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Abstract

Convinced by the predictive quality of artificial neural network (ANN) models in ecology, we have turned our

interests to their explanatory capacities. Seven methods which can give the relative contribution and/or the contribution

profile of the input factors were compared: (i) the ‘PaD’ (for Partial Derivatives) method consists in a calculation of the

partial derivatives of the output according to the input variables; (ii) the ‘Weights’ method is a computation using the

connection weights; (iii) the ‘Perturb’ method corresponds to a perturbation of the input variables; (iv) the ‘Profile’

method is a successive variation of one input variable while the others are kept constant at a fixed value; (v) the

‘classical stepwise’ method is an observation of the change in the error value when an adding (forward) or an

elimination (backward) step of the input variables is operated; (vi) ‘Improved stepwise a’ uses the same principle as the

classical stepwise, but the elimination of the input occurs when the network is trained, the connection weights

corresponding to the input variable studied is also eliminated; (vii) ‘Improved stepwise b’ involves the network being

trained and fixed step by step, one input variable at its mean value to note the consequences on the error. The data

tested in this study concerns the prediction of the density of brown trout spawning redds using habitat characteristics.

The PaD method was found to be the most useful as it gave the most complete results, followed by the Profile method

that gave the contribution profile of the input variables. The Perturb method allowed a good classification of the input

parameters as well as the Weights method that has been simplified but these two methods lack stability. Next came the

two improved stepwise methods (a and b) that both gave exactly the same result but the contributions were not

sufficiently expressed. Finally, the classical stepwise methods gave the poorest results.
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1. Introduction

The relationships between variables in ecology

are almost always very complicated and highly

non-linear. One of the most appropriate methods

to illustrate this seems to be Artificial Neural
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Networks (ANNs). In fact, this method is very

powerful in dealing with non-linear relationships

(Lek et al., 1996b). A large number of authors

have underlined the interest of using ANNs

instead of linear statistical models (Paruelo and

Tomasel, 1997; Ramos-Nino et al., 1997; Manel et

al., 1999; Starrett and Adams, 1997; Özesmi and

Özesmi, 1999). This method has become increas-

ingly popular in the analysis of ecological phe-

nomena (Skelton et al., 1995; Recknagel et al.,

1997; Whitehead et al., 1997; Lu et al., 1998;

Mastrorillo et al., 1998; Yang et al., 1998; Brosse

et al., 1999; Lae et al., 1999; Lek et al., 1999; Liong

et al., 2000b; Maier and Dandy, 2000). Convinced

by the predictive power of ANNs and their ability

to analyse non-linear relationships, we consider

them interesting to study from their explanatory

point of view. In fact, starting from input vari-

ables, ANNs have the capacity to predict the

output variable but the mechanisms that occur

within the network are often ignored. ANNs are

often considered as black boxes. Various authors

have explored this problem and proposed algo-

rithms to illustrate the role of variables in ANN

models.

Nevertheless, in most works, these methods are

used to eliminate irrelevant input, and are, there-

fore, called pruning methods (Guo and Uhrig,

1992; Zurada et al., 1994; El-Keib and Ma, 1995;

Engelbrecht et al., 1995; Hsu et al., 1995; Maier et

al., 1998; Yao et al., 1998; van Wijk and Bouten,

1999; Kim et al., 2000; Liong et al., 2000a,b). First,

the most significant explanatory variables are

determined, then the variables which are below a

fixed threshold are excluded from the network.

This allows the size of the network to be reduced

and thus minimises redundancy in the training

data (Zurada et al., 1994). However, even if good

prediction is required in ecology, knowing what

contribution each variable makes is of a prime

importance. It is this explanatory aspect of ANNs

that we studied here. These methods were used to

determine the influence of each input variable and

its contribution to the output. They are not,

therefore, pruning methods but procedures to

estimate the relative contribution of each input

variable.

Seven different methods that allow contribution
analysis were used: (i) the ‘PaD’ (for Partial

Derivatives) method consists in calculating the

partial derivatives of the output according to the

input variables (Dimopoulos et al., 1995, 1999); (ii)

the ‘Weights’ method is a computation using the

connection weights (Garson, 1991; Goh, 1995);

(iii) the ‘Perturb’ method corresponds to a pertur-

bation of the input variables (Scardi and Harding,
1999); (iv) the ‘Profile’ method is a successive

variation of one input variable while the others are

kept constant at a fixed value (Lek et al., 1996a,b);

(v) the ‘classical stepwise’ method is an observa-

tion of the change in the error value when an

adding (forward) or an elimination (backward)

step of the input variables is operated (Balls et al.,

1996; Maier and Dandy, 1996); (vi) ‘Improved
stepwise a’ uses the same principle as the last one,

but the elimination of the input occurs when the

network is trained, the connection weights corre-

sponding to the input variable studied are also

eliminated; (vii) ‘Improved stepwise b’ also in-

volves the network being trained and fixed step by

step with one input variable at its mean value to

note the consequences on the error.
Multiple linear regression (MLR) will be used as

classical model to judge the prediction quality of

ANNs. In addition the capacities of stepwise

regression will be compared with those of the

contribution procedures associated to ANNs.

In the present paper, Section 2 describes the

ecological database used in our study. Section 3.1

presents the regression model used. Section 3.2
presents the neural model. Section 3.3 introduces

the methods that allow the determination of the

variable contributions. Section 4 presents the

results obtained for all methods used. Finally,

Section 5 discusses the contribution of the input

through a comparison of the methods and some

conclusions are drawn.

2. Database

The data used here were reported in Delacoste et

al. (1993), Delacoste (1995) and Lek et al. (1996b).

Sampling was done at 29 stations, distributed on

six rivers, subdivided into 205 morphodynamic
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units. Each unit corresponds to a zone where
depth, current and gradient are homogeneous

(Malavoi, 1989). The physical characteristics of

the 205 morphodynamic units were measured in

January, immediately after the brown trout repro-

duction period. They, therefore, most faithfully

indicate the conditions met by the trout during its

reproduction. With reference to the works of

Ottaway et al. (1981), Shirvell and Dungey
(1983) and Crisp and Carling (1989), ten physical

habitat variables were measured (Table 1) (Dela-

coste, 1995; Lek et al., 1996a,b).

3. Methods

3.1. Multiple linear regression modelling

MLR being the method most frequently used in
ecology, a comparison to ANNs was made in

order to judge their predictive capacities. The

stepwise multiple regression technique (Weisberg,

1980; Tomassone et al., 1983) was computed

especially to define the significant variables and

their contribution order. In fact the influence of

each variable can be roughly assessed by checking

the final values of the regression coefficients.

Calculations were done using S PLUS
† software

release 4.5 on PC.

3.2. Neural network modelling

The multi-layer feed-forward network, that is

the most popular of the much architectures

currently available, was used. The network was

trained using an error backpropagation training

algorithm (Rumelhart et al., 1986). This algorithm
adjusts the connection weights according to the

backpropagated error computed between the ob-

served and the estimated results. This is a super-

vised learning procedure that attempts to minimise

the error between the desired and the predicted

outputs.

The network used consisted of three layers: one

input layer of ten neurons (one for each input
variable), one hidden layer of five neurons (it is the

number which gives the best prediction result) and

one output layer of one neuron which is the output

variable (Fig. 1).

Table 1

Habitat variables measured to study brown trout reproduction

(from Delacoste et al., 1993)

Variable Type Characteristics

Wi i Wetted width (m2)

ASSG i Area with suitable spawning gravel for trout

per linear meter of river (m2/linear m)

SV i Surface velocity (m/s)

GRA i Water gradient (%)

Fwi i Flow/width (m3/s per m)

D i Mean depth (m)

SDD i Standard deviation of depth (m)

BV i Bottom velocity (m/s)

SDBV i Standard deviation of bottom velocity (m/s)

VD i Mean speed/mean depth (m/s per m)

R/M d Density of trout redds per linear meter of

streambed (redds/m)

i, independent, d, dependent; the independent variables are

non-correlated except SV and BV, R�/0.76.

Fig. 1. Structure of the neural network used in this study. F1,

input layer of neurons comprising as many neurons as variables

at the entry of the system; F2, hidden layer of neurons whose

number is determined empirically; F3, output layer of neurons

with a single neuron corresponding to the single dependent

variable.
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Modelling was carried out in two steps:

�/ Firstly, testing the model to calibrate the model

parameters: random selection was used to
isolate a training set (3/4 of the records, i.e.

154) and an independent test set (1/4 of the

records, i.e. 51). The model was first adjusted

with the training set and then tested with the

test set to determine the best ANN configura-

tion (Geman et al., 1992).

�/ Secondly, applying the methods used to study

the contribution of the different variables at the
input on the already calibrated ANN model

(during the first step) by using the whole data

set.

3.3. Methods for testing the contributions of the

different variables

3.3.1. ‘PaD’ method

Two results can be obtained by this method. The

first is a profile of the output variations for small

changes of each input variable and the second is a

classification of the relative contributions of each

variable to the network output.

To obtain the profile of the variations of the
output for small changes of one input variable, we

compute the partial derivatives of the ANN output

with respect to the input (Dimopoulos et al., 1995,

1999). For a network with ni inputs, one hidden

layer with nh neurones, and one output (i.e. no�/

1), the partial derivatives of the output yj with

respect to input xj (with j�/1, . . ., N and N the

total number of observations) are:

dji�Sj

Xnh

h�1

whoIhj(1�Ihj)wih

(on the assumption that a logistic sigmoid function

is used for the activation). When Sj is the

derivative of the output neuron with respect to

its input, Ihj is the response of the hth hidden
neuron, wh o and wih are the weights between the

output neuron and hth hidden neuron, and

between the ith input neuron and the h th hidden

neuron.

A set of graphs of the partial derivatives versus

each corresponding input variable can then be

plotted, and enable direct access to the influence of
the input variable on the output. One example of

an interpretation of these graphs is that, if the

partial derivative is negative then, for this value of

the studied variable, the output variable will tend

to decrease while the input variable increases.

Inversely, if the partial derivatives are positive,

the output variable will tend to increase while the

input variable also increases.
The second result of PaD concerns the relative

contribution of the ANN output to the data set

with respect to an input. It is calculated by a sum

of the square partial derivatives obtained per input

variable:

SSDi�
XN

j�1

(dji)
2

One SSD (Sum of Square Derivatives) value is

obtained per input variable. The SSD values allow
classification of the variables according to their

increasing contribution to the output variable in

the model. The input variable that has the highest

SSD value is the variable, which influences the

output variable most.

3.3.2. ‘Perturb’ method

This method aims to assess the effect of small

changes in each input on the neural network

output. The algorithm adjusts the input values of

one variable while keeping all the others un-

touched. The responses of the output variable

against each change in the input variable are

noted. The input variable whose changes affect
the output most is the one that has the most

relative influence. In fact, the mean square error

(MSE) of the neural network output is expected to

increase as a larger amount of noise is added to the

selected input variable (Yao et al., 1998; Scardi

and Harding, 1999).

These changes can take the form of xi �/xi�/d

where xi is the selected input variable and d is the
change. d can be increased in steps of 10% of the

input value up to 50% (commonly used values).

The aim is to assess the effect of small changes in

each input on the neural network output. We can

then obtain a classification of the input variables

by order of importance.
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3.3.3. ‘Weights’ method

The procedure for partitioning the connection

weights to determine the relative importance of the

various inputs was proposed first by Garson

(1991) and repeated by Goh (1995), see Appendix

A. The method essentially involves partitioning the

hidden-output connection weights of each hidden

neuron into components associated with each

input neuron. We suggested to simplify this
algorithm that gives results identical to the algo-

rithm initially proposed:

(1) For each hidden neuron h , divide the

absolute value of the input-hidden layer connec-

tion weight by the sum of the absolute value of the

input-hidden layer connection weight of all input

neurons, i.e.

For h�/1 to nh ,

For i�/1 to ni ,

Qih�
jWihj

Xni

i�1

jWihj

end,

end.

(2) For each input neuron i , divide the sum of

the Qih for each hidden neuron by the sum for
each hidden neuron of the sum for each input

neuron of Qih, multiply by 100. The relative

importance of all output weights attributable to

the given input variable is then obtained.

For i : 1 to ni

RI(%)i�

Xnh

h�1

Qih

Xnh

h�1

Xni

i�1

Qih

�100

end.

3.3.4. ‘Profile’ method

This method was proposed by Lek (Lek et al.,

1995, 1996a,b). The general idea is to study each

input variable successively when the others are

then blocked at fixed values. The principle of this

algorithm is to construct a fictitious matrix

pertaining to the range of all input variables.

In greater detail, each variable is divided into a

certain number of equal intervals between its
minimum and maximum values. The chosen

number of intervals is called the scale. All variables

except one are set initially, (as many times as

required for each scale), at their minimum values,

then successively at their first quartile, median,

third quartile and maximum. For each variable

studied, five values for each of the scale’s points

are obtained. These five values are reduced to the
median value. Then the profile of the output

variable can be plotted for the scale’s values of

the variable considered. The same calculations can

then be repeated for each of the other variables.

For each variable, a curve is then obtained. This

gives a set of profiles of the variation of the

dependent variable according to the increase of the

input variables (see Fig. 2 with a scale of variation
of 12). In this work, a range of the different scales

possible was used, so the profiles were plotted for

scales of 12, 24, 48, 96, 144 and 192.

3.3.5. Stepwise method

This method is the classical stepwise method

that consists of adding or rejecting step by step one

input variable and noting the effect on the output
result. Based on the changes in MSE, the input

variables can be ranked according to their im-

portance in several different ways depending on

different arguments. For instance the largest

changes in MSE due to input deletions can allow

these inputs to be classified by order of signifi-

cance. In another approach the largest decrease in

MSE can identify the most important variables,
i.e. the most relevant to the construction of a

network with a small MSE (Sung, 1998).

The two stepwise modelling approaches were

adopted to assess the effect of the ten input

variables used: first, the one by one addition of

the input variables (forward stepwise), and second,
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the elimination of the input variables (backward

stepwise).

1) Forward stepwise: ten models were generated,

each using only one of the available variables

input. Then, nine models were generated,

combining the variable that resulted in the

smallest error (for a single input variable) with

each of the remaining variables, this procedure

was repeated using models with three input

variables, four. . . until all the variables were

added (Maier et al., 1998). The order of

integration of the input variables in the net-

work is the order of the importance of their

contributions.

2) Backward stepwise: ten models were gener-

ated, each using only nine of the available

variables each as inputs. The tenth missed out

variable for which the resulting models gave

the largest error, is the most important. Then,

nine models were generated, combining eight

variables, i.e. the variables minus that elimi-
nated just before and one of the other avail-

able inputs was eliminated in each model. This

procedure was repeated using models with

seven input variables, six. . . until the nine

variables were all eliminated. The order of

elimination of the input variables in the net-

work is the order of the importance of their

contribution.

3.3.6. ‘Improved stepwise’ methods

The major drawback of the classical stepwise

method is that at each step a new model is

generated and requires training. An improvement

of this method consisted of building two others

called improved stepwise method a and b, where

only one model is used.
In methods that use a single trained model, each

variable in turn is processed and the MSE

examined. The variable that gives the largest

MSE when eliminated is the most important. A

classification of the variables can thus be made. (i)

The Improved Stepwise a method consists of

eliminating one variable and its corresponding

weights. (ii) For the Improved Stepwise b method,
all the values of one input are transformed to the

same value, i.e. its mean.

3.3.7. Model stability measurement

In order to check the stability of each method,

we repeated the training of the network ten times

and noted the relative contributions of the input

variables on the output obtained for each method
and each trained network. We then calculated the

mean contribution of each variable for the differ-

ent methods. The ten training sessions allowed us

to draw the standard error (S.E.) which gives an

indication of the stability of the method.

4. Results

4.1. Multiple linear regression models

4.1.1. Predictive capacity

Using all ten available variables and the com-

plete dataset, the equation of the MLR model and

the determination coefficient were:

Fig. 2. Explanatory schema of the Profile method. When the

X1 variable is distributed on 12 variation levels between its

minimum and its maximum value of initial data, the other

variables are maintained fixed, successively at the minimum,

first quartile, median, third quartile and maximum. At each X1

value five responses are obtained, and it is the median value

which is taken into account.
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Using forward�/backward stepwise MLR, five

variables were retained by the model: ASSG, SV,

D, GRA, Fwi. The equation and the determina-

tion coefficient became:

4.1.2. Explanatory capacity

MLR partial coefficients generally give an
indication of environmental reality. Each coeffi-

cient is the partial derivative of the response of the

model with respect to the variable of that coeffi-

cient; therefore, the influence of each variable can

be assessed by checking the final values of the

regression coefficients.

Concerning the complete model, only three

variables contribute significantly. They are, in
order of importance: ASSG, SV and GRA. The

relationship between R/M and ASSG is positive

while for SV and GRA the relationship with R/M

is negative. The stepwise model retains four

significant variables, which are ASSG, SV, D

and GRA. Only ASSG has a positive relationship

with R/M. So, the stepwise procedure does not

lead to a very different conclusion from the
complete one.

4.2. Artificial neural network models

4.2.1. Predictive capacity

The results of the first step (see Section 3.2) are

R2�/0.75 (P B/0.01) for the learning set, and R2�/

0.76 (P B/0.01) for the testing set. The results

(determination coefficient) are as good in the

learning set as in the testing set. The ANN

structure can then be used for the second step,

using the complete database for sensitivity analy-

sis.

The result of the second step is R2�/0.77 (P B/

0.01) testifying the predictive quality of the model.

4.2.2. Contributions of input variables

Fig. 3 presents the derivative plots of the PaD

method:

a) The partial derivative values of R/M with

respect to Wi are all negative: an increase of

Wi leads to a decrease of R/M. For high

values of Wi, the partial derivative values

approach zero, thus R/M tend to become

constant.
b) The partial derivative values of R/M with

respect to ASSG are all positive and very

high for the low values of ASSG: R/M

increases with the increase of ASSG and

progressively this increase drops to become

null for the highest value of ASSG.

c) The partial derivative values of R/M with

respect to SV are negative for low values of

SV and near zero for the higher values. R/M

decreases with the increase of SV till it

becomes constant at high values of SV.

d) The partial derivative values of R/M with

respect to GRA are negative for low values

of GRA and near zero for higher values. R/

M decreases with the increase of GRA and

progressively becomes constant.

e) For low values of Fwi, the partial derivatives

of R/M with respect to Fwi are positive,

R /M�/ 1.3374 �/0.02 Wi �/0.48 ASSG �/0.57 SV �/0.05 GRA �/1.31 Fwi �/0.01 D �/0.08 SDD �/0.01 BV �/0.01 SDBV �/0.02 VD

t �/1.1739 9.1384 �/2.1596 �/2.1472 1.6213 �/1.7189 �/1.0074 1.3274 �/1.8332 �/0.1991

Sig. 0.2419 0.0000 0.0320 0.0330 0.1066 0.0872 0.3150 0.1859 0.0683 0.8424

R2�/ 0.4692

R /M�/ 1.22 �/0.46 ASSG �/0.65 SV �/0.05 GRA �/1.43 Fwi �/0.02 D

t 9.8774 �/3.8614 �/2.6433 1.8945 �/3.8420

Sig. 0.0000 0.0002 0.0089 0.0596 0.0002

R2�/ 0.4542
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become rapidly negative then rise to reach

null values for high Fwi: an increase of Fwi

leads to a short increase of R/M and then a

decrease which becomes attenuated and

finally constant for high values of Fwi.

f) All the partial derivative values of R/M with

respect to D are negative: an increase of D

leads to a decrease of R/M.

g) The partial derivative of R/M with respect to

SDD are positive and negative without a

Fig. 3. Partial derivatives of the ANN model response (R/M) with respect to each independent variable (PaD algorithm, Derivatives

Profile); (a) Wi; (b) ASSG; (c) SV; (d) GRA; (e) Fwi; (f) D ; (g) SDD, (h) BV; (i) SDBV; (j) VD.
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precise direction, it is then not possible to
come to a real conclusion about the action of

SDD on R/M. It could, for instance, be due

to an interaction between SSD and another

variable.

h) The partial derivative values of R/M with

respect to BV are all positive: an increase of

BV leads to an increase of R/M but to a

lesser extent for the high values of BV.
i) The partial derivative values of R/M with

respect to SDBV are all negative: an increase

of this variable leads to a decrease of R/M.

j) The partial derivative values of R/M with

respect to VD are almost all positive and

near zero for high values of VD, an increase

in this variable leads to an increase in R/M

and R/M becomes constant for high values
of VD.

Fig. 5a presents the relative contributions re-

sulting from the application of the PaD method.

The method is then very stable, whatever the

model, and has a low confidence interval.

ASSG is the highest contributed variable (�/

65%), followed by GRA. However, the contribu-

tion of the other variables is very low (Table 2) and

the difference between SV, BV and SDBV is not

significant, then come VD, Wi and at last D, Fwi

and SDD between which the difference is again

non-significant (Table 3).

The results of the Profile method are presented

in Fig. 4. Graphs a to f represent the Profile

method, respectively, for 12, 24, 48, 96, 144 and

192 scale intervals of input variables between their

minimum and maximum. Each graph represents a

different scale. It is interesting to notice the

stability of the method whatever the scale. In

fact, the profiles of the different variables always

have the same shape, the difference is that the

larger the scale is, the more the profile of the

variables is marked.

In Fig. 4a, we can see that variables ASSG,

GRA and SV are well expressed. ASSG is the

variable, which has the greatest effect on the

output as seen through the large range, i.e. which

is the most important. An increase of ASSG leads

to an increase of R/M and progressively, for the

highest value of ASSG, the R/M values become

constant. An increase of GRA leads to a decrease
of R/M. For low values of SV the values of R/M

stay constant and progressively decrease. The

same results are better expressed on a larger scale

as presented in Fig. 4c. The values of R/M

decrease with the increase of D; same result is

observed for SDBV. For ASSG, GRA and SV the

results are the same as in Fig. 4a with more details.

The relative contributions of each input variable
can be expressed by the range values (maximum�/

minimum) of their contributions (see Table 2).

The contributions of the input variables given

by the Weights method are presented in Fig. 5b.

Compared with the PaD method, the confidence

intervals are larger, testifying the greater instabil-

ity of Weights method.

ASSG is the variable that makes the largest
contribution followed by SV and GRA which both

are not significantly different and then BV. The

last five variables are not significantly different

(Tables 2 and 3).

Fig. 5c shows the results obtained with the

Pertub method with 50% perturbation. The error

bars are large for the three most important

variables, i.e. ASSG, SV and GRA, this method
is not very stable.

ASSG is the most important variable following

by GRA, SV, SDBV, BV, VD, Wi, D, SDD and

finally Fwi (Table 2). There are, however, some

differences between variable contributions that are

not significant: between SV and SDBV, between

BV, VD and Wi and between D and SDD (Table

3).
The results of the stepwise methods, forward

and backward are presented in Table 2; the two

methods do not give similar results except for the

most important variable, which is ASSG in both

cases. For instance, the forward stepwise method

gives Wi, D, and SV after ASSG while the back-

ward stepwise method gives GRA, SDBV, and SV

after ASSG.
The results for improved stepwise methods are

exactly the same and are presented in Table 2 and

Fig. 5d where the small error bar indicates a good

stability of the methods. ASSG is the variable

which has the largest contribution followed by BV,

and GRA, then come four not significantly

different variables: SV, Wi, VD and SDBV, and
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finally SDD, Fwi and D which are not signifi-
cantly different either (Table 3).

5. Discussion

MLR is the most commonly used method to

analyse ecological data. It has been thoroughly

statistically tested and is universally known. Its
success comes from its easy use and its capacity to

give predictive and explanatory results which

make it very interesting. However, its incapacity

to take into account non-linear relationships

between the dependent variable and each indepen-

dent variable is its principal drawback. That is why

the use of ANNs is wholly justified in ecology

where the relationships between variables are
principally non-linear. Nevertheless, it is another

drawback of MLR that is raised here: their

inability to explain. In fact, determining the

influence of the independent variable consists in

checking the final values of the partial regression

coefficients (Tomassone et al., 1993). However,

this can be done only on the variables for which

the coefficients are significant. Moreover, MLR
gives only a coefficient with a sign and values for

each independent variable, which can be translated

by a direction of the relationship with the depen-

dent variable, but no more information can be

extracted from the results. This problem can then

be avoided, by adding explanatory methods to

ANNs, which determine the contributions of the

independent variables and the way they act on the

dependent variable.

Explanatory methods have been developed with

the idea to clarify the ‘black-box’ approach of

ANNs. ANN models are able to make perfect

predictions and are recognised as powerful in this

field (Skelton et al., 1995; Recknagel et al., 1997;

Whitehead et al., 1997; Lu et al., 1998; Mastrorillo

et al., 1998; Yang et al., 1998; Brosse et al., 1999;

Lae et al., 1999; Lek et al., 1999; Liong et al.,

2000b; Maier and Dandy, 2000). However, the

relationships that occur between the variables are

often complex in ecology, but also, very interesting

to understand. It was then necessary to work on

methods like contribution or sensitivity analysis to

add power to ANNs in their explanatory capacity

(Dimopoulos et al., 1995, 1999; Garson, 1991;

Goh, 1995; Scardi and Harding, 1999; Lek et al.,

1996a,b; Balls et al., 1996; Maier and Dandy,

1996).

In this work, the prediction results are satisfac-

tory, testifying then a good prediction of trout

density which is better with ANNs than with

MLR, confirming the non-linearity of the relation-

ship between the variables (Lek et al., 1996b).

From an ecological point of view, ASSG, the

area with suitable spawning gravel for a trout

redd, is the most significant variable whatever the

method (linear or nonlinear). The presence of

gravel is in fact a very relevant factor for trout

Table 3

Semi-confusing matrix of Mann�/Whitney pairwin comparison of variable contribution of four methods used: 1, PaD method; 2,

Weight method; 3, Perturb method and 4, Improved stepwise (a and b) methods

Wi ASSG SV GRA Fwi D SDD BV SDBV VD

Wi �/ # #(1, 2, 3) # #(1, 3, 4) # #(1, 3, 4) # #(1, 3) #(1)

ASSG �/ �/ # # # # # # # #

SV �/ �/ �/ #(1, 3, 4) # # # #(2, 3, 4) #(1, 2) #(1, 2)

GRA �/ �/ �/ �/ # # # # # #

Fwi �/ �/ �/ �/ �/ #(3, 4) #(3, 4) # #(1, 3, 4) #(1, 3, 4)

D �/ �/ �/ �/ �/ �/ #(2) # # #

SDD �/ �/ �/ �/ �/ �/ �/ # #(1, 3, 4) #(1, 3, 4)

BV �/ �/ �/ �/ �/ �/ �/ �/ #(2, 3, 4) #(1, 2, 4)

SDBV �/ �/ �/ �/ �/ �/ �/ �/ �/ #(1, 3)

VD �/ �/ �/ �/ �/ �/ �/ �/ �/ �/

#, with no number following means that the contribution of the two variables is significantly different with all the methods,

otherwise the number of the methods for which it is different is noted.
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breeding (Rubin, 1995). Substrates with extreme

gravel size disadvantage laying trout. Survival at

the hatchling stage has been found higher for

moderate values. A good particle size allows good

water flow-through, keeping the egg oxygenation

optimal. The gradient and water velocity is then

Fig. 4. Contribution of the ten independent variables (Wi, ASSG, SV, GRA, Fwi, D , SDD, BV, BV, SDBV, VD) used in the 10-5-1

ANN model for R/M, by the Profile algorithm. Six different scales were used, (a) 12, (b) 24, (c) 48, (d) 96, (e) 144, and (f) 192.
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the most important variables. This is also in

relation to the trout behaviour during egg laying.

The ground has to be flat and the water velocity

not too high. The model confirms that the habitat

preferences of the trout population influence their

spatial distribution.

The explanatory methods thus help to identify

environmental factors affecting trout abundance

and how these factors contribute to trout abun-

dance. Several methods have been used in this

study. Each of them can be criticised. While the

PaD and the Profile methods provide two elements

of information on the contribution of the environ-

mental variables (order of contribution and mode

of action), the other methods studied (Perturb,

Weights, Classical stepwise, Improved stepwise)

are just able to classify the variables by order of

importance of their contribution to the output.

Comparing the PaD and Profile methods, the first

is more coherent from a computation point of

view. In fact, this method uses partial derivatives

and works on the real values of the database

variables while the Profile method takes the

variables one by one and reduces their values

into different scales of variation, that is, uses a

fictitious matrix. Concerning the ability of all the

methods to classify the input variables in order of

importance, the results observed for each method

are not always the same. Their different computa-

tion leads to different results. For instance, the

necessity to use a new model for each variable

selection skews the results of the classical stepwise

Fig. 5. Contribution of the ten independent variables (Wi, ASSG, SV, GRA, Fwi, D , SDD, BV, BV, SDBV, VD) used in the 10-5-1

ANN model for R/M, (a) in the PaD algorithm, relative contributions; (b) in the Weights algorithm; (c) in the Perturb algorithm for

50% perturbation; (d) in the improved stepwise (a and b) algorithm.
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method. The confidence intervals plotted for each
method indicate their stability. The PaD method

gives the most stable results.

These methods of contribution analysis of input

variables seem to be very interesting to use but it is

important to underline the need of an ecologist’s

opinion regarding the ranking of importance of

inputs and their mode of action on the output. If

an ecologist’s opinion is unavailable, two of these
methods (for instance PaD and Perturb) should be

used to analyse contribution of the inputs and

compared. Analysis of the inputs by the two

methods must not be different. If it is the case,

the network may be poorly calibrated or the data

may be very difficult to analyse.

In ecology, it is important to predict phenomena

that occur in the studied environment. Moreover,
the phenomena have to be understood and this is

often very difficult due to their complexity. ANNs

are tools that can resolve prediction problems, and

this ANNs property is now well understood

(Edwards and Morse, 1995; Colosanti, 1991).

Adding new methods to ANNs allowing the

analysis of the contributions of the different

variables will help in understanding the ecological
phenomenon and finally in finding solutions to act

on it, restore it and improve the environmental

conditions for life.
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Appendix A: Example illustrating the partitioning of

weights

This appendix details the procedure for parti-
tioning the connection weights to determine the

relative importance of the various inputs, using the

method proposed by Garson, 1991. The method

essentially involves partitioning the hidden-output

connection weights of each hidden neuron into

components associated with each input neuron.

Consider the neural network with three input
neurons, four hidden neurons and one output

neuron with the connection weights as shown

below, as an example.

Hidden neurons Weights

Input 1 Input 2 Input 3 Output

Hidden 1 �/1.67624 3.29022 1.32466 4.57857

Hidden 2 �/0.51874 �/0.22921 �/0.25526 �/0.48815

Hidden 3 �/4.01764 2.12486 �/0.08168 �/5.73901

Hidden 4 �/1.75691 �/1.44702 0.58286 �/2.65221

The computation process is as follows:

(1) For each hidden neuron i , multiply the

absolute value of the hidden-output layer connec-

tion weight by the absolute value of the hidden-

input layer connection weight. Do this for each

input variable j . The following products Pij are

obtained:

Input 1 Input 2 Input 3

Hidden 1 P11�/1.67624�/

4.57857

P12�/3.29022�/

4.57857

P13�/1.32466�/

4.57857

Hidden 2 P21�/0.51874�/

0.48815

P22�/0.22921�/

0.48815

P23�/0.25526�/

0.48815

Hidden 3 P31�/4.01764�/

5.73901

P32�/2.12486�/

5.73901

P33�/0.08168�/

5.73901

Hidden 4 P41�/1.75691�/

2.65221

P42�/1.44702�/

2.65221

P43�/0.58286�/

2.65221

(2) For each hidden neuron, divide Pij by the

sum for all the input variables to obtain Qij . For
example for Hidden 1, Q11�/P11/(P11�/P12�/

P13)�/0.266445.

(3) For each input neuron, sum the product Sj

formed from the previous computations of Qij .

For example, S1�/Q11�/Q21�/Q31�/Q41.

Input 1 Input 2 Input 3

Hidden 1 Q11�/0.266445 Q12�/0.522994 Q13�/0.210560

Hidden 2 Q21�/0.517081 Q22�/0.228478 Q23�/0.254441

Hidden 3 Q31�/0.645489 Q32�/0.341388 Q33�/0.013123

Hidden 4 Q41�/0.463958 Q42�/0.382123 Q43�/0.153919

Sum S1�/1.892973 S2�/1.474983 S3�/0.632044

(4) Divide Sj by the sum for all the input

variables. Expressed as a percentage, this gives

the relative importance or distribution of all out-

put weights attributable to the given input vari-

able. For example, for the input neuron 1, the
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relative importance is equal to (S1�/100)/(S1�/

S2�/S3)�/47.3%.

Input 1 Input 2 Input 3

Relative importance (%) 47.3 36.9 15.8
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