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ABSTRACT
Recently image question answering (ImageQA) has gained lots
of attention in the research community. However, as its natural
extension, video question answering (VideoQA) is less explored.
Although both tasks look similar, VideoQA is more challenging
mainly because of the complexity and diversity of videos. As such,
simply extending the ImageQAmethods to videos is insufficient and
suboptimal. Particularly, working with the video needs to model its
inherent temporal structure and analyze the diverse information
it contains. In this paper, we consider exploiting the appearance
and motion information resided in the video with a novel attention
mechanism. More specifically, we propose an end-to-end model
which gradually refines its attention over the appearance and mo-
tion features of the video using the question as guidance. The
question is processed word by word until the model generates the
final optimized attention. The weighted representation of the video,
as well as other contextual information, are used to generate the
answer. Extensive experiments show the advantages of our model
compared to other baseline models. We also demonstrate the effec-
tiveness of our model by analyzing the refined attention weights
during the question answering procedure.
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1 INTRODUCTION
Obtaining information from videos is important and valuable for
numerous applications especially when a vast number of videos
are produced nowadays. It is nearly impossible for us to look these
videos through. Video question answering (VideoQA) can help us
quickly acquire the necessary information we seek from videos,
which is beneficial to various real-life applications [4, 8, 28, 29, 36].
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Figure 1: Given the video and the question, our model first
samples the video in frame-level and clip-level, then ex-
tracts appearance and motion features, while the question
is processed in word-level to refine the attention gradually.
The numeric values beside the lines indicate the refined at-
tention after the last word being processed.

Compared to the understanding of images [5, 27, 44, 45], the
understanding of videos is more difficult. Videos not only contain
one more dimension of time, but also include extra information
channels such as the audio and text in most cases. To measure the
understanding ability of models on videos, different intermediate
tasks are proposed such as video classification [12, 19, 35, 41] and
action recognition [15, 20, 22, 24, 46]. Recently video captioning
has emerged where models need to describe the most informative
content of video clips using natural language sentences. The task
gains lots of interest in the research community and several works
have shown promising results [17, 25, 40]. Though describing the
video using natural language is close to how humans perceive it,
existing models tend to describe the video in a short sentence,
which may miss lots of important details. Many metrics such as
BLEU, METEOR, ROUGE, and CIDEr have been proposed for the
evaluation of sentences, but it is still hard to evaluate due to the
ambiguity and variety of natural language as well as the differences
among subjective assessments [43].
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VideoQA is proposed recently, which follows the pattern of
image question answering (ImageQA) [2] except for the media type.
Given a video and a question, the task requires the model to output
an answer. Because videos and questions are arbitrary, the model
succeeding in VideoQA has the ability to analyze the unconstrained
videos and questions, thus indicating a better understanding of
videos. As have mentioned above, the model in video captioning
tends to describe the video in general sentences with details missing;
in VideoQA, questions may involve diverse details of the video, and
answers cannot be so general. To give the answer, a model needs
to analyze the question carefully and focuses on the important
part of the video. Besides, since the details are always simple and
concrete, the answer of the question is always much shorter than
the description of the video, which makes the evaluation easier. The
above properties also make VideoQA a better choice to measure
the progress in video understanding. A system that succeeds in
ImageQA typically needs a more detailed understanding of the
image and complex reasoning than a system producing generic
image captions [2], which is the same when it refers to videos.

Currently, existing works on VideoQA are sparse as the task is
relatively new. [43] presents four models to solve the VideoQA task.
All of these models are extended from models for other tasks such
as video captioning and ImageQA. Though these models are proved
powerful in their dedicated task, simply extending them is inappro-
priate since they may weaken or ignore the temporal information
of videos which is the most distinctive feature compared to static
images. Besides, videos contain rich data in multiple channels, and
the simply extended models cannot leverage them well. Another
weakness is that these models always encode the whole question as
one single feature, which may be not expressive enough to reveal
the information held by the question. Moreover, some words in the
question are significant to give the correct answer, and these words
may also be buried in such coarse-grained feature.

In this paper, we propose an end-to-end model for VideoQA. The
model first samples the video as a series of frames and clips, from
which the appearance and motion features are extracted. Then the
model reads the question word by word and refines its attention
over these features with the interaction between the frame-level
and clip-level. When all words of the question are processed, the
model generates the final optimized attention which can be used to
fuse the appearance andmotion features as the representation of the
video. Both the coarse-grained question feature and fine-grained
word feature are used in the procedure. Taking what Figure 1 shows
as an example, the model reads the question "what does the lady pour
into pot?" sequentially and finally finds that the frame presented in
the middle of sample results is the most relevant and important to
give the answer "milk".

To summarize, the main contributions of the paper are as follows:

• We propose to solve the VideoQA task by utilizing the ap-
pearance and motion information resided in videos.

• Our proposed model refines the attention of the video using
both coarse-grained question feature and fine-grained word
feature together as guidance.

• We generate two datasets and evaluate our proposed model.
The extensive experiments show that our model achieves
promising results.

The rest of the paper is organized as follows. We first introduce
a few related works in Section 2. The details of our proposed model
are explained in Section 3. In Section 4, we describe the settings
of experiments, present several results, and analyze the results in
depth. Finally, we conclude our paper in Section 5.

2 RELATEDWORK
In this section, we briefly review some works related to video ques-
tion answering (VideoQA) and inspires the design of our model.
Since VideoQA is a fairly new task, there are only a few works
to refer. Here we also consider two related tasks which are video
captioning and image question answering (ImageQA).

2.1 Video Captioning
Video captioning aims at generating sentences which describe the
content of the video. There exist lots of works targeting on this task.
[26] samples several frames from the video and extracts the f c7
layer’s activations of the convolutional neural network (CNN) as
the feature for each frame. After the feature extraction, the model
mean pools all of these features across the entire video and in-
puts the pooled features to a two layer Long Short-Term Memory
(LSTM) network. The LSTM network outputs one word at each
timestep, based on the video features and the previous word until it
outputs the end-of-sentence tag. [42] proposed to attend on top of
spatiotemporal object proposals in the video, integrate it with state-
of-the-art image classifiers, object detectors, high-level semantic
features (SVO) and use the recurrent neural network (RNN) to gen-
erate the caption of the video.[38] proposed a novel 3D CNN-RNN
encoder-decoder architecture which captures local spatiotemporal
information by using the 3D CNN feature. Instead of mean pooling
the video features, the method attends on each feature when gen-
erating the next word of the sentence. [6] proposed a model with
memory-augmented attention which enhances the attention mech-
anism. The model utilizes memories of past attentions performed
over the video when thinking about where to attend to in current
timestep.

2.2 Image Question Answering
Given an image and a natural language question, image question
answering (ImageQA) requires the model to provide a correct an-
swer. [37] proposed a model with stacked spatial attention over
different regions of the image. The question is processed by CNN
or LSTM network to extract a semantic vector as its feature. The
image is processed by VGG network [23] and the activations in
the last pooling layer are extracted as features for image regions.
The model first uses the question feature to query the image region
features in the first visual attention layer, then combines the ques-
tion feature and the retrieved image feature to form a refined query
vector, and finally query the image vectors again in the second at-
tention layer. Since some questions can not be answered using the
image only, [31] brings external knowledge into the model. Besides
the image and the question, the model also retrieves some facts
from the external knowledge base. Vector representations of region
proposals, image captions together with the retrieved knowledge
are used to form a fused representation, then the representation is
fed to a LSTM network which reads the question and generates an
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Figure 2: Our model transforms the words by the embedding layer and manipulates the attention in Attention Memory Unit
(AMU). The model processes the question word by word while AMU generates and refines the attention over appearance and
motion features of the video at each timestep. After all words are processed, the final attention is used to fuse both features
as the representation of the video. Together with other contexts, our model outputs the answer. The double line in the figure
indicates features in two channels.

answer. Dynamic memory network [14] obtained high accuracy on
many language tasks. [32] improved the input module of dynamic
memory network to consume image regions as [37] and made the
model capable of performing question answering on images. The
model also uses a bidirectional Gated Recurrent Unit (GRU) net-
work to update the region features, which make the information
flow among regions in the image. [33] proposed a model which
lets each word of the question select a related image region, then
gathers the weighted representation to generate the answer.

2.3 Video Question Answering
Video question answering (VideoQA) is a relatively new task, where
a video and a natural language question are provided and the model
needs to give the right answer. [51] presents an encoder-decoder
approach to answer the multiple-choice questions of the video, but
the form of the question is "fill-in-the-blank" which is different
from open-ended question answering proposed here. [43] is the
first work in VideoQA to our knowledge. The work simply extends
several existing models from other tasks such as video captioning
and ImageQA. All of the extended models extract the feature of
the question by using the LSTM network. The extracted feature is
coarse and lacks the ability to reveal the information held by key
words since the single semantic vector may conceal the feature of
specific words. Furthermore, the appearance and motion features
of the video are extracted but only fused by naive mean pooling.
We think the two channels of features should be exploited with
interaction more effectively. Recent papers [39, 49, 50] also employ
the attention mechanism over videos. Unlike these studies, our
paper proposes to refine the attention gradually using both coarse-
grained question feature and fine-grained word feature.

3 METHODS
In this section, we first define several necessary annotations, then
present the framework of our proposed model in details.

We currently focus on videos which are short in time duration
and have only a few scenes. Given the video V and the question
Q , the goal of the video question answering (VideoQA) is to give
the appropriate answer A. Since the video always contains lots of
frames per second which are redundant, it is sampled in evenly
distributed frames and clips which can be thought as a compressed
representation of the whole video. The clip consists of 16 consecu-
tive frames which hold the basic motion information. The number
of frames are chosen to be compatible with the feature extractor.
After the sampling process, the videoV is represented as a series of
frames and clips. The simply compressed representation not only
reduces the redundant frames which may increase the computation
burden of the model but also keeps the information of the video in
all timesteps as much as possible. The question Q is represented
as a series of words respectively. For the same video, there may be
lots of different questions, thus the model needs to realize what the
question asks and find the necessary information from the video.
The length of answer A is not very long since what the question
asks is always specific and can be answered in a few words. The
concise answer also makes the evaluation easier, which is important
for comparing different models and measuring the progress in the
task.

To overcome the weakness of the models proposed in [43], we
propose an end-to-end model for VideoQA. Our model utilizes the
appearance and motion information in the video and analyzes the
question more carefully. As Figure 2 shows, for a given video, the
appearance and motion features from the video are extracted first,
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Figure 3: The operation blocks in AMU is unrolled based on its execution order from left to right in (a), and the details of
operation REF is presented in (b). The double line in the figure indicates features in two channels.

then the question is analyzed word by word and the attention over
these features are refined by Attention Memory Unit (AMU) at
each timestep. After the final word of question is processed, the
model generates the refined attention for the video which is most
relevant and valuable to answer the specific question. The model
uses this attention to fuse appearance and motion features and
get the representation of the video. To generate the answer, other
contexts such as question information and attention history are also
used for reference. The details of the model are explained as Feature
Extraction, Attention Memory Unit, and Answer Generation in the
following.

3.1 Feature Extraction
Feature extraction has been studied in many research fields [47,
48]. The frames of the video are static images containing different
objects, which occupy a large portion of information in the video.
We can extract appearance features from frames. Besides static
objects, motion is another information channel contained in videos
that makes difference between videos and images. The motion
features can be extracted from the clips of the video which are
composed of 16 consecutive frames. We extract features in frame-
level and clip-level to get a series of vector representations of the
video. There exist other features we can extract from the video such
as audio features and text features. Currently, we only consider
the appearance and motion channels since they are available in all
videos and enough to explain our model. For questions, we use the
embedding technique which is explained below.

Appearance. Recent works [4, 11] show that the activations in
the deeper layer of CNN can generalize well to other tasks, which
means the activations can represent the semantics of the image. A
lot of related tasks such as object detection and localization are also
tackled with this kind of feature [7, 21]. In our model, we select
to use VGG network [23] as the frame-level appearance feature
extractor because it is widely used and shows promising results
in the literature. For a given video, we represent its appearance
features as Fa = [f a1 , f

a
2 , . . . , f

a
N ] ,where N is number of frames

sampled in the video and superscript a indicates appearance.
Motion. [10] proposes the C3D network to perform action recog-

nition and shows promising results in several datasets. The acti-
vations in the deeper layer of C3D network are also used in lots

of tasks related to videos [38, 42, 43] and show its ability to cap-
ture the dynamic information of videos. With the same reason
as before, we use C3D network as the clip-level motion feature
extractor. For a given video, its sampled clips are processed by
C3D network and the extracted motion features are represented as
Fm = [fm1 , f

m
2 , . . . , f

m
N ], where N is the number of clips sampled

in the video and superscriptm indicates motion.
Question. Question can be represented as a series of words

annotated asQ = [q1,q2, . . . ,qT ]. There are many ways to encode
words such as one-hot encoding and bag-of-words encoding. Recent
works [16, 18] represent a word by a fixed-length continuous vector
which is called word embedding. The representation is compact
and can capture the high-level semantic meaning of the word. In
our model, we also use the embedding layer to transform the word
qt to its semantic embedding xt .

After the features of the video and question are extracted, a novel
attention mechanism is applied to generate the attention over the
video features based on the question.

3.2 Attention Memory Unit
In this section, we present the attention process which is the core
of our model. We first present the attention process in a global
perspective, then we explain operation blocks inside Attention
Memory Unit (AMU) in details.

The words of the question are processed sequentially and a
novel attention mechanism is applied along the procedure. As we
can see in Figure 2, the model first uses an embedding layer to
transform the input word to its embedding xt , which holds the
semantic information of the current word. The word embedding xt
is then fed into the LSTMq, the hidden state of which is considered
to remember the information about the processed question part.
Both the word embedding xt and the hidden state hqt of LSTMq
are inputted to AMU to generate and refine the attention over the
appearance and motion features.

As shown in Figure 2, AMU takes the current word embedding,
question information, and video features as inputs, then performs
several steps to refine the attention over video features. For clarity,
we use the double line to represent the features that contain two
channels. There are four main operation blocks in AMU which
are Attention (ATT), Channel Fusion (CF), Memory (LSTMa) and
Refine (REF). Together with several transformation operations, they



constitute the gradually refined attention mechanism of our pro-
posed model. We first give an overview of the attention mechanism
performed in AMU, then show the concrete details of involved
operations.

In Figure 3, we unroll the operation blocks inside AMU accord-
ing to its execution order for clarity. ATT1 performs the initial
attention over F based on current word embedding xt and attends
on video features related to current word. The weighted sum of
appearance features pat and motion features pmt are then fused by
CF, which assigns importance score for each channel, and get the
intermediate fused representation of video ut . The hidden state
h
q
t of LSTMq, the previously generated video representationvt−1

and the intermediate video presentation ut are added together to
form the input of LSTMa, which remembers all performed attention
operations. ATT2 uses hat to perform the second attention over F .
The first attention weights a1t and second attention weights a2t are
refined in REF and the video representationvt is generated which
will be used in next timestep. In the following, we will explain the
each operation blocks concretely.

Attention. Given a question about the video, only a subset of
the frames or clips are related in most of the time. It is these features
which are more useful to give the answer. The attention mechanism
aims to assign weights to appearance and motion features of the
video separately and attends to useful features by weighted combi-
nation of them. There are two attention operations ATT1 and ATT2
in AMU. We take ATT1 as an example to explain the formulation of
the attention operation. As we can see from Figure 2, ATT1 uses the
word embedding xt to perform the attention over video features F .
Here we omit the notation of appearance or motion for simplicity.
The operation is performed on each channel of the features. The
attention mechanism can be formulated as follows:

ei = tanh(Wf fi + bf )T tanh(Wxxt + bx )

ai =
exp(ei )∑N
i=1 exp(ei )

(1)

The weights ai reflects the relevance between the current word
and the ith feature,Wf andWx are used to transform both word
embeddings and video features to the same underlying embed-
ding space. With the attention weight ai , the fused feature pt is
computed as follows:

pt =
N∑
i=1

ai tanh(Wf fi + bf ) (2)

The pt is the representation of the video attended by current
word of the question. The ATT1 here enhances the influence of
current word when answering the question. Later ATT2 will use hat
to perform another attention operation which also generate second
attention weights.

Channel Fusion.After getting the featurespt , which is actually
composed of pat and pmt , the two features are fused to form an
intermediate video representation ut . Since words in a question
may correlate with appearance and motion in different intensities,
the model uses the current word to assign scores to both channels
of features and fuses them as follows:

sat , s
m
t = so f tmax(Wmxt + bm )
ut = s

a
t p

a
t + s

m
t pmt

(3)

The computed intensities are two scalars sat , s
m
t , and the fused

representation ut absorbs information from both appearance and
motion channels of the video based on current word.

Memory. The model processes one word of the question and
performs two attention operations ATT1 and ATT2 at each timestep.
We use LSTMa to control the input of second attention operation
and remember the attention history. The model has already gen-
erated the intermediate representation ut of the video based on
the current word. We now bring the question information into
consideration. Since the hidden state hqt of the LSTMq contains
part of the question which has been processed already, the model
uses it as well as the intermediate video representation ut and the
refined video representation vt−1 from last timestep to form the
input of LSTMa. The output hat is used to perform second attention
operation ATT2.

Refine. After ATT2 has been executed, the model generates the
second weight a2t over F . Both a1t and a2t are used to refine the
attention. The detail of REF is represented in Figure 3 and can be
formulated as follows:

at = (a1t + a2t )/2

дt =
N∑
i=1

ait tanh(Wf fi + bf )

vt = CF (hqt ,дt )

(4)

Here дt actually includes дat and дmt from appearance and mo-
tion, andvt is the final fused representation of the video at timestep
t .

With the above attention process, the model uses both fine-
grained word information and coarse-grained question information
to gradually refine the attention over appearance and motion fea-
tures of the video. The attention with current word embedding
can enhance the key word information which may be buried in
single vector feature of the question, and the question information
can give a more general guidance when fusing these features and
refining the attention. After AMU processed all words of the ques-
tion, the refined representation of video is generated which is most
relevant and significant to answer the question.

3.3 Answer Generation
In this section, we present the two types of answer generation
methods which are commonly used in the literature.

At timestep T , after the final word of the question being pro-
cessed, we get the fused representation of video vT . We also have
two more context information. The memory vector cqT of the ques-
tion LSTMq contains information about the question and the mem-
ory vector caT of AMU contains information about attention history.
We use these three aspects of information to generate the answer.

We can prepare a predefined answer set and the Generator can
be a simple softmax classifier. The answer is chosen as follows:

answer = argmax so f tmax(Wд(Wxc
q
T · caT ·vT )) (5)

The Generator can also be the LSTM network which is used
commonly in sentence generation task. The question information
c
q
T and attention history caT can be used to initialize the LSTM
network while the refined video representationvT serves as its first



input. Each word of the answer can be generated as in Equation (5)
except the choice is over the whole vocabulary.

Our proposed model is an end-to-end model which refines its
attention over appearance and motion features of the video based
on analyzing the question carefully. We adopt several experiments
to evaluate our proposed model and the following section describes
the concrete experiment settings.

4 EXPERIMENTS
In this section, we adopt several experiments on video question
answering (VideoQA) datasets constructed from publicly available
video captioning datasets. The results show the effectiveness of the
proposed model.

4.1 Data Preparation
Since VideoQA is a relatively new task, there is no available public
dataset. [9] presents a method which can generate question answer
pairs from descriptions automatically. We generate two datasets
based on this method by converting video captions in existing
datasets to question answering pairs.

MSVD-QA. The dataset is based on Microsoft Research Video
Description Corpus [3] which is used in many video captioning
experiments. The MSVD-QA dataset has a total number of 1,970
video clips and 50,505 question answer pairs. We split the dataset
based on videos that training set takes 61%, validation set takes
13%, and test set takes 26% of the total number of videos. Table 1
show the statistics of the MSVD-QA dataset.

MSRVTT-QA. The dataset is based on the MSR-VTT dataset
[34] which is larger and has more complex scenes. The dataset
contains 10K video clips and 243k question answer pairs. We follow
the data split in MSR-VTT dataset which is 65% for training set, 5%
for validation set and 30% for test set. Table 2 show the statistics of
the MSRVTT-QA dataset.

4.2 Model details
We already present the framework of our proposed model in Sec-
tion 3, here we show the concrete settings of the model adopted in
experiments.

We use VGG network to extract features from the appearance
channel, and C3D network to extract features from the motion
channel. Given a video, we first sample 20 evenly distributed frames
and clips respectively. Then VGG and C3D networks are applied
to these frames and clips, from which the activations of last fully
connected layer are extracted as the corresponding features. The
number of features in both channels is 20 and the dimension of
features is 4,096.

The question is transformed by the embedding layer, which is
actually a matrix containing vector representations of all words
in the vocabulary. We use the pre-trained 300-dimensional GloVe
embedding [18] to initialize our Embedding layer. The GloVe used
is trained based on Wikipedia 2014 and Gigaword 5, which contains
400K vocabulary. We prune the GloVe embedding to match the
size of vocabulary. For words in our vocabulary not appeared in
GloVe, we average all of other existing word embeddings as their
embeddings. We choose the size of LSTMq to be 300 which matches
the dimension of the word embedding.

Table 1: Statistic of the MSVD-QA.

Video QA pair Question Type
what who how when where

Train 1,200 30,933 19,485 10,479 736 161 72
Val 250 6,415 3,995 2,168 185 51 16
Test 520 13,157 8,149 4,552 370 58 28
All 1,970 50,505 31,629 17,199 1,291 270 116

Table 2: Statistic of the MSRVTT-QA.

Video QA pair Question Type
what who how when where

Train 6,513 158,581 108,792 43,592 4,067 1,626 504
Val 497 12,278 8,337 3,439 344 106 52
Test 2,990 72,821 49,869 20,385 1,640 677 250
All 10,000 243,680 166,998 67,416 6,051 2,409 806

The AMU performs attention operations based on representa-
tions of the video and the question. Since the two types of represen-
tation may vary in size, we choose 256 as the common dimension
size for AMU. Both video features andword embeddings aremapped
to this underlying common space before further computing. The
size of the LSTMa is also set to 256.

Although the open-ended answer is more natural, it needs more
time and computation resources to adopt the experiment. Thus we
use 1000-way softmax selection from the predefined answer set to
generate the answer as many previous works [2, 43] do in question
answering.

4.3 Baseline methods
For comparison, we choose to extend three models basically like
[43] with someminor changes as our baselines. Thesemodels reflect
the continuously strengthened power.

Extended VQA model (E-VQA). The model uses one LSTM
network to encode all words in the question and another different
LSTM network to encode the frames in the video. The representa-
tion of the question and video are then fused as a uniform represen-
tation, which is used to decode the answer. The model considers
the sequenced nature of the video and question.

Extended Soft-Attention model (E-SA). The model first en-
codes the words in the question using a LSTM network, then the
encoded representation is used to attend on features of video frames.
Both the question and weighted video representation are used to
generate the answer. The model adds the ability to select important
frames based on the question.

ExtendedEnd-to-EndMemoryNetworks (E-MN).Themodel
uses the bidirectional LSTM network to update the frame represen-
tations of the video. The updated representations are mapped into
the memory and the question representation is used to perform
multiple inference steps to generate the answer. The model not only
has the first two model’s abilities but also augments and improves
the inference procedure.

The above models do not have a dedicated way to process the
appearance and motion information of the video. The features of



different channels are mean pooled between the corresponding
frames and clips.

4.4 Training details
We implement our models and baseline models using TensorFlow
[1], a framework of dataflow computation graph which serves deep
learning method very well.

For both datasets, we choose the top K=1,000 most frequent
answers as the answer set, which follows the setting in [2]. We
also select several most frequent words from the training set of the
dataset as vocabulary. The vocabulary size of MSVD-QA is 4,000
while for MSRVTT-QA it is 8,000.

We use mini-batch stochastic gradient descent to optimize the
models and the Adam [13] with its default learning rate 0.001 as
the optimizer. We use the batch size 32 for MSVD-QA and 64 for
MSRVTT-QA. All of the models are trained at most 30 epochs
with early stopping. To handle the questions of different lengths
efficiently, we divide questions into several buckets based on the
question length. The number of buckets used in MSVD-QA is 4. In
MSRVTT-QA, the number is 5 since MSRVTT-QA has more longer
questions. In each bucket, the questions are padded to the length of
the longest question in that bucket. The loss function of all models
is defined as follows:

L = − 1
N

N∑
i=1

M∑
j=1

yi, j log(pi, j ) + λ1
∑
k

w2
k (6)

The first part is the logarithmic loss, where N is the batch size,
M is the number of possible answers, yi j is a binary indicator of
whether or not answer j is the correct answer for example i , and pi j
is the probability of assigning answer j to example i by the model.
The second part is the L2 regularization on least squares wherewk
represents the model weight and λ1 is the hyperparameter controls
the importance of the regularization. The regularization term is
used to prevent the model from overfitting.

For our proposed model, since it uses the two channels explicitly,
we also add another item in Equation (6) to encourage the model
to utilize the features from all channels of videos. The item can be
defined as:

λ2

N∑
i=1

|sai − smi | (7)

Where N is the batch size, sai and smi denotes the importance
score assigned to each channel for example i finally. The item is
added to the original loss function with coefficient λ2 when training
our proposed model specifically.

4.5 Results and Analysis
We evaluate three baseline models and our proposed model in
MSVD-QA and MSRVTT-QA. The accuracies are presented in Ta-
ble 3 and Table 4.

For both datasets, our proposed model achieves higher overall
accuracies than other baseline models, which indicates the effective-
ness of our model. There are five types of questions in both datasets,
thus we also report the accuracy in each question types. Our model
achieves higher accuracies in question type what and who on both
datasets, but the performance in other question types is slightly

Table 3: Experiment results with MSVD-QA dataset.

Methods what who how when where ALL
E-VQA 0.097 0.422 0.838 0.724 0.536 0.233
E-SA 0.150 0.451 0.838 0.655 0.322 0.276
E-MN 0.129 0.465 0.803 0.707 0.500 0.267

Our Model 0.206 0.475 0.835 0.724 0.536 0.320

Table 4: Experiment results with MSRVTT-QA dataset.

Methods what who how when where ALL
E-VQA 0.189 0.387 0.835 0.705 0.292 0.264
E-SA 0.220 0.416 0.796 0.731 0.332 0.293
E-MN 0.234 0.418 0.837 0.708 0.276 0.304

Our Model 0.262 0.430 0.802 0.725 0.300 0.325

different. As shown in Table 1 and Table 2, questions of type what
and who make up most of the questions in both datasets and hold
the most diverse answers. The other three types of questions have
very limited answers which are not general enough to reflect the
performance of our model.

For qualitative analysis, we present several examples from both
datasets. In Figure 4, the first two rows show four examples correctly
answered by our model from MSVD-QA, and the last two rows
show four examples from MSRVTT-QA. The video is represented
in 5 concatenate frames that are sampled evenly distributed in the
original video for saving space. We can see the model succeeds
in answering questions that involve objects and actions. As have
mentioned earlier in Section 4, the videos in MSRVTT-QA have
more scene changes compared to videos in MSVD-QA, which can
also be verified visually in the examples.

To have an intuitive understanding of how the proposed model
answers the question, we also analyze the attention of two examples
from MSRVTT-QA in Figure 5. The video is presented as 20 frames
and 20 clips in each channel which exactly matches the settings in
the experiment. We dive into the interior of the model and visualize
the scores assigned to each channel on the left of the video. We
also present the attention weights inside each channel generated by
the model. In the first example, the question is "what is squidward
picking up?" and the video is a cartoon. Our model gives the correct
answer "telephone" for this question by focusing on the appearance
channel and generating high attention weights on frames contain-
ing a telephone. In the second example, the question is "what is a
man doing?" and the video is composed of three main scenes which
are a moving car, a dash board and a man sitting in the car. We can
see that since the question is asking about action, our model assigns
a higher score to the motion channel than the appearance channel.
In the motion channel, our model focuses on the first three clips
which contain the motion of a moving car. Even the appearance
channel is less used, our model still focuses on frames containing
the man which is the subject of the question.

From the detailed analysis of refined attentions in both examples,
we find that our proposed model exploits both channels of videos
and selects the useful channel and features when answering the
question.



Q: what are two people doing? A: dance Q: what is a dog doing? A: swim

Q: what is a man with long hair and a 
beard is playing ? A: guitar Q: what is a kid doing stunts on? A: motorcycle

Q: who talks to judges? A: girl Q: what is a batter doing? A: hit

Q: what are some guys  playing in a 
ground? A: football

Q: what is a man using to slice up small 
pieces of meat for cooking ? A: knife

Figure 4: The correctly answered examples from both datasets.

Q:  what is squidward picking up? A: telephone

a

m

Q: what is a man doing? A: drive

a

m

Figure 5: Visualization of the attention for two examples. a stands for appearance andm stands for motion.

5 CONCLUSIONS
In this paper, we develop an end-to-end model which exploits the
information from both appearance and motion channels in the
video when performing the VideoQA task. To answer the question,
the model extracts appearance and motion features of the video
and gradually refines its attention over these features based on both
coarse-grained question feature and fine-grained word feature. Our
model can be easily extended to incorporate more information chan-
nels such as the text and audio channels. To evaluate our model, we
perform extensive experiments on two datasets. The results show
that our model can achieve better performance compared to other
baseline models. We also perform several detailed analyses, show-
ing that our model effectively focuses on the necessary information

from different channels. In future, we will combine our video un-
derstanding method with user feedback (e.g., ratings and clicks)
to user-oriented downstream applications, such as personalized
recommendation [8, 30].
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