WE TRANSFORM VARIABLES AT ALL?  

(WHY NOT) 

DOWNSIDE OF TRANSFORMATION:  

Transformations, in many eyes, complicate the analysis.  The com-

plication comes in the form of explaining to the non-statistician why 

you are modeling the square root of their favorite variable rather than 

the variable in its unadulterated form.  It is easier to “live with” invalid 

models with strange looking residuals that nobody cares about then 

it is to explain the complexities of the analysis.  That being said, 

some transformations are easier to explain in some contexts than 

others.  You might prefer the reciprocal transformation to the log 

transformation in the analysis of car mileage.  It is easier to interpret 

gallons per mile than log of miles per gallon, even though the fit of 

the model may be similar. 

ALTERNATIVE TO TRANSFORMATION: As mentioned before, 

transformations often reduce the complexity of the model by reduc-

ing the need for non-linear modeling, or by reducing the need for 

specific parameters to be estimated such as interactions or polyno-

mial curvature.  Many times such a “complex” model may be pre-

ferred over variable transformation.  In some cases, a theoretical 

argument can be made for such models, in which the elimination of 

the complexity is not only undesirable, but serves to obscure the 

relationship between the observation and theory. 

CONCLUSIONS  

Transformations have their place in modern data analysis and mod-

eling.  Tools in SAS can be used in fitting and evaluating power 

transformations for normality and linearity. Suggestions for improving 

these tools have been provided. 
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APPENDIX A: 

 
%macro bctrans(data=,out=,var=,r=,min=,max=,step=); 

 

proc iml; 

 use &data; 

 read all var {&var} into x; 

 n=nrow(x); one=j(n,1,1); mat=j(&r,2,0); 

 lnx=log(x); sumlog=sum(lnx); 

 start; i=0; 

 do lam=&min to &max by &step; 

    i=i+1; 

    lambda=round(lam,.01); 

    if lambda = 0 then xl=log(x); 

    else xl=((x##lambda) - one)/lambda; 

    mean=xl[:]; 

    d=xl-mean; 

    ss=ssq(d)/n; 

    l=-.5*n*log(ss)+((lambda-1)*sumlog); 

    mat[i,1] = lambda; 

    mat[i,2] = l; 

 end; 

 finish; run; 

 print "Lambdas and their l(lambda) values", 

 mat[format=8.3]; 

 create lambdas from mat; 

 append from mat; 

 quit; 

 

data lambdas; 

set lambdas; 

 rename col1=lambda col2=l; run; 

 

proc plot data=lambdas nolegend; 

 plot l*lambda; 

 title 'lambda vs. l(lambda) values'; run; quit; 

 

proc sort data=lambdas; 

 by descending l; run; 

 

data &out; 

set lambdas; 

 if _n_>1 then delete; run; 

 

proc print data=&out; 

 title 'Highest lambda and l(lambda) value'; run; 

 

proc iml; 

 use &data; 

 read all var {&var} into old; 

 use &out; 

 read all var {lambda l} into power; 

 lambda=power[1,1]; 

 if lambda=0 then new=log(old); 

 else new=old##lambda; 

 create final from new; 

 append from new; quit; 

 

data final; 

set final; 

 rename col1=&var; run; 

 

proc univariate normal plot data=final; 

title 'Normality Assessment for'; 

title2 'Power-Transformed Variable'; run; 

%mend bctrans; 
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APPENDIX B: 

 
%macro bctrans2(data=_last_, out=_out_, var=y); 

 

data keeplog; 

 loglike = .; l = .; output; stop; run; 

 

%do lbig = -20 %to 20; 

data _new; 

 set &data nobs=obs; 

 n = obs; 

 l = &lbig./10; 

 x = &var; 

 if l ne 0 then xt = ((x**l)-1)/l; 

 else xt = log(x); 

run; 

 

proc means mean noprint; 

 var xt; output out=_mean1 mean=mxt; 

 

data _gmean1; 

 set _mean1; call symput('gmean',mxt); 

run; 

 

data _new2; 

 set _new; retain mxt; 

 if _n_ = 1 then set _mean1; 

 term1 = (xt - mxt)**2; 

 term2 = log(x); 

run; 

 

proc means sum noprint; 

 var term1 term2; output out=_sum1 sum=sterm1 sterm2; 

run; 

 

data loglike; 

 set _sum1; set _new(obs=1); 

 loglike = -1*(n/2)*log((1/n)*sterm1)+(l-1)*sterm2; 

run; 

 

data keeplog; 

 set keeplog loglike; keep loglike l; 

run; 

%end; 

 

proc means max data=keeplog idmin noprint; 

 var loglike; 

 output out=_max max=maxloglike; 

 

data keeplogmax; 

 set keeplog; 

 keep l maxloglike; 

 retain maxloglike; 

 if _n_ = 1 then set _max; 

 if loglike = maxloglike then output; 

run; 

 

proc print data=keeplog; 

title 'Log Likelihoods and Values of Lambda'; 

 

proc print data=keeplogmax; 

title 'Optimal Value of Lambda'; 

 

data _null_; 

 set keeplogmax; 

 if _n_ = 1 then call symput('l',l); 

 stop; 

run; 

 

data &out; 

 set &data; 

 if &l ne 0 then t_&var. = ((&var.**&l)-1)/&l; 

 else t_&var. = log(&var.); 

run; 

%mend bctrans2; 

Statistics and Data AnalysisSAS Global Forum 2012

 
 


	2012 Table of Contents



