
Interpretable Prediction of Goals in Soccer

Tom Decroos Jesse Davis

{tom.decroos,jesse.davis}@cs.kuleuven.be

KU Leuven

Abstract

Valuing the actions a soccer player performs in a match is a crucial
problem in soccer analytics. While many approaches have been proposed
for this problem, a commonality among them is the need to build a model
that can predict for a given game state the probability of a goal occurring
in the near future. Often these works have two common shortcomings.
First, the predictive models are often not thoroughly evaluated or may
even be evaluated according to the wrong performance metric. Second,
there is a tendency to sacrifice interpretability for performance. Hence,
the models often yield no insight into why a given game state has a higher
or lower probability of resulting in a goal. This paper analyzes VAEP, a
recently proposed approach for valuing actions, and its model for estimat-
ing the probability of scoring in the near future. We discuss a number of
design choices related to building this model and share insights on how
to properly evaluate it. Finally, we replace VAEP’s complicated non-
interpretable gradient boosting tree model that uses 151 features with a
simpler interpretable Generalized Additive Model (GAM) using only 10
features. We find that the GAM offers nearly identical performance to
the more complicated gradient boost model while being interpretable and
offering insights into what characteristics of a game state have an effect
on the probability of scoring a goal in the near future.

1 Introduction

Objectively assessing how valuable an action in a soccer match is, is a crucial
task in soccer analytics that has applications in scouting, player acquisition,
and tactical analysis. Initial metrics such as expected goals (xG) [10] and ex-
pected assists (xA) [19] take a probabilistic approach to valuing the actions: xG
estimates the probability that a shot will result in a goal and xA estimates the
probability that a pass will become a goal assist. Unfortunately, these metrics
focus on relatively rare actions within a match.

More recently, approaches like VAEP [3], XG Chain [11], xG Added [13],
xG Threat [18], and Attacking Contribution [20] have attempted to assess a
wider variety of on-the-ball actions in a match. These approaches give a more
complete overview of a player’s contribution by valuing frequent actions such as

1

(non-assist) passes, dribbles, and tackles. While there are important differences
among these techniques, at a high level they all value actions by exploiting the
intuition that an action changes the game state. Then, they value each action
by looking at the difference in a team’s chance of generating a goal scoring
opportunity before and after the action. Therefore, the key artificial intelligence
task is to estimate a team’s probability of scoring in the near future from a given
game state.

Some techniques, such as expected threat (xT) [18] derive this change in
probability solely by valuing individual locations on the pitch. Ignoring relevant
information such as the action used to progress the ball and the game context
(e.g., score difference and time remaining) allows xT to give intuitive insights
into why certain actions are useful. Simply stated, good actions move the ball
to a location on the pitch where a team is more likely to generate a goal-scoring
attempt. In contrast, other approaches such as VAEP use a rich feature set to
describe the current game state and complex black-box models like ensembles
of decision trees to estimate probabilities. A shortcoming is then that there is
no intuitive explanation about why a given action altered a team’s chance of
scoring.

This paper examines VAEP in greater detail in hopes of gaining insights
into how it assesses changes in the probability of a team scoring. The original
paper used a gradient boosting model with over 150 features which is not inter-
pretable. We replace the gradient boosting model with a Generalized Additive
Model (GAM) using only 10 features. We find that the GAM offers nearly iden-
tical performance to the more complicated gradient boosting model while being
interpretable and offering insights into what characteristics of an action alter a
team’s probability of scoring.

2 VAEP: Valuing actions by estimating proba-
bilities

This paper analyzes the VAEP framework [3]. We briefly summarize the ap-
proach here. Like other approaches, VAEP exploits the fact that each action
alters the game state. That is, an action ai moves the match from game state
Si−1 to game state Si. The value of ai for team t is then the difference in value
between Si and Si−1:

V (ai, t) = V (Si, t)− V (Si−1, t)

where t is the team the value is computed for. When considering how valuable
a game state is, VAEP leverages the intuition that a game state is valuable for
team t if it offers (1) a high short-term probability of team t scoring; and/or
(2) a low short-term probability of team t conceding. Therefore, VAEP values
each game state according to the formula:

V (S, t) = Pscores(S, t)− Pconcedes(S, t).

2

Hence a game state is positively valued if a team’s short-term chance of scoring
is higher than conceding and negatively valued if the opposite is true.

Conceptually, VAEP transforms the subjective task of valuing an action to
the objective machine learning task of estimating the probabilities of future
events (in this case scored and conceded goals). The machine learning task can
then be summarized as follows:

Given: Game state Si and team t.

Predict: Pscores(Si, t) and Pconcedes(Si, t), the probabilities of team t scoring
and conceding in the short-term future of game state Si.

We can build a predictive model by training a probabilistic classifier on a set
of features and labels. In the next section, we discuss the design choices that
come up when building this model.

3 Building a predictive model for goals

To build a predictive model that can estimate the short-term probability of
scoring and conceding from a game state, we require three ingredients: (a) fea-
tures that describe the game state, (b) labels that capture the limited temporal
influence that the current game state will have on the match’s evolution, and
(c) a probabilistic classifier that can learn the probabilistic mapping from the
features to the labels.

3.1 Features

Constructing the right features is a crucial step in the process of valuing game
states. By selecting and engineering specific features that accurately describe
the pertinent aspects of the game state, we can increase the performance of the
predictive model. It also accords the modeler the ability to decide which aspects
of the game state to analyze and which aspects to ignore. For example, xT [18]
discretizes the pitch into zones and only uses the zone where the current action
occurred to describe the game state. Ignoring the other aspects of the game
state is a conscious choice that makes modeling simpler. Moreover, it makes the
model much more understandable to humans. However, this choice may come
at the expense of maximizing performance.

On the other hand, VAEP attempts to make the predictive model as per-
formant as possible and therefore uses a rich set of features to describe a game
state. More specifically, VAEP considers the following three types of features
per game state.

Simple features VAEP describes a game state Si by its three most recent
actions [ai, ai−1, ai−2]. To describe an action, Decroos et al. introduced
the SPADL format for event stream data, which describes an action by
the following eight attributes: type, player, team, result, bodypart, time,

3

start location, and end location. All these attributes (except player and
team) of the past three actions are used as features to describe the game
state Si.

Complex features The complex features combine information within an ac-
tion and across consecutive actions. Within each action, these features
include (1) the distance and angle to the goal for both the action’s start
and end locations, and (2) the distance covered during the action in both
the x and y directions. Decroos et al. also compute the distance and
elapsed time between consecutive actions and whether the ball changed
possession. These features provide some intuition about the current speed
of play.

Game context features The game context features are (1) the number of
goals scored in the game by the team possessing the ball after action ai,
(2) the number of goals scored in the game by the defending team after
action ai, and (3) the goal difference after action ai. Decroos et al. include
these features because teams often adapt their playing style to the current
scoreline (e.g., a team that is 1-0 ahead will play more defensively than a
team that is 0-1 behind) [17].

By considering all the described above features and one-hot encoding the cat-
egorical variables, Decroos et al. used 151 features in total to describe a game
state [3].

3.2 Labels

By assigning labels to game states, we answer the following question:

How responsible is a game state for a goal scored or conceded in the
near future?”

If a goal occurs in the subsequent game state, then obviously the current game
state should receive a lot of credit. However, if the goal happens ten minutes
after the current game state, then the current game state likely had no role in
leading to the goal. The challenge is to assign a label for the game state that
falls between these two more extreme cases. To estimate Pscores(Si, t), Decroos
et al. assign game state Si a positive label (= 1) if team t scored a goal in the
subsequent 10 actions, and a negative label (= 0) in all other cases [3]. The
same approach is used to assign labels to estimate Pconcedes(Si, t). Choosing to
look ahead 10 actions into the future to determine whether a game state affected
the occurrence of a scored or conceded goal, is a parameter of the approach and
can be altered depending on the preferences of the end user.

3.3 Probabilistic Classifiers

To estimate scoring probabilities, we need a probabilistic classifier that can
predict the labels from the features. We discuss two popular models, logistic

4

regression and XGBoost, and one lesser known model, the generalized additive
model.

Logistic regression Logistic regression is a statistical model that uses a logis-
tic function to model a binary target variable that depends on the input
features [16]. Given an input feature vector x = [x1, x2, . . . , xm] and a
target variable y, logistic regression will learn the following function:

g(E[y]) = α0 + α1x1 + α2x2 + . . .+ αmxm = α0 +

m∑
i

αixi

where g is the logit link function and the weights αi are learned from the
training data. This formula illustrates how logistic regression is a linear
model. It is also interpretable, as the sign of αi shows whether there
is a positive or negative correlation between feature xi and y and the
magnitude of αi hints how big its impact is.

XGBoost XGBoost is a popular gradient boosting decision trees model that
solves many data science problems in a fast and accurate way [2]. Due to
its excellent performance, it has become the de facto standard model of
choice for many data science practitioners when classifying tabular data.
One of the reasons XGBoost works so well out of the box is that by using
decision trees and the boosting mechanism, it can learn complex non-linear
decision boundaries. This is why a gradient boosting decision tree model
was the chosen model in the original VAEP paper [3]. The downside is
that these complex non-linear decision boundaries are often too complex
for humans to grasp and thus XGBoost is in practice a black box model.

Generalized additive model Generalized additive models (GAMs) are sta-
tistical models that model the target variable as a sum of univariate func-
tions [9]. Standard GAMs have the form

g(E[y]) = f1(x1) + f2(x2) + . . .+ fm(xm) =

m∑
i

fi(xi)

where g is the logit link function and the functions fi are learned from
the training data. This model is interpretable in the sense that users can
visualize the relationship between the univariate terms of the GAM and
the dependent variable through a plot fi(xi) vs. xi. The formula illus-
trates how GAMs are a more powerful generalization of logistic regression
models, replacing the linear functions αixi with more complex non-linear
functions fi(xi).

One of the reasons why GAMs have been less popular up until now is lack
of a mature and widely available implementation. However, Microsoft recently
released InterpretML [14], an open-source Python package which exposes inter-
pretable machine learning algorithms to practitioners and researchers. One of

5

the contributions in InterpretML is the first implementation of the Explainable
Boosting Machine (EBM). EBM is an implementation of a GAM that uses a
boosting mechanism to learn the univariate functions and can also model the
most important pairwise interactions among features. EBM is interpretable, yet
can be nearly as accurate as many blackbox models such as XGBoost.

4 Evaluating a predictive model for goals

When building a predictive model, two underappreciated aspects in soccer ana-
lytics are (1) evaluating the performance of the predictive model, and (2) choos-
ing the correct evaluation metric. In this section, we first identify shortcomings
in recent works of various soccer analytics researchers. We discuss AUROC,
Brier score, and logarithmic loss, the three most popular metrics for evaluating
probabilistic classifiers. We offer some insights on when to use each metric and
finally propose a small modification to the Brier score and logarithmic loss so
that they become more interpretable.

4.1 Shortcomings in recent work

Often, articles do not provide a detailed description of both the methodology
employed in the evaluation and the results themselves. Fernandez et al. in-
troduced an Expected-Possession-Value-model for soccer that is composed of
multiple smaller models that estimate the likelihood of future events such as
goals or passes [7]. The paper mentions that they rigorously evaluated and
tuned their models to obtain maximal performance. However, further details
on how accurate the models were or which evaluation metric was used were
omitted for the sake of brevity, which is detrimental to the reproducibility of
their results. Similarly, Decroos et al. predict the likelihood of a goal occurring
from a phase using a Dynamic Time Warping-based model, but do not report
the performance of the model or the evaluation metric used to set its param-
eters [5]. Many more soccer analytics articles exist where information on the
evaluation approach is missing [10, 18, 11, 13].

Other articles do provide details on how the models were evaluated, but
actually use the wrong evaluation metric. For example, Pappalardo et al. build
a model that predicts the probability of a team winning a match based on some
features describing the team and evaluate this model with AUROC [15]. The
predictive model is then used to assign weights to its features in a different
use case, namely valuing players. Given this use case, it is important that the
predictive model is well calibrated. However, AUROC is an evaluation metric
that is agnostic to calibration. Another example is Decroos et al. who build a
model to predict highlights in soccer matches [4]. One of the components in this
model is an expected goals model that predicts goals from shots. Decroos et al.
used AUROC to evaluate their expected goals model. However, given how the
output of their predictive model is used, they should have used logarithmic loss
instead, as we will argue further in this section.

6

Finally, Lucey et al. also build models that predict goals from shots and
use mean absolute error (MAE) to evaluate the performance of their predictive
models [12]. However, mean absolute error is not a proper scoring rule. What
this means is that a predictive model that is evaluated on mean absolute error
can get better results by reporting probabilities of 100% or 0%, depending on
which is closer to the real probability. The predictive model is incentivized to
lie rather than report the true class distribution [8].

Luckily, there also exist articles where the evaluation approach is mentioned,
motivated, and quantitative results are provided [6, 3, 13].

4.2 Evaluation metrics

There exist three popular metrics to evaluate probabilistic classifiers: area under
the ROC curve (AUROC), Brier score and logarithmic loss.

AUROC The area under the receiver operator curve (AUROC) evaluates how
well a classifier can differentiate positive examples from negative examples.
Intuitively, AUROC answers the following question: ”Given a positive ex-
ample and a negative example, how likely is it that our classifier will
correctly rank the positive example ahead of the negative example”. Note
that even random guessing will achieve a AUROC of 50%. This presents a
naive baseline any probabilistic classifier should always beat. One crucial
aspect of AUROC that often goes ignored is that it is in essence a ranking
metric. AUROC only considers the relative ranking of examples and ig-
nores the actual predicted probabilities. This means that a classifier can
be poorly calibrated, yet still achieve great AUROC.

Brier score The Brier score (BS) is a proper scoring rule that measures the
accuracy of probabilistic predictions. A proper scoring rule is a metric
that can only be minimized by reporting the true class distribution. It is
essentially the mean squared error between the predictions and the labels
and has the following formula:

BS =
1

N

N∑
i

(pi − yi)2

in which N is the number of examples, pi is the probability that was
predicted for example i and yi is the label of example i.

Logarithmic loss The logarithmic loss (LL) is also a proper scoring rule that
measures the accuracy of probabilistic predictions. The biggest difference
with Brier score lies in the way that it weighs individual prediction errors.
Logarithmic loss has strong foundations in information theory and its
formula is:

LL =
1

N

N∑
i

yi log pi + (1− yi) log(1− pi)

.

7

4.3 When to use which evaluation metric

As previously discussed, a common shortcoming in soccer analytics research is
building predictive models by optimizing and evaluating on one of the above
metrics without critical thought on why to use a specific evaluation metric [15,
4, 12]. Our key message is that the choice of evaluation metric should depend on
the specific use case in which the predictive model will be used. In other words,
once you have a predictive model that outputs probabilities, what will you do
with these probabilities? We now discuss our insights on when each metric is
applicable.

Choosing whether or not to use AUROC is the easiest choice. AUROC is
the best metric for classification tasks or ranking examples based on how likely
they are to be positive or negative. For example, when searching for the top-k
game states that are most likely to result in a goal.

When we care about using the actual values of the probabilities, the choice is
between the Brier score and logarithmic loss as AUROC is not suitable. Unfor-
tunately, it is less clear when one should use the Brier score versus logarithimc
loss. Brier score and logarithmic loss are similar in the sense that they are both
proper scoring rules and can both only be minimized by reducing the individual
prediction errors. However, they differ in how they aggregate the individual
prediction errors.

To illustrate this difference and to more easily compare the two metrics, let
ei = |pi−yi| be the prediction error for example i. Using this definition and the
multiplication rule for logarithms, we can simplify the formulas for the Brier
score and logarithmic loss to:

BS =
1

N

N∑
i

e2i

and

LL =
1

N

N∑
i

log(1− ei) =
1

N
log(

N∏
i

1− ei).

This rewrite illustrates that the Brier score is simply the mean squared error.
Moreover, the Brier score combines individual prediction errors by summing
them while the logarithmic loss combines individual prediction errors by multi-
plying them.

This insight is the reason we recommend to use Brier score to build a pre-
dictive model if the resulting probabilities will be summed or subtracted. For
example, [3] construct player ratings by summing the deltas between game state
probabilities. We recommend to use logarithmic loss if the resulting probabil-
ities from the predictive model are more likely to be used in multiplications,
such as in [4] and [7], where the resulting probabilities are multiplied with the
probabilities of predictive models of other tasks. Other use cases where proba-
bilities are often used in multiplications are simulations, reinforcement learning,
and recommender systems.

8

In summary, which evaluation metric to use depends on what the probabil-
ities outputted by the predictive model will be used for. We recommend to use
AUROC when ranking probabilities or classifying examples, Brier score when
summing or subtracting probabilities, and log loss when multiplying or dividing
probabilities.

4.4 Making Brier score and logarithmic loss more inter-
pretable

A downside to both Brier score (BS) and logarithmic loss (LL) is that their
values are less interpretable than AUROC. Regardless of the class skew, an
AUROC of 0.5 corresponds to random guessing. Moreover, the AUROC is the
Wilcox-Mann-Whitney statistic, which is the probability that the model ranks
a randomly selected positive example ahead of a randomly selected negative
example. In contrast, how good or bad a specific BS or LL value is depends on
the class distribution. A Brier score of 0.1 is impressive in a data set with a
50/50 class distribution, but terrible in a data set with a 99/1 class distribution.

To somewhat combat this lack of interpretability, we can compare the BS
or LL of our predictive model to that of a simple baseline, namely always pre-
dicting the class distribution. For example, in a data set with only 1% positive
examples, we always predict 0.01 as the chance of example i being positive. In
our experience, this can be a surprisingly hard baseline to beat in some use
cases.

To properly compare our model’s BS/LL, we divide it by the BS/LL of our
baseline. This number will be a value between 0 and infinity. A value of 0
means that this classifier offers perfect (and thus deterministic) predictions. A
value between 0 and 1 means that this classifier offers better predictions than
the naive baseline, and a value higher than 1 means that the model is worse
than the naive baseline and practically useless, similar to a classifier with a
AUROC of < 50%. We call these metrics the normalized Brier score (NBS) and
normalized logarithmic loss (NLL).

NBS =
BS

BSbaseline
, NLL =

LL

LLbaseline

5 Experiments: Predicting the probability of
scoring in the 2018/19 Premier League

The goal of the experiments is to understand the effect of the interplay between

1. the complexity of the feature set used to describe the game state; and

2. the selected probabilistic classifier used to estimate scoring probabilities
for each game state.

9

Our hope is that we can approximate the performance of the original VAEP
model [3], which used 151 features and an uninterpretable gradient boosted tree
model by applying a more interpretable model to a much smaller feature set.

5.1 Approaches considered

We consider the following three sets of features:

Location only This considers only the (x, y)-coordinates of the last action in
game state Si. Hence, each game state is described by two features.

VAEP This considers the set of 151 features used in the original VAEP model.

Top-10 This considers the 10 most important features from VAEP feature set.
These features were selected using the built-in ordering of feature impor-
tance available in the implementations of the XGBoost and GAM models.

For each of the three feature sets, we train a logistic regression, XGBoost
and GAM model.

5.2 Methodology

Our data set consists of event stream data of 760 matches from seasons 2017/18
and 2018/19 of the English Premier League. The data was provided to us by
StatsBomb and then converted to the SPADL format using the freely available
converter at https://github.com/ML-KULeuven/socceraction.

We trained all three classifiers on 747,813 game states in the 2017/18 Premier
League season and evaluated them using the Normalized Brier Score (NBS) on
789,108 game states in the 2018/19 Premier League season.

For all three classifiers, we performed no tuning and set all parameters to the
default values of their respective implementations.123 Some examples of these
default parameters are logistic regression using the L2 regularization penalty
and L-BFGS as the optimization problem solver, XGBoost using 100 trees of
maximum depth 6, and the GAM using 16 estimators to construct each uni-
variate function. The only exception is that we allowed the GAM to learn three
pairwise interaction terms rather than its default value of zero. This parameter
was changed to leverage the capabilities of the underlying implementation of
the GAM.

5.3 Results

Table 1 reports the normalized Brier scores for each classifier-feature set com-
bination. From these results, we can infer the following conclusions:

1https://scikit-learn.org/stable/modules/generated/
sklearn.linear model.LogisticRegression.html

2https://github.com/dmlc/xgboost
3https://github.com/interpretml/interpret

10

Features Classifier

LogReg XGBoost GAMs

Location only 98.6% 96.4% 96.4%
VAEP 89.5% 85.6% 85.8%
Top-10 91.2% 86.0% 86.1%

Table 1: Normalized Brier score (lower is better) of three different feature sets
using three different probabilistic classifiers: logistic regression (LogReg), XG-
Boost, and generalized additive models (GAMs).

Only considering location is insufficient. As can be seen in the first row of
Table 1, logistic regression achieves an NBS of 98.4%, while both XGBoost
and GAMs achieve a NBS of 96.4%. These scores only slightly improve
upon the baseline. Furthermore, regardless of the learning method, only
using the location does not come close to matching the performance of
using a more expansive and expressive feature set.

Having a model that captures non-linearities helps. Regardless of the fea-
ture set, XGBoost and GAMs offer substantial improvements on predictive
performance compared to using logistic regression. For the location only
feature set, Figure 1 clearly demonstrates how GAMs are capable of cap-
turing non-linear correlations between the features and the target variable,
while Logistic Regression is not.

A small feature set can yield excellent performance. Compared to see-
ing the full set of 151 features (second row in Table 1), using the top
10 features only slightly decreases performance (third row in Table 1).
However, using fewer features highly enhance the interpretability of these
models. The performance of the GAM (86.1% NBS) is again similar to
the performance of XGBoost (86.0% NBS).

In summary, regardless of the feature set GAMs achieve a performance that is
better than Logistic Regression and similar to that of XGBoost, while remaining
interpretable.

5.4 Discussion of top-10 features

Figure 2 details the ten univariate functions that make up the GAM that almost
matches XGBoost’s performance. It also provides some insights in what makes
a game state (and an action) likely to result in a scored goal.

Panels (a-c) capture location-based aspects of the game state. In Panel (a),
we see that as the ball gets closer and closer to the center of the opponent’s
goal, the chances of scoring increase. This correlation increases dramatically
when the ball is very close to the center of the goal. In Panel (b), we can
see that being aligned to the center of the goal slightly increases in the chance

11

(a) (b)

Figure 1: A generalized additive model (GAM) consisting of two univariate
models using (a) the x-coordinate and (b) the y-coordinate of a game state.
The GAM predicts the probability of scoring a goal from a given x, y-location
by summing the scores of the univariate models per feature and converting the
resulting sum to a probability P ∈ [0, 1] using the logit linking function. The
straight orange line represents the weight given to the feature by a Logistic
Regression model (LogReg) and illustrates the difference in predictive power.

12

0 50 100
Distance to the goal (meters)
at the end of the game state

4

2

0

2

4

Sc
or

e

GAM

(a)

0.0 0.5 1.0 1.5
Angle to the goal (radials)

at the end of the game state

4

2

0

2

4

Sc
or

e

GAM

(b)

0 50 100
X-coordinate

at the end of the game state

4

2

0

2

4

Sc
or

e

GAM

(c)

0.0 0.5 1.0
Was the last action

successful?

4

2

0

2

4

Sc
or

e

GAM

(d)

0.0 0.5 1.0
Was the last action

 a foul?

4

2

0

2

4

Sc
or

e

GAM

(e)

-4 -3 -2 -1 0 1 2 3 4
Goalscore difference

 at the time of the game state

4

2

0

2

4

Sc
or

e

GAM

(f)

20 10 0 10 20
Forward movement (meters)

 of the last action

4

2

0

2

4

Sc
or

e

GAM

(g)

20 10 0 10 20
Forward movement (meters)

 of the second-last action

4

2

0

2

4

Sc
or

e

GAM

(h)

20 10 0 10 20
Forward movement (meters)

 of the third-last action

4

2

0

2

4

Sc
or

e

GAM

(i)

0 20 40 60
Time passed (s) between

the last and third-last action

4

2

0

2

4

Sc
or

e

GAM

(j)

Figure 2: Univariate functions of the ten features that make up the GAM that
predicts the short-term goal-scoring probability from a given game state.

13

of scoring whereas being at a tight angle decreases it. This makes sense, as
a shooter likely has more places to aim when positioned in front of the goal.
Finally, Panel (c) shows that when the ball enters the final third, there is a
strong positive correlation with scoring. This increases as the ball gets closer to
the endline behind the opponents goal, but not as dramatically as in Panel (a).

Panels (d-f) capture contextual aspects of the game state. Panel (d) shows
how the probability of scoring is dramatically reduced if the last action was
not successful. This makes sense, as in the SPADL representation an action
not being successful means that the team has lost possession of the ball and
therefore cannot attempt to score without first regaining possession.

Panel (e) shows an even stronger impact on goal scoring probability if the
last action was a foul. The effect captured here is that while there might still be
a slim chance that a team can quickly recover the ball following an unsuccessful
action, this becomes virtually impossible if the team committed a foul. The
reason is that after a foul the game temporarily suspends and is no longer
in open play. This allows the players of the opposing team who are now in
possession of the ball enough time to position themselves such that they obtain
the maximum tactical advantage.

Panel (f) shows that the probability of scoring varies based on the score
difference, with teams leading by ≥ 2 being more likely to score. Robberechts
et al. showed that the probability of scoring a goal changes with the goalscore
difference [17]. However, we currently are unsure of whether this is a causal
effect (i.e., being three goals ahead or tree goals behind has an effect on the
mental state of a player, making them perform better or worse actions [1]) or
whether this is simply a correlation (i.e., a team that is three goals ahead in a
match is a good team with an above average finishing rate, therefore its games
states are more valuable). Researching this further is an interesting direction
for future work.

Panels (g-j) capture aspects about the speed of play. On Panels (g-i) as
the values on the x-axis increase, it indicates that the ball is moving longer
distances and hence getting closer and closer to your opponent’s goal. In Panel
(j), as the value on the x-axis decreases, this indicates that there is less time
between consecutive actions. This may be a proxy for the ball moving more
rapidly. Hence, in combination, these last four features hint towards the speed
of play during the game state. This can be an important factor to decide goal-
scoring probability, i.e., the odds of scoring are usually higher during a quick
counter-attack than during slow build-up play.

For each of the three location-based features in Panels (a-c), the GAM also
learns a pairwise interaction term where it combines each feature with the suc-
cessfulness of the action in Panel (d). These interaction terms help fine-tune the
performance of the GAM for specific examples, but are also more challenging
to interpret than the simple univariate functions in Figure 2.

14

6 Conclusion

Assessing how valuable an action in a soccer match is, is a crucial task in soccer
analytics. VAEP is a framework that addresses this task by solving a probabilis-
tic classification problem: given a game state, predict the probability of a goal
being scored or conceded in the near future. We have discussed a number of de-
sign choices related to this classification problem such as the choice of features,
labels, and classifier. When building a model to predict goals, earlier work of-
ten has two shortcomings. The first shortcoming is that the performance of the
predictive model is often not thoroughly or wrongly evaluated. We discussed
the occurrence of this shortcoming in recent related work and showed how to
combat this by sharing insights on when to use which evaluation metric.

The second shortcoming is that the predictive models use a complicated clas-
sifier such as XGBoost that offers no intuitive explanations on why a given game
state produced a higher or lower chance of scoring. To address this shortcoming,
we replaced the complicated non-interpretable gradient boosting tree model us-
ing 151 features from the original VAEP paper [3] with a Generalized Additive
Model (GAM) using only 10 features. We illustrated how the GAM can get
close to the performance of XGBoost while remaining interpretable. Given how
crucial the interpretability of models can be in soccer analytics, GAMs may
be a better choice than XGBoost to build predictive models with, even if their
performance is slightly worse.

Acknowledgements

Tom Decroos is supported by the Research Foundation-Flanders (FWO-Vlaanderen).
Jesse Davis is partially supported by KU Leuven Research Fund (C14/17/07,
C32/17/036), Research Foundation - Flanders (EOS No. 30992574, G0D8819N)
and VLAIO-SBO grant HYMOP (150033).

References

[1] Lotte Bransen, Pieter Robberechts, Jan Van Haaren, and Jesse Davis.
Choke or Shine? Quantifying Soccer Players’ Abilities to Perform Under
Mental Pressure. In MIT Sloan Sports Analytics Conference, 2019.

[2] Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting Sys-
tem. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 785–794. ACM, 2016.

[3] Tom Decroos, Lotte Bransen, Jan Van Haaren, and Jesse Davis. Actions
speak louder than goals: Valuing player actions in soccer. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery;
Data Mining, KDD ’19, pages 1851–1861, New York, NY, USA, 2019. ACM.

15

[4] Tom Decroos, Vladimir Dzyuba, Jan Van Haaren, and Jesse Davis. Pre-
dicting Soccer Highlights from Spatio-Temporal Match Event Streams. In
Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,
pages 1302–1308, 2017.

[5] Tom Decroos, Jan Van Haaren, Vladimir Dzyuba, and Jesse Davis.
STARSS: A Spatio-temporal Action Rating System for Soccer. In
ECML/PKDD 2017 Workshop on Machine Learning and Data Mining for
Sports Analytics, 2017.

[6] Martin Eastwood. Expected Goals And Support Vector Machines.
pena.lt/y, 2015.

[7] Javier Fernández, Luke Bornn, and Dan Cervone. Decomposing the Im-
measurable Sport: A Deep Learning Expected Possession Value Framework
for Soccer. In MIT Sloan Sports Analytics Conference, 2019.

[8] Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules,
prediction, and estimation. Journal of the American Statistical Association,
102(477):359–378, 2007.

[9] Trevor J Hastie. Generalized additive models. In Statistical models in S,
pages 249–307. Routledge, 2017.

[10] Sander IJtsma. A Close Look at My New Expected Goals Model.
11tegen11, 2015.

[11] Tom Lawrence. Introducing xGChain and xGBuildup. StatsBomb IQ Ser-
vices, 2018.

[12] Patrick Lucey, Alina Bialkowski, Mathew Monfort, Peter Carr, and Iain
Matthews. Quality vs. Quantity: Improved Shot Prediction in Soccer Us-
ing Strategic Features from Spatiotemporal Data. In MIT Sloan Sports
Analytics Conference, 2014.

[13] Nils Mackay. Predicting Goal Probabilities for Possessions in Football.
Master’s thesis, Vrije Universiteit Amsterdam, 2017.

[14] Harsha Nori, Samuel Jenkins, Paul Koch, and Rich Caruana. Interpretml:
A unified framework for machine learning interpretability. 2019.

[15] Luca Pappalardo, Paolo Cintia, et al. Playerank: data-driven performance
evaluation and player ranking in soccer via a machine learning approach.
arXiv preprint arXiv:1802.04987, 2018.

[16] Fabian Pedregosa, Gaël Varoquaux, et al. scikit-learn: Machine Learning in
Python. Journal of Machine Learning Research, 12(Oct):2825–2830, 2011.

[17] Pieter Robberechts, Jan Van Haaren, and Jesse Davis. Who will win
it? an in-game win probability model for football. arXiv preprint
arXiv:1906.05029, 2019.

16

[18] Karun Singh. Introducing Expected Threat (xT). 2019.

[19] Tom Worville. Expected assists in context. 2017.

[20] Derrick Yam. Attacking Contributions: Markov Models for Football. 2019.

17

