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Abstract

Just as semantic hashing (Salakhutdinov and Hinton 2009) can
accelerate information retrieval, binary valued embeddings can
significantly reduce latency in the retrieval of graphical data.
We introduce a simple but effective model for learning such
binary vectors for nodes in a graph. By imagining the embed-
dings as independent coin flips of varying bias, continuous
optimization techniques can be applied to the approximate ex-
pected loss. Embeddings optimized in this fashion consistently
outperform the quantization of both spectral graph embeddings
and various learned real-valued embeddings, on both ranking
and pre-ranking tasks for a variety of datasets.

1 Introduction
Consider users — perhaps from the research, intelligence,
or recruiting community — who seek to explore graphi-
cal data — perhaps knowledge graphs or social networks.
If the graph is small, it is reasonable for these users to
directly explore the data by examining nodes and travers-
ing edges. For larger graphs, or for graphs with noisy
edges, it rapidly becomes necessary to algorithmically aid
users. The problems that arise in this setting are essen-
tially those of information retrieval and recommendation for
graphical data, and are well studied (Hasan and Zaki 2011;
Blanco et al. 2013): identifying the most important edges,
predicting links that do not exist, and the like. The responsive-
ness of these retrieval systems is critical (Gray and Boehm-
Davis 2000), and has driven numerous system designs in
both hardware (Hong, Oguntebi, and Olukotun 2011) and
software (Low et al. 2014). An alternative is to seek algorith-
mic solutions to this latency challenge.

Models that perform link prediction and node retrieval
can be evaluated across two axes: the relevance of the re-
trieved nodes and the speed of retrieval. The gold standard
in relevance is typically set by trained models that rely on
“observable” features that quantify the connectivity between
two nodes, but these models are often quite slow to evaluate
due to the complexity of the features in question.

At the other extreme, binary-valued embeddings can ac-
celerate the retrieval of graphical data, much in the same
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Technique Preprocess Query
Observable features O(1) (slow) O(N) (slow)
Real embeddings O(ED) O(N) (fast)
Binary embeddings
(sparse similarities) O(ED) O(1)

Real embeddings
(quantized) O(ED) O(1)

Binary embeddings
(dense similarities) O(N2) O(1)

Table 1: Complexity of five different node retrieval ap-
proaches, ranked from highest to lowest accuracy (Table
2). Nnodes, E edges, and D latent dimensions.

manner that semantic hashing (Salakhutdinov and Hinton
2009) can assist in the efficient retrieval of text and image
data. Roughly speaking, having a binary representation for
each node allows one to search for similar nodes in constant
time directly in the binary embedding space — much faster
than the alternatives (Table 1).

The challenge is that efficient binary representations can be
difficult to learn: for any reasonable metric of accuracy, find-
ing optimal binary representations is NP-hard. One solution
is to lean on the large body of work around learning continu-
ous embeddings for graphs, and utilize modern quantization
techniques to binarize these continuous representations. The
“catch” with this approach is that the continuous embeddings
are not optimized with their future binarization in mind, and
this hurts the relevance of retrieved nodes (Sec. 4.4).

Our primary contribution, thus, is an end-to-end method
for learning embeddings that are explicitly optimized with
both binarization and their use in link prediction/node re-
trieval in mind. More concretely: in a manner similar to
Skip-gram (Mikolov et al. 2013), the likelihood of an edge
between two nodes is modeled as a function of the Hamming
distance between their bit embeddings. Rather than directly
optimizing the bit embeddings eij for this task — an NP-
hard task (Weiss, Torralba, and Fergus 2009) — they are
instead imagined as being drawn from a matrix of indepen-
dent Bernoulli random variables Eij , parametrized by their
(independent) probabilities of success pij . By minimizing
expected loss over this (product) distribution of embeddings,



and by applying efficient approximations to the Hamming dis-
tance (Sec. 3.4), continuous optimization techniques can be
applied. For convenience, we refer to bit embeddings learned
in this manner as Bernoulli embeddings.

Comparisons performed on five different graphical datasets
are described in Section 4. Bernoulli embeddings are found to
achieve significantly higher test-set mean average precision
than a variety of alternative binary embedding options, in-
cluding various quantizations of DeepWalk vectors (Perozzi,
Al-Rfou, and Skiena 2014), Fiedler embeddings (Hendrick-
son 2007), and several other real-valued embeddings that
we ourselves introduce (Table 2). This is also found to hold
for the reranking scenario, where binary hashes are used as
a preprocessing step to accelerate more computationally in-
tensive algorithms. Further, node retrieval performed using
binary embeddings is orders of magnitude faster than other
alternatives, especially for larger datasets (Table 4).

2 Related Work
Approaches to node retrieval, roughly categorized in Table
1, can be evaluated in terms of both relevance and speed.
Bernoulli embeddings occupy an unexplored but valuable
niche in this spectrum: they are binary embeddings (O(1)
retrieval) appropriate for large graphs (more than a few thou-
sand nodes) that are learned directly from the adjacency ma-
trix (higher relevance of retrieved nodes). In the following,
we describe the other categories represented in Table 1.

2.1 Observable features
Methods for link prediction and node retrieval on graphs
typically rely on observable neighborhood features (Dong et
al. 2014). However, computing node-node similarity using
these tools can have a significant computational cost (Low et
al. 2014).

Second order neighborhood features, such as the Jaccard
index (Hasan and Zaki 2011) and the Adamic-Adar (AA)
score (Adamic and Adar 2003) either implicitly or explicitly
involve operations over length-2 paths and degree-2 neighbor-
hoods. This generally requires either one or more joins with
the graph table or multiplications with the graph’s adjacency
matrix. Even with efficient sparsity-exploiting indexing, this
operation has complexity O(E) in the number of edges E in
the graph.

Higher order path features, such as the Katz metric, rooted
PageRank (Hasan and Zaki 2011), and the regression-based
Path Ranking Algorithm (Dong et al. 2014) involve even
longer paths and even more such operations. State-of-the-art
link prediction often harnesses dozens of such features in par-
allel (Cukierski, Hamner, and Yang 2011). Offline precompu-
tation of the (dense) node similarity matrix can dramatically
help with latency, but its quadratic complexity in the number
of nodes leaves it an option only for smaller graphs.

2.2 Real-valued Embeddings
With unquantized real-valued embeddings (i.e. no use of
LSH), node retrieval typically involves a brute-force O(N)
search for the nearest Euclidean neighbors to a query. While
such embeddings have appeared most prominently in the

context of text for reasons unrelated to retrieval, Perozzi
et al (2014) apply the word2vec machinery of Mikolov et
al (2013) to “sentences” generated by random walks on a
graph, and Yang et al (2015) illustrate that a graph embed-
ding can be a powerful tool in the context of semisupervised
learning. The world of knowledge graphs has been particu-
larly welcoming to embeddings, starting with the work of
Hinton (1986), and continuing with the models of Bordes et
al. (2011), Sutskever et al. (2009), Socher et al. (2013) and
others.

Additionally, graph Laplacian eigenvectors, which find
prominent use in spectral clustering, can be interpreted as a
latent embedding (“Fiedler embedding” (Hendrickson 2007))
analogous to LSA. Knowledge graphs, which are more natu-
rally represented with tensors than with adjacency matrices,
analogously suggest the use of tensor factorizations and ap-
proximate factorizations (Nickel, Tresp, and Kriegel 2012).

2.3 Discrete Embeddings
Hinton and Salakhudtinov (2009) introduce semantic hashing
as the solution to a very similar problem in a different domain.
Instead of relying on indexed TF-IDF vectors for the retrieval
of relevant documents, a discrete embedding is learned for ev-
ery document in the corpus. At query time, a user can rapidly
retrieve a shortlist of relevant documents simply by scanning
the query’s neighborhood in the (discrete) embedding space.
If the embedding is sufficiently compact, the neighborhood
will be nonempty and the scan will be fast. If the embedding
is very compact, this retrieval yields a pre-ranked list that
may be reranked using more computationally demanding
algorithms. These results have fueled the development of a
variety of similar techniques, all seeking to learn compact
binary encodings for a given dataset.

Quantized Real-valued Embeddings: The most popular
approach, taken by Weiss et al. (2009), Gong and Lazeb-
nik (2011) and others, is to assume that the data consists of
short real vectors. To apply these algorithms to graphical data,
one must first learn a real-valued embedding for the nodes of
the graph. We compare against these baselines in Sec. 4.

Binary Embeddings from Similarity Matrix: In this ap-
proach, also known as “supervised hashing”’ (Liu et al. 2012;
Kulis and Grauman 2012; Norouzi, Punjani, and Fleet 2012),
a matrix of pairwise similarities between all data points is
supplied. The objective is to preserve these similarities in the
discrete embedding space. On the surface, this appears very
similar to the graphical setting of interest to us. However, no
sparsity assumption is placed on the similarity matrix. As
such, proposed solutions (typically, variations of coordinate
descent) fall victim to an O(N2) complexity, and application
is limited to graphs with a few thousand nodes. Note that an
embedding-learning approach specifically avoids this issue
by exploiting the sparse structure of most graphs.

Liu et al. (2014) also assume that one is supplied a matrix
of similarities for the data. Rather than directly attempting
to replicate these similarities in the embedded space, they
perform a constrained optimization that forces the embedded
bits to be uncorrelated and zero-mean. In the graph setting,
this acts as an approximation to the sign bits of the Fiedler
embedding, which appears amongst our empirical baselines.



3 Architecture
3.1 Bernoulli Embeddings
We consider a generic graph, consisting of N nodes X ,
{1, 2, . . . , N} and a binary-valued adjacency matrix G ∈
{0, 1}N×N .

The goal is formulated as learning a matrix of proba-
bilities p = {pij : 1 ≤ i ≤ N , 1 ≤ j ≤ d}, from
which the node embeddings E are sampled as a matrix of
independent Bernoulli random variables Eij ∼ β(pij). For
convenience, one may reparameterize the embeddings as
Eij = 1(pij > Θij), where ΘN×d is a matrix of iid random
thresholds distributed uniformly over the interval [0, 1].

3.2 Model and Objective
Recall the use case for short binary codes: to retrieve a short-
list of nodes Y ∈ Xm similar to a query node x ∈ X , one
should merely have to look up entries indexed at nearby lo-
cations in the embedding space. As such, we seek a model
where the Hamming distance between embeddings mono-
tonically reflects the likelihood of a connection between the
nodes.

For real-valued embeddings, a natural and simple choice
— used for instance with Skip-gram (Mikolov et al. 2013)
— is to treat the conditional link probability between nodes
i and j as a softmax-normalized cosine distance between
embeddings:

(1)P (j|i;p) =
exp (Ei · Ej)∑|X |
k=1 exp (Ei · Ek)

= softmaxj
[
ETi E

]
.

To translate this to the setting of binary vectors, it is natural
to substitute Hamming distance dH(Ei, Ej) for the cosine
distanceEi ·Ej in (1). As the distance dH is limited to taking
values in the set {0, 1, . . . , d}, a transformation is required.
Empirically, we find that more complex transformations are
unnecessary for the purpose of learning a good embedding1,
and a simple linear sca ling suffices

(2)P (j|i;p) = softmaxj
[
adH(ETi , E)

]
,

where dH(x, y) = xT (1 − y) + (1 − x)T y represents the
Hamming distance, and a is the (potentially negative) scaling
parameter.

Given the model of (2), we seek to maximize the expected
log likelihood of the observed graph edges:

(3)L(G;p) =
∑

(i,j)∈G

−E
[
log softmaxj

(
aETi E

)]
Θ

.

The expression in (3) unfortunately introduces two ob-
stacles: (1) the softmax, which requires a summation over
all candidate nodes j, and (2) the expectation of a discrete-
valued functional, which presents difficulties for optimization.

1More specifically: while a complex choice of transformation
can improve the optimization objective (4), we find no consistent
or significant improvement to the test set precision-recall metrics
reported in Sec. 4.4. Essentially, beyond a point, parametrization
of the mapping appears to improve the probabilities produced in a
forward pass through the network, but does not noticeably improve
the embedding-parameter-gradients it returns in the backwards pass.

The first is addressed by means of noise contrastive estima-
tion (Gutmann and Hyvärinen 2010), detailed in Sec. 3.3. The
second is addressed via several approximation techniques,
detailed in Sec. 3.4.

3.3 Noise Contrastive Estimation (NCE)
To sidestep the softmax summation, we follow in the steps
of Mnih and Kavukcuoglu (2013) and employ NCE (Gut-
mann and Hyvärinen 2010), whose minimum coincides with
that of (3). Specifically, softmax normalization is replaced
with a learnable parameter b, and one instead optimizes for
the model’s effectiveness at distinguishing a true data point
(i, j) ∈ G from randomly generated noise (i,Kij). This
objective is given by

(4)

L(G) =
∑

(i,j)∈G

−E

[
log

eadH(Ei,Ej)+b

eadH(Ei,Ej)+b + pK(j|i)

+ log
pK(Kij |i)

eadH(Ei,EKij
)+b + pK(Kij |i)

]
θ

,

where Kij is a negative sample drawn from the conditional
noise distribution pK(·|i).

Gutmann and Hyvärinen (2010) argue that one should
choose the noise distribution to resemble the data distribu-
tion as closely as possible. We experiment with distributions
ranging from powers of the unigram, to distributions over
a node’s 2nd-degree neighborhood (in accordance with the
locally closed world assumption of Dong et al. (2014)), to
mixtures thereof, to curricula that transition from easily iden-
tified noise to more complex noise models. Empirically, we
find that none of these techniques outperform the uniform
noise distribution either significantly or consistently.

3.4 Approximation of objective
The objective function in (4) presents a challenge to gradient-
based optimization. The expectation over Θ is difficult to
evaluate analytically, and because the argument to the expec-
tation is discrete, the reparameterization trick (Kingma and
Welling 2013) does not help. We introduce two continuous
approximations to the discrete random variable DH(Ei, Ej)
that maneuver around this difficulty.

First, according to the independent-Bernoulli model for
the embedding matrix Eij = 1(pij > Θij), the normalized
Hamming distance between two embeddings is the mean
of d independent (but not identically distributed) Bernoullis
F1, . . . , Fd:

1

d
DH(Ei, Ej) =

1

d

d∑
l=1

Eil(1− Ejl) + (1− Eil)Ejl

=
1

d

d∑
l=1

Fl

By Kolmogorov’s strong law (Sen and Singer 1994), this
quantity converges with d almost surely to its expectation.



Therefore, for sufficiently large d, the Θ-expectation in (4) is
approximated by

(5)
Lmean(G) =

∑
(i,j)∈G

− log
eadH(pi,pj)+b

eadH(pi,pj)+b + pK(j|i)

− log
pK(Kij |i)

eadH(pi,pK)+b + pK(Kij |i)
,

which is amenable to gradient-based optimization.
While the approximation of (5) is accurate for larger di-

mensionality d, recall that our goal is to learn short binary
codes. A sharper approximation is possible for smaller d by
means of the central limit theorem as follows.
1

d
DH(Ei, Ej) ≈ N

(
µij = DH(pi,pj),σ

2
ij

=

d∑
k=1

DH(pik,pjk)(1−DH(pik,pjk))

)
.

(6)
Applying the reparametrization trick (Kingma and Welling

2013), our objective takes the form

(7)
LCLT(G) =

∑
(i,j)∈G

−E
[
log

ea(µij+σijZ)+b

ea(µij+σijZ)+b + pK(j|i)

+ log
pK(Kij |i)

ea(µij+σijZ)+b + pK(Kij |i)

]
Z

,

where Z is a zero mean and unit variance Gaussian. Observe
that the argument to the expectation is now differentiable
with respect to the parameters (p, a, b), as is the case with
(5).

A common approach (Kingma and Welling 2013) to op-
timizing an expected-reparameterized loss such as LCLT is
to use Monte Carlo integration to approximate the gradient
over N samples of noise Z. This yields an unbiased estimate
for the gradient with variance that converges O

(
1
N

)
. How-

ever, Monte Carlo integration is generally appropriate for
approximating higher dimensional integrals. For a single di-
mensional integral, numerical quadrature — while determin-
istic and therefore biased — can have the significantly faster
error convergence of O

(
1
N4

)
(midpoint rule). For small N ,

accuracy can be further improved by performing quadrature
with respect to the Gaussian CDF Φz . Letting f denote the
intra-expectation computation in (7),

(8)

E [f(µij + σijZ)]Z =

∫ 1

0

f(µij + σijz)dΦz

≈ 1

2N

N∑
n=1

f

(
µij

+ σijΦ
−1
z

(
2n− 1

2N

))
.

Figure 1 compares the mean approximation with the
quadrature normal approximation over the range of embed-
ding dimensionalities we consider. For smaller embedding
dimensionalities, the greater accuracy of the quadrature ap-
proximation leads to a lower test set log loss.

3.5 Optimization and Discretization
The training set loss, as given by LCLT and approximated by
(8), is minimized with stochastic gradient descent with the
diagonalized AdaGrad update rule (Duchi, Hazan, and Singer
2011). To generate a discrete embedding E = 1(p < Θ)
from a Bernoulli matrix p, each entry is rounded to 0 or 1
(i.e. Θ = 1/2), in accordance with maximum likelihood.

4 Experiments
4.1 Datasets
Results are evaluated on five datasets. Five percent of the
edges of each dataset are held out for the test set, and the
remainder are used in training.

KG (115K entities, 1.3M directed edges)2 is a knowledge
graph extracted from the Wikipedia corpus using statistical
relation extraction software (Castelli et al. 2012). Edges are
filtered to those with more than one supporting location in the
text, and both entity and relation types are ignored. Despite
this filtration, KG possesses a large number of spurious edges
and entities. Such a noisy dataset is representative of automat-
ically constructed knowledge graphs commonly encountered
in enterprise settings (Bhatia et al. 2016).

Wordnet (82K entities, 232K directed edges) is a com-
paratively low-noise, manually constructed graph consisting
of the noun-to-noun relations in the Wordnet dataset (Miller
1995). As with KG, we ignore the edge type attribute.

Slashdot (82K entities, 948K directed edges), Flickr (81K
entities, 5.9M undirected edges), and BlogCatalog (10K
entities, 334K undirected edges) are standard social graph
datasets consisting of links between users of the respective
websites (Leskovec et al. 2009; Tang and Liu 2009).

4.2 Baselines and Comparisons
While there is little work specifically in obtaining bit-valued
embeddings for graphs, we compare Bernoulli embeddings
against quantizations of three classes of real-valued embed-
dings.

B1: Fiedler embeddings (Hendrickson 2007) are com-
puted using the unnormalized graph Laplacian, symmetric
graph Laplacian, and random-walk graph Laplacian.

B2: DeepWalk embeddings are computed using the Skip-
gram-inspired model of Perozzi et al (2014).

B3: Real-valued distance embeddings (DistEmb) are
obtained by modifying the Bernoulli embedding objective
to predict link probabilities from the Hamming, `1, `2, or
cosine distance between real-valued embedded vectors. Note
that the Hamming distance case is equivalent to using the
Bernoulli probabilities p as embeddings, and the cosine dis-
tance variety can be interpreted as DeepWalk modified with
NCE and a window size of 2.

Three different quantizations of the above embeddings are
computed. Random-hyperplane LSH (Charikar 2002) is se-
lected due to its explicit goal of representing cosine similarity

2http://sumitbhatia.net/source/datasets.
html



Figure 1: Comparison of Bernoulli models optimized for Lmean and for LCLR (N = 5 samples) on the KG dataset. Left: Error
(absolute) between approximate loss and true loss. Right: True loss.

— used by both the DeepWalk and the cosine-distance variety
of DistEmb. Spectral Hashing (SH) is chosen for its similar-
ity in objective to Fiedler embeddings. Iterative Quantization
(IQ), another data-driven embedding, has been found to out-
perform SH on several datasets (Gong and Lazebnik 2011),
and as such we consider it as well.

B4: Observable predictor. Additionally, for use in re-
ranking, we perform logistic regression with several ob-
servable neighborhood features of the form s(x, y) =∑
z∈Γ(x)∩Γ(y) f(Γ(z)), where Γ(x) indicates the degree-1

neighborhood of x. Specifically, we compute the number of
common neighbors (f(x) = x), the Adamic-Adar (AA) score
(f(x) = 1/log(x)), variations of AA (f(x) = x−0.5, x−0.3),
and transformations T (s) = [s, log(s+ 1), s0.5, s0.3, s2] of
each score. Despite being far from state-of-the-art, we find
that this predictor can significantly improve performance
when reranking results produced with binary embeddings.

Both 10- and 25-dimensional embeddings are trained: for
the scale of graphs we consider, the (sparsely populated) lat-
ter is useful for instant-retrieval via semantic-hashing, while
the (densely populated) former is useful for reranking. Fur-
thermore, we find that the quantizations of the real embed-
dings B1-B3 perform best when highly-informative 100 and
200 dimensional Fiedler/DeepWalk/DistEmb embeddings are
quantized down to the 10 and 25 bit vectors that are sought.

4.3 Evaluation metrics
Each of the methods considered is likely to excel in the metric
it is optimized for: Bernoulli embeddings for expected log
loss, DeepWalk for Skip-gram context prediction, etc. Our
interest, however, lies in node retrieval, and more specifically
in the ranked list of nodes returned by each algorithm. Mean
Average Precision (MAP) is a commonly used and relatively
neutral criterion appropriate for this task.

A subtlety, however, lies in the choice of set on which
to evaluate MAP. Document retrieval algorithms commonly
evaluate precision and recall on documents in the training

set (Salakhutdinov and Hinton 2009). This does not lead
to overfitting, as the algorithms typically only make use
of the training set documents and not their labeled cate-
gories/similarities. Embedding-based link-prediction algo-
rithms, however, explicitly learn from the labeled similarity
information, as represented by the edge list / adjacency ma-
trix. Alternatively stated: rather than extrapolating similar-
ities from input text, the goal is to generalize and predict
additional similarities from those that have already been ob-
served.

As such, we measure generalization via “test set precision”:
for a query node, a retrieved node is only judged as relevant
if an edge between it and the query appears in the test set.
Observe that this is much smaller than typically reported
MAP, as all edges appearing in the training set are judged
non-relevant. More specifically, for small test sets, its value
can rarely be expected to exceed the inverse of the average
degree.

Furthermore, in reporting observed results, scores corre-
sponding to “DistEmb”, “DeepWalk”, and “Fiedler” embed-
dings are the best observed test set score amongst all varia-
tions of quantizer type (SH, LSH, and ITQ), graph laplacian
type (unnormalized, symmetric, random walk), and distance
embedding (Hamming and `2 3). These optimizations almost
certainly represent test set overfitting, and present a challeng-
ing baseline for the Bernoulli embeddings.

4.4 Empirical results
In the case of directly retrieving results from binary em-
beddings, Bernoulli embeddings are found to significantly
outperform the various alternative binary embeddings (Fig. 2
and Table 2). It is also interesting to compare to the unquan-
tized real embeddings (last four rows of Table 2). Despite
their informational disadvantage, Bernoulli embeddings are
competitive.

3`1 and cos similarity are consistently outperformed.
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Figure 2: Left: 25-bit Ranking. Right: 10-bit Reranking. Mean precision/recall of binary embeddings on the Flickr test set,
averaged over 1000 random queries. Real embeddings are quantized to 25 bits from 100 dimensions, and only their highest test
set MAP parameterizations are shown.

On most datasets, the observable-feature predictor achieves
significantly higher MAP than any of the latent embedding
models — real or binary. This is in line with our expecta-
tions, and one can in fact expect even better such results
from a state-of-the-art link predictor. To harness this predic-
tive power without the computational expense of comput-
ing observable features, a compelling option is to re-rank
the highest-confidence nodes retrieved by binary embed-
dings (Salakhutdinov and Hinton 2009). Observe the two
computational bottlenecks at play here: searching in the em-
bedded space to populate the pre-ranked list of entities, and
computing observable features for each of the pre-ranked
entities.

We re-rank under constraints on both of these operations:
no more than 10000 locations in the embedded space may
be searched, and no more than 1000 nodes can be subject to
re-ranking. As illustrated in Fig. 2 and documented in the
second four rows of Table 2, Bernoulli embeddings are again
found to outperform the alternatives.

Finally, note that while both the Bernoulli objective func-
tion and the test-set MAP evaluation center around the pre-
diction of unknown links, generalization with those metrics
also translates into a more qualitatively meaningful ranking
of known links. Table 3 illustrates this for the KG dataset.
Notice that the observed quality of the retrieved entities
roughly reflects the MAP scores of the respective predic-
tors/embeddings.

4.5 Efficiency Results
Training a 25-dimensional embedding on the KG dataset —
the largest problem we consider — takes roughly 10s per
epoch on a 2.2GHz Intel i7 with 16GB of RAM, and valida-
tion loss is typically minimized between 30 and 60 epochs.

Table 4 reports the average time taken by different methods
to retrieve the node most similar to a query node. By consid-

ering a d-dimensional binary embedding as an address/hash
in the d-dimensional space, retrieval reduces to a near-instant
look up of the hashtable: 0.003 ms for 25-dimension embed-
dings (Table 4). Note that this retrieval speed is independent
of the embedding dimensionality d and the dataset size. At
the other extreme, the high-performance observables model
for the KG dataset (115K entities) takes 2949 ms and scales
linearly with the number of nodes in the dataset. Finally, the
“Goldilocks” solution takes 7 ms: a 10-dimensional embed-
ding is used to obtain a shortlist, which is then reranked using
the observables model.

Hash based lookup is not the only way to exploit binary
embeddings. If one replaces a brute force nearest neigh-
bor search amongst real valued embeddings with a brute
force search amongst binary embeddings, order-of-magnitude
memory and speed advantages remain despite the O(N) run-
time: binary embeddings take up 32 to 64 times less space
than real embeddings, and Hamming distance can be com-
puted much faster than Euclidean distance. Table 4 illustrates
this on synthetically generated embeddings for web-scale
graphs of up to 100 million nodes.

5 Conclusion
We introduce the problem of learning discrete-valued embed-
dings for graphs, as a graphical analog to semantic hashing.
To sidestep the difficulties in optimizing a discrete graph
embedding, the problem is reformulated as learning the con-
tinuous parameters of a distribution from which a discrete
embedding is sampled. Bernoulli embeddings correspond
to the simplest such distribution, and we find that they are
computable with appropriate approximations and sampling
techniques. On a variety of datasets, in addition to being
memory and time efficient, Bernoulli embeddings demon-
strate significantly better test-set precision and recall than the
alternative of hashed real embeddings. This performance gap



Dataset KG Wordnet Slashdot Flickr BlogCatalog
d (dimensionality) 10 25 10 25 10 25 10 25 10 25

Ranked Binary
Ei ∈ {0, 1}d

Q-DistEmb .0016 .0047 .0021 .0212 .0014 .0213 .0051 .0054 .0073 .0094
Q-DeepWalk .0004 .0004 .0011 .0012 .0002 .0004 .0014 .0017 .0048 .0053
Q-Fiedler .0011 .0026 .0001 .0004 .0009 .0216 .0021 .0039 .0065 .0080
Bernoulli .0042 .0112 .0054 .1013 .0016 .0298 .0087 .0161 .0131 .0181

Re-ranked Binary
Ei ∈ {0, 1}d

Q-DistEmb .0122 .0179 .0074 .0178 .0471 .0493 .0092 .0084 .0098 .0198
Q-DeepWalk .0049 .0060 .0031 .0030 .0081 .0189 .0056 .0112 .0196 .0210
Q-Fiedler .0091 .0129 .0019 .0024 .0420 .0402 .0044 .0074 .0139 .0172
Bernoulli .0249 .0267 .0101 .0514 .0516 .0487 .0240 .0487 .0181 .0241

Observables .0865 .0126 .0898 .0349 .0524

Ranked Real
Ei ∈ Rd

DistEmb .0216 .0254 .0195 .1227 .0313 .0350 .0196 .0256 .0255 .0282
Fielder .0085 .0086 .0020 .0016 .0269 .0270 .0065 .0077 .0118 .0116
DeepWalk .0022 .0021 .0761 .0777 .0326 .0326 .0037 .0037 .0074 .0074

Table 2: Test set MAP at both 10 and 25 dimensions. For DistEmb, DeepWalk, Fiedler, and quantizations Q-* we present the
maximum MAP across Laplacian varieties, choice of DistEmb distance function, and choice of quantizer. Bold indicates category
leaders.

Query RankDistEmb (`2,SH) Bernoulli Bernoulli Reranked Observable
1st "Ministry of Education" "Delhi" "Delhi" "Delhi"

"New Delhi" 2nd "Indonesian" "Mumbai" "India" "India"
3rd "Poet" "British India" "Indian" "Alumni"

1st "Gael Monfils" "Grand Slam Final" "Rafael Nadal" "Rafael Nadal"
"Roger Federer" 2nd "Third Round" "Maria Sharapova" "French Open" "French Open"

3rd "Second Round" "Rafael Nadal" "Novak Djokovic" "Wimbledon"

1st "Dick Grayson" "Joker" "Batman" "Batman"
"Bruce Wayne" 2nd "Damian Wayne" "Batman" "Robin" "Robin"

3rd "Gotham" "Arkham Asylum" "Joker" "Joker"

Table 3: Top-3 retrieved nodes (excluding the query node) in the KG dataset for several queries.

Method Time (ms)
binary embeddings, hash based retrieval 0.003
ranking using observables (KG) 2949
re-ranking using observables (KG) 7.6

binaryBruteForce (100d, 100K nodes) 0.7
binaryBruteForce (100d, 1M nodes) 4.5
binaryBruteForce (100d, 10M nodes) 91.7
binaryBruteForce (100d, 100M nodes) 1147.9
realBruteForce (100d, 100K nodes) 23.5
realBruteForce (100d, 1M nodes) 181.6
realBruteForce (100d, 10M nodes) 2967.1
realBruteForce (100d, 100M nodes) OOM

Table 4: Time taken in milliseconds by different methods for
retrieving similar nodes given a query node. Times reported
are averaged over 50 runs, ran on a system running Ubuntu
14.10, with 32GB RAM and 16 Core 2.3 GHz Intel Xeon
processor. OOM indicates Out of Memory.

continues to hold when retrieval with binary embeddings is
followed by reranking with a more powerful (and cumber-
some) link predictor. In this latter case, precision and recall
can rival or exceed that of the link predictor, while perform-
ing retrieval in time more or less independent of the data set
size.
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