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We introduce a mechanism for generating power law distributions, referred to as highly optimized
tolerance (HOT), which is motivated by biological organisms and advanced engineering technologies.
Our focus is on systems which are optimized, either through natural selection or engineering design, to
provide robust performance despite uncertain environments. We suggest that power laws in these systems
are due to tradeoffs between yield, cost of resources, and tolerance to risks. These tradeoffs lead to highly
optimized designs that allow for occasional large events. We investigate the mechanism in the context of
percolation and sand pile models in order emphasize the sharp contrasts between HOT and self organized
criticality (SOC), which has been widely suggested as the origin for power laws in complex systems. Like
SOC, HOT produces power laws. However, compared to SOC, HOT states exist for densities which are
higher than the critical density, and the power laws are not restricted to special values of the density.
The characteristic features of HOT systems include: (1) high efficiency, performance, and robustness
to designed-for uncertainties, (2) hypersensitivity to design flaws and unanticipated perturbations, (3)
nongeneric, specialized, structured configurations, and (4) power laws. The first three of these are in
contrast to the traditional hallmarks of criticality, and are obtained by simply adding the element of
design to percolation and sand pile models, which completely changes their characteristics.

PACS numbers: 05.40.4j, 64.60.Ht, 64.60.Lx, 87.22.As, 89.20.+a

I. Introduction

One of the most pressing scientific and technological
challenges we currently face is to develop a more complete
and rigorous understanding of the behaviors that can be
expected of complex, interconnected systems. While in
many cases properties of individual components can be well
characterized in a laboratory, these isolated measurements
are typically of relatively little use in predicting the
behavior of large scale interconnected systems or mitigating
the cascading spread of damage due to the seemingly
innocuous breakdown of individual parts. These failures
are of particular concern due to the enormous economic,
environmental, and/or social costs that often accompany
them. This has motivated an increasing intellectual
investment in problems which fall under the general heading
of complex systems.

However, what a physicist refers to as a complex
system is typically quite different from the complex
systems which arise in engineering or biology. The
complex systems studied in physics [1] are typically
homogeneous in their underlying physical properties or
involve an ensemble average over quenched disorder which is
featureless on macroscopic scales. Complexity is associated
with the emergence of dissipative structures in driven
nonequilibrium system [2]. For a physicist complexity
is most interesting when it is not put in by hand, but
rather arises as a consequence of bifurcations or dynamical
instabilities, which lead to emergent phenomena on large
length scales.

This perspective is the driving force behind the concepts
of self-organized criticality (SOC), introduced by Bak,
Tang, and Wiesenfeld [3,4] and the edge of chaos (EOC)

introduced by Kauffman [5] which have been the starting
point for much of the interdisciplinary work on complex
systems developed at the Santa Fe Institute and elsewhere.
These theories begin with the idea that many complex
systems naturally reside at a boundary between order and
disorder, analogous to a bifurcation point separating a
simple predictable state from fully developed chaos, or a
critical point in equilibrium statistical physics. In these
scenarios, there is a key state parameter, or density, which
characterizes the otherwise generic, random, underlying
system. In model systems, the density evolves self-
consistently and without feedback to the specific value
associated with the transition. Once at this point, large
fluctuations inevitably emerge and recede as expected in
the neighborhood of a second order transition. This gives
rise to self-similarity, power laws, universality classes, and
other familiar signatures of criticality. The widespread
observations of power laws in geophysical, astrophysical,
biological, engineered, and cultural systems has been widely
promoted as evidence for SOC/EOC [6-13].

However, while power laws are pervasive in complex
interconnected systems, criticality is not the only possible
origin of power law distributions. Furthermore, there is
little, if any, compelling evidence which supports other
aspects of this picture. In engineering and biology, complex
systems are almost always intrinsically complicated, and
involve a great deal of built in or evolved structure
and redundancy in order to make them behave in a
reasonably predictable fashion in spite of uncertainties
in their environment. Domain experts in areas such as
biology and epidemiology, aeronautical and automotive
design, forestry and environmental studies, the Internet,



traffic, and power systems, tend to reject the concept of
universality, and instead favor descriptions in which the
detailed structure and external conditions are key factors
in determining the performance and reliability of their
systems. The complexity in designed systems often leads
to apparently simple, predictable, robust behavior. As a
result, designed complexity becomes increasingly hidden, so
that its role in determining the sensitivities of the system
tends to be underestimated by nonexperts, even those
scientifically trained.

The Internet is one example of a system which may
superficially appear to be a candidate for the self-organizing
theory of complexity, as power laws are ubiquitous in
Internet statistics [14,15]. It certainly appears as though
new users, applications, workstations, PCs, servers, routers,
and whole subnetworks can be added and the entire system
naturally self-organizes into a new, robust configuration.
Furthermore, once on-line, users act as individual agents,
sending and receiving messages according to their needs.
There is no centralized control, and individual computers
both adapt their transmission rates to the current level of
congestion, and recover from network failures, all without
user intervention or even awareness. It is thus tempting
to imagine that Internet traffic patterns can be viewed as
an emergent phenomena from a collection of independent
agents who adaptively self-organize into a complex state,
balanced on the edge between order and chaos, with
ubiquitous power laws as the classic hallmarks of criticality.

As appealing as this picture is, it has almost nothing to do
with real networks. The reality is that modern internets use
sophisticated multi-layer protocols [16] to create the illusion
of a robust and self-organizing network, despite substantial
uncertainty in the user-created environment as well as the
network itself. It is no accident that the Internet has such
remarkable robustness properties, as the Internet protocol
suite (TCP/IP) in current use was the result of decades
of research into building a nationwide computer network
that could survive deliberate attack. The high throughput
and expandability of internets depend on these highly
structured protocols, as well as the specialized hardware
(servers, routers, caches, and hierarchical physical links) on
which they are implemented. Yet it is an important design
objective that this complexity be hidden.

The core of the Internet, the Internet Protocol (IP),
presents a carefully crafted illusion of a simple (but possibly
unreliable) datagram delivery service to the layer above
(typically the Transmission Control Protocol, or TCP)
by hiding an enormous amount of heterogeneity behind
a simple, very well engineered abstraction. TCP in turn
creates a carefully crafted illusion to the applications and
users of a reliable and homogeneous network. The internal
details are highly structured and non-generic, creating
apparent simplicity, exactly the opposite from SOC/EOC.
Furthermore, many power law statistics of the Internet are
independent of density (congestion level), which can vary
enormously, suggesting that criticality may not be relevant.

Interestingly and importantly, the increase in robustness,
productivity, and throughput created by the enormous

internal complexity of the Internet and other complex
systems is accompanied by new hypersensitivities to
perturbations the system was not designed to handle. Thus
while the network is robust to even large variations in
traffic, or loss of routers and lines, it has become extremely
sensitive to bugs in network software, underscoring the
importance of software reliability and justifying the
attention given to it. The infamous Y2K bug, though not
necessarily a direct consequence of network connectivity, is
nevertheless the best-known example of the general risks of
high connectivity for high performance. There are many
more less well-known examples, and indeed most modern
large-scale network crashes can be traced to software
problems, as can the failures of many systems and projects
(eg. the Ariane 5 crash or the Denver Airport Baggage
handling system fiasco). We will return to the Internet and
other examples at the end of the paper.

This “robust-yet-fragile” feature is characteristic of
complex systems throughout engineering and biology. If we
accept the fact that most real complex systems are highly
structured, dominated by design, and sensitive to details, it
is fair to ask whether there can be any meaningful theory
of complex systems. In other words, are there common
features, other than power laws, that the complicated
systems in engineering and biology share that we might
hope to capture using simple models and general principles?
If so, what role can physics play in the development of the
theory?

In this paper we introduce an alternative mechanism
for complexity and power laws in designed systems which
captures some of the fundamental contrasts between
designed and random systems mentioned above in simple
settings. Our mechanism leads to (1) high yields robust
to designed-for uncertainty, (2) hypersensitivity to design
flaws and unanticipated perturbations, (3) stylized and
structured configurations, and (4) power law distributions.
These features arise as a consequence of optimizing a
design objective in the presence of uncertainty and specified
constraints. Unlike SOC or EOC, where the external forces
serve only to initiate events and the mechanism which
gives rise to complexity is essentially self-contained, our
mechanism takes into account the fact that designs are
developed and biological systems evolve in a manner which
rewards successful strategies subject to a specific form of
external stimulus. In our case uncertainty plays the pivotal
role in generating a broad distribution of outcomes. We
somewhat whimsically refer to our mechanism as highly
optimized tolerance (HOT), a terminology intended to
describe systems which are designed for high performance
in an uncertain environment,

The specific models we introduce are not intended as
realistic representations of designed systems. Indeed, in
specific domain applications at each level of increased model
sophistication, we expect to encounter new structure which
is crucial to the robustness and predictability of the system.
Our goal is to take the first step towards more complicated
structure in the context of familiar models to illustrate
how even a small amount of design leads to significant


Administrator
In other words, are there common

Administrator
features, other than power laws, that the complicated

Administrator
systems in engineering and biology share that

Administrator
we might

Administrator
hope to capture using simple models and general principles?

Administrator
in simple

Administrator
settings

Administrator
highly

Administrator
optimized tolerance (HOT), a terminology intended to

Administrator
describe systems which are designed for high performance

Administrator
in an uncertain environment

Administrator
are not intended as

Administrator
realistic representations of designed systems

Administrator
Indeed, in

Administrator
speci�c domain applications at each level of increased model

Administrator
sophistication, we expect to encounter new structure which

Administrator
is crucial to the robustness and predictability of the system


changes in the nature of an interconnected system. We
hope that our basic results will open up new directions for
the study of complexity and cascading failure in biological
and engineering systems.

To describe our models, we will often use terminology
associated with a highly simplified model of a managed
forest which is designed to maximize timber yield in the
presence of fire risk. Suppose that in order to attain this
goal, the forester constructs firebreaks at a certain cost per
unit length, surrounding regions that are expected to be
most vulnerable (e.g., near roads and populated areas or
tops of hills where lightning strikes are likely). At best,
this is remotely connected to real strategies used in forestry
[17,18]. Our motivation for using a “forest fire” example is
the familiarity of similar toy models in the study of phase
transitions and SOC [19].

The optimal designed toy forest contains a highly stylized
pattern of firebreaks separating high density forested
regions. The regions enclosed by breaks are tailored to
the external environment and do not resemble the fractal
percolation-like clusters of the forest fire model which has
been studied in the context of SOC. Furthermore, there is
nothing in the designed forest resembling a critical point.
Nonetheless, the relationship between the frequency and
size of fires in designed systems is typically described
by a power law. In an optimized design, firebreaks are
concentrated in the regions which are expected to be most
vulnerable, leaving open the possibility of large events in
less probable zones.

The forest fire example illustrates the basic ingredients
of the mechanism for generating power laws which we
describe in more detail below. If the trees were randomly
situated with a comparable density to that of the designed
system, any fire once initiated would almost surely spread
throughout the forest generating a systemwide event.
Designed configurations represent very special choices and
comprise a set of measure zero within the space of all
possible arrangements at a given density. Systems are tuned
to highly structured and efficient operating states either
by deliberate design or evolution by natural selection. In
contrast, in SOC large connected regions emerge and recede
in the dynamically evolving statistically steady state where
no feedback is incorporated to set the relative weights of
different configurations.

In the sections that follow, we use a variety of different
model systems and optimization schemes to illustrate
properties of the HOT state. These include a general
argument for power laws in optimized systems based on
variational methods (Section IT), as well as numerical and
analytical studies of lattice models (Sections III-VI). In
an effort to clarify the distinctions between HOT and
criticality (summarized in Section V), we introduce variants
of familiar models from statistical physics (Section III)—
percolation with sparks and the original sand pile model
introduced by Bak, Tang, and Wiesenfeld [3]. Both models
are modified to incorporate elementary design concepts, and
are optimized for yield Y in the presence of constraints. In
percolation, yield is the number of occupied sites which

remain after a spark hits the lattice and burns all sites
in the associated connected cluster. In the designed sand
piles, yield is defined to be the sand untouched by an
avalanche after a single grain is added to the system.
When we introduce design, these two problems become
essentially identical, and optimizing yield leads us to
construct barriers which minimize the expected size of
the event based on a prescribed density for the spatial
dependence of the probability of triggering events. In
this way we mimic engineering and evolutionary processes
which favor designs that maximize yield in the presence
of an uncertain environment. We consider both a global
optimization over a constrained subclass of configurations
(Section IV), as well as a local, incremental algorithm
which develops barriers through evolution (Section VI). We
conclude with a summary of our results, and a discussion
of a few specific applications where we believe these ideas

may apply.

II: Power Laws and Design

If the power laws in designed systems arise due to
mechanisms entirely unlike those in critical phenomena then
the ubiquity of power laws needs a fresh look. If engineering
systems could be constructed in a self-similar manner it
would certainly simplify the design process. However,
self-similar structures seldom satisfy sophisticated design
objectives. With the exception of distribution networks
which are inherently tree-like and often fractal, hierarchies
of subsystems in complex biological and engineering
systems have a self-dissimilar structure. For example,
organisms, organs, cells, organelles, and macromolecules
all have entirely different structure [20]. The hundreds of
thousands of subsystems in a modern commercial aircraft
do not themselves resemble the full aircraft in form or
function, nor do their subsystems, and so on. Thus if power
laws arise in biological and engineering systems, we would
not necessarily expect that they would be connected with
self-similar structures, and our idealized designed systems
in fact turn out to be self-dissimilar.

We begin our analysis with a general argument for the
presence of heavy tails in the distribution of events which
applies to a broad class of designed systems. Consider an
abstract d—dimensional space denoted by X which acts as
a substrate for events in our system. This can be thought
of concretely as a forest, where the coordinates of the trees,
firebreaks, and sparks which initiate fires are defined in
X. Alternately, X could correspond to an abstract map
of interconnected events in which a failure at one node may
trigger failures at connected nodes. We assume there is
some knowledge of the spatial distribution of probabilities
of initiating events (sparks), and some resource (firebreaks)
which can be used to limit the size of events (fires). There is
some cost or constraint associated with use of the resource,
and an economic gain (i.e. increased yield) associated with
limiting the sizes of events.

We define p(x) to be the probability distribution for
initiating events Vx € X. Let A(x) denote the size of the
region which experiences the event initiated at x, and let



cost C'(z) scale as A%(x). In general a will be a positive
number which sets the relative weight of events of different
sizes. If we are simply interested in the area of the region
then @ = 1. For cases in which X is continuous, the
expected cost of the avalanche is given by:

B(4") = [ px)A° (x)ax 1)

Let R(x) denote the resource which restricts the sizes of
the events. Constraints on R(x) can take a variety of forms.
Here we consider the simplest case which corresponds to a
limitation on the total quantity of the resource,

/X R(x)dx =k (2)

where & is a constant. Alternatively, the constraint on R(x)
could be posed in terms of a fixed total number of regions
within X, or a cost benefit function @) could be introduced
balancing the benefit of a small expected size (Eq. (1)) with
the cost associated with use of the resource.

We will assume that the local event size is inversely
related to the local density or cost of the resource, so
that A(x) = R7P(x), where typically 3 is positive.
This relationship arises naturally in systems with spatial
geometry (e.g. in the forest fire analogy), where in d
dimensions we can think of R(x) as being d — 1 dimensional
separating barriers. In that case A(x) ~ R™%(x). In
some systems the relationship between A(x) and R(x) is
difficult to define uniquely, and in some cases reduces to a
value judgement. Here our spatially motivated assumption
that A(x) = R™7(x) is important for obtaining power law
distributions. If we assume an exponential relationship
between the size of an event and its cost (e.g. A ~ —log(R)),
we obtain a sharp cutoff in the distribution of events. In
essence, this is because it becomes extremely inexpensive to
restrict large events because the cost of resources decreases
faster than the size of the event to any power. Alternately,
one could define a cost function for cases in which there is a
large social or ethical premium (e.g. loss of life) associated
with large events. This could lead to a cutoff in the
distribution due to a rapid rise in the total allocation of
resources to prevent large events. In this case, the heavy
tails would occur in the cost C' and not in the event size A.

To obtain the HOT state we simply minimize the
expected cost (Eq. (1)) subject to the constraint (Eq. (2)).
Substituting the relationship A(x) = R™%(x) into Eq. (1)
we obtain

B(A®) = /X p(x) R~ (x)dx. 3)

Combining this with Eq. (2), we minimize E(A%) using the
variational principle by solving

5 /X [p(x)R_O‘B(X) - )\R(x)] dx = 0, )

Thus the optimal relationship between the local probability
and constrained resource is given by

p(x)R™*¥~1(x) = constant. (5)
From this we obtain
p(x) ~ R (x) ~ AT (x) ~ A7 (x), (6)

where v = a + 1/3. This relation should be viewed as the
local rule which sets the best placements of the resource. As
expected, greater resources are devoted to regions of high
probability.

As function of x, Eq. (6) shows that p(x) and A(x) scale
as a power law. However, we want to obtain the distribution
P(A) as a function of the area A rather than the local
coordinate x. It is convenient to focus on cumulative
distribution, P.ym(A), which is the sum of P(A) for regions
of size greater than or equal to A. We express the tails of
Py (A) as

Pcum(A) = fA(x)>A p(X)dX
= fp(x)<A*“’ p(x)dx (7

where the integral is evaluated over the subset of x in which
the local value A(x) is greater than the specified value A.

Under what conditions does this relationship lead to
heavy tails? Certainly not all p(x) lead to power laws
in P(A) (equivalently, Peym(A), which has power law
tails if P(A) has power law tails, with one power higher
in the exponent). For example, if p(x) is concentrated
within a finite region then the resource would optimally be
concentrated within that region, and the distribution P(A)
would a priori have zero weight for events greater than
the area associated with the mass concentration of p(x).
Here the most extreme case is a point mass at a particular
location: p(x) = §(x — x*), which could be enclosed by a
high density of the resource, so that all activity is confined
to x*. Alternately, if p(x) is spatially uniform, then R(x)
and A(x) would be uniformly distributed, and P(A) would
be a point mass at a fixed area determined by the resource
constraint and the system size.

While counterexamples such as those we have just
described can be constructed, a broad class of distributions
p(x) leads to heavy tails in P(A). The case for d = 1 with
monotonic p(x) and restricting X to x > 0 is particularly
simple (and forms the basis for the more general case). In
this special case, the change of variables from p(x) to P(A)
is straightforward and we obtain

Pcum(A) - fpofl(A_.,) p(x)dx

= Pcum (p_l(A_’y)) (8)

where peum (%) is the tail of the cumulative distribution for
the probability of hits and p~! is the inverse function of p,
so that p~1(A~7) is the value of x for which p(x) = A~7.

We can use Eq. (8) to directly compute the tail
of P.um(A) for standard p(z), such as power laws,
exponentials, and Gaussians. Table 1 summarizes the
results, where we look only at tails in the distributions of
z and A, and drop constants. We get a power distribution
for Poym(A) in each case, with a logarithmic correction for
the Gaussian.
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| p(z) || Peum () || Peum (A) |
=@ —q A (1-17q)
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e |z te " [|A 7 log(4)] /2

TABLE I. In the HOT state power law distributions of the
region sizes P.um(A) are obtained for a broad class of probability
distributions of the hits p(x), including power law, exponential,
and Gaussian distributions as shown here.

For higher dimensions, suppose that the tails of p(x) can
be bounded above and below by

pu([x]) < p(x) < pu(lxl), (9)

where |x| denotes the magnitude of x. The specific form of
Eq. (9) effectively reduces the change of variables to quasi-
one-dimensional computations. With this assumption,
Eq. (7) can be bounded below by

Peum(A) > D fpl(x)<A_7 pi(r)ri—Ltdr (10)
>D pr(x) <A pi(r)dr (11)

where D is a constant and the last inequality holds in the
tails where r > 1. Provided p, and p; are asymptotically
of the same order, this implies that the case of d > 1
simply adds additional weight to the tail. More detailed
computations can be made to compute exactly what the
d > 1 correction terms are for various distributions.

While this analysis is fairly abstract, the underlying
concepts are highly intuitive, and the basic results should
carry over to a wide variety of spaces, resources, and
constraints. In essence we contend that optimizing yield
will cause the design to concentrate protective resources
where the risk of failures are high, and to allow for the
possibility of large rare events elsewhere.

III: Lattice Models

In this section we consider two familiar lattice models
from statistical physics, first as traditionally defined and
then incorporating design. These include percolation [21],
the simplest model which exhibits a second order phase
transition, and the original sand pile model introduced
by Bak, Tang, and Wiesenfeld [3]. In the context
of optimization and design these two models become
essentially identical, so we consider them together.
III.A Percolation

We begin with site percolation on a two dimensional
N x N square lattice. In the random case, sites are
occupied with probability p and vacant with probability
1 — p. For a given density p = p all configurations
are equally likely. Typical configurations have a random,
unstructured appearance, as illustrated in Fig. la. At
low densities, nearest neighbor occupied sites form isolated
clusters. The distribution of cluster sizes cuts off sharply
at a characteristic size which depends on density. The
critical density p, marks the divergence of the characteristic
cluster size, and at p. the cluster size distribution is given
by a power law. Above p. there is an infinite cluster

which corresponds to a finite fraction of the system. At
pe the infinite cluster exists but is sparse, with a nontrivial
fractal dimension. The percolation order parameter, Py, (p)
is the probability that any particular site is connected
to the infinite cluster. For p < p., Px(p) = 0. At
P = Pe, Poo(p) begins to increase monotonically from zero
to unity at p = 1. In the neighborhood of the transition,
the critical exponent 3 describes the onset of percolation:
Po(p) ~ (p — p.)?. An extensive discussion of percolation
can be found in [21].

a) p=0.55,Y=0.49

[ ] -.‘-

b)p=0.85,Y=0.75

FIG. 1. Sample percolation configurations on a 32x32 lattice
for (a) the random case near p., (b) a HOT grid (Section IV),
and HOT states obtained by evolution (Section V) at (c) optimal
yield, and (d) a somewhat lower density. Unoccupied sites are
black, and clusters are grey, where darker shades indicate larger
clusters. The designed systems are generated for an asymmetric
distribution of hitting probabilities with Gaussian tails, peaked
at the upper left corner of the lattice.

In order to introduce risk and compute yield, we define a
very primitive dynamics in which for a given assignment
of vacant and occupied sites, a single spark is dropped
on the lattice initiating a fire. In the standard forest
analogy, occupied sites correspond to trees, and risk is
associated with fires. The yield Y is defined to be the
average density of trees left unburnt after the spark hits.
If a spark hits an unoccupied site, nothing burns. When
the spark hits an occupied site the fire spreads throughout
the associated cluster, defined to be the connected set of A
nearest, neighbor occupied sites.

We let P(A) denote the distribution of events of size
A, and let Peym(A) denote the cumulative distribution
of events greater than or equal to A. The yield is then
Y(p) = p— < P > where the average < P > is computed
with respect to both the ensembles of configurations and
the spatial distribution p(i,j) of sparks. By translation
invariance, results for the random case are independent of
the distribution of sparks.

In Fig. 2a we plot yield Y as function of the initial
density p for a variety of different scenarios including both
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random percolation and design. The maximum possible
yield corresponds to the diagonal line: Y = p, which is
obtained if a vanishing fraction of the sites are burned after
the spark lands. The yield curve for the random case is
depicted by the dashed line in Fig. 2a. At low densities the
results coincide with the maximum yield. Near p = p. there
is a crossover, and Y (p) begins to decrease monotonically
with p, approaching zero at high density.

1
a) b) 1 random
.8 + [
evolved—>, ? = 1
6 cum
Y v grid 01
4 \
\ L
2 /! o .00]
random N
N\ M i
0
0 2 456 B8 1 110,100
FIG. 2. Comparison between HOT states and random

systems at criticality for the percolation model: (a) Yield
vs. Density: Y (p), and (b) cumulative distributions of events
Peym(A) for cases (a)-(d) in Fig. 1.

The crossover becomes sharp as N — oo and is an
immediate consequence of the percolation transition. In
the thermodynamic limit only events involving the infinite
cluster result in a macroscopic event. Yield is computed as
the sum of contributions associated with cases in which (i)
the spark misses the infinite cluster and the full density is
retained, and (ii) the spark hits the infinite cluster, so that
compared with the starting density the yield is reduced by
the fraction associated with the infinite cluster:

Y(p) = [1 = P (p)]p + Poo(p)lp — Pxo(p)]

e e e P
f

R

(b)

=p—P*(p). (12)

Thus yield is simply related to the percolation order
parameter, and the exponent which describes the departure
of yield from the maximum yield curve in the neighborhood
of the transition is 23. In random percolation, where the
only tunable parameter is the density, the optimal yield
coincides with the critical point.

III.B Sand Piles

Now we turn to the sand pile model, which was
introduced by Bak, Tang, and Wiesenfeld (BTW) as the
prototypical example of SOC. Unlike percolation, the sand
pile model is explicitly dynamical. It is an open driven
system which evolves to the critical density upon repeated
iteration of the local rules.

The model is defined on an N x N integer lattice. The
number of grains of “sand” on each site is given by h(i, j).
The algorithm which defines the model consists of the
individual addition of grains to randomly selected sites:

h(i, j) = h(i, j) + 1, (13)

such that the site (i,7) topples if the height exceeds a
prescribed threshold h.. As a result h(i,j) is reduced by
a fixed amount which is subsequently redistributed among
nearest neighbor sites h,,. We take h, = 4 and the toppling
rule

hon = hpn + 1. (14)
Sand leaves the system when a toppling site is adjacent to

the boundary. The toppling rule is iterated until all sites
are below threshold, at which point the next grain is added.

(c)

FIG. 3. SOC vs. HOT states in the BTW sand pile model with N = 64. The grayscale ranges from black (h = 0) to white
(h = 3). Figure (a) is typical SOC configuration, and (b) illustrates (in white) the area swept out by a typical (fractal) large event.
Figure (c) illustrates the HOT state for a grid design with 4 horizontal and vertical cuts, and a symmetric Gaussian distribution
(o = 10) of hits. Here the area swept out by events are the rectangular regions delineated by cuts.
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FIG. 4. Both SOC and HOT states exhibit power laws in the avalanche distributions. In (a), (c), and (d) we plot the distributions
for the probability P.um(A) of observing an event of size greater than or equal to A. Figure (a) illustrates results for the 128 x128 BTW
sand pile. Figure (b-d) illustrates results for the HOT state in the continuum limit. Results are obtained for Cauchy, exponential and
Gaussian distributions of hits (see text). Figure (b) illustrates P(L) vs. L for d = 1. Figure (c) shows the corresponding cumulative
distributions. Figure (d) shows the cumulative distribution of areas for d = 2, obtained by overlaying the d = 1 solutions. Numerical
results for a 512 x 512 discrete lattice with 4 horizontal and 4 vertical cuts are included for comparison with the Gaussian case.

Despite the apparent simplicity of the algorithm, this
and related SOC models exhibit rich dynamics. The BTW
model does not exhibit long range height correlations [25]
(Fig. 3a illustrates a typical height configuration), but it
still exhibits power laws in the distribution of sizes of the
avalanches. Here size is defined to be the number of sites
which topple as the result of the addition of a single grain
to the pile (see Fig. 4a). In addition, the model exhibits
self-similarity in certain spatial and temporal features such
as fractal shapes of the individual regions which exhibit
avalanches (see Fig. 3b) and power law power spectra of
the time series of events.

Like equilibrium systems, such as the random percolation
model in the neighborhood of a critical point, SOC systems
exhibit no intrinsic scale. The power law describing the
distribution of sizes of events extends from the microscopic
scale of individual sites out to the system size (see
Fig. 4a). Indeed, for some SOC models concrete mappings

to equilibrium critical points have been obtained [22-24]. In
the BTW sand pile model, the critical point is associated
with a critical density (average height) of sand on the pile
of roughly < h >.= 2.125.

We define yield for the sand pile model to be the number
of grains left untouched by an avalanche following the
addition of a single grain. That is, once the system has
reached a statistically steady state, we compute yield for
a given configuration after one complete iteration of the
addition (Eq. (13)) and toppling (Eq. (14)) rules, as the
sum of heights over the subset of sites U which are not hit
during that particular event, and then average the result
over time:

Y(p) =< N> h(i,j) > (15)
U

The result is illustrated in Fig. 5. For the SOC system
computing yield as a time average of iterative dynamics is



equivalent to computing an ensemble average over different
realizations of the randomness. The results are insensitive
to changes in the spatial distribution of addition sites.
Essentially the same event size distributions are obtained
regardless of whether grains are added at a particular site,
a subset of sites, or randomly throughout the system.

CT T T T T T T T ‘ T T T T T ]
3— HOT* —
o F J
'_;) | -
n 2 sSoc —
~ b |
E L J
Lo ]
> 1;random ]
L h>, |
O L 1 1 1 1 ‘ 1 1 1 1 ‘ 1 1 1 1 ‘ 1 \7

0 1 2 3

Density <h>

FIG. 5. Yield vs. density. We compare the yield (defined to be
the number of grains left on those sites of the system which were
unaffected by the avalanche) for different ways of preparing the
system. Results are shown for randomly generated stable initial
conditions, which are subject to a single addition (solid line)
for a 128 x 128 sand pile model, and the corresponding SOC
state and the HOT state. Clearly the HOT state outperforms
the other systems, exhibiting a greater yield at higher density.
Yield in the HOT state can be made arbitrarily close to the
maximum value of 3 for large systems with a sufficient number
of cuts, while increasing system size does not significantly alter
the yield in the other two cases.

Unlike random percolation, in which we obtained a one
parameter curve describing yield as a function of density,
our result for the sand pile model corresponds to a single
point because the mean density < h. > reaches a steady
state. However, it is possible to make a more direct
connection between our results for the sand pile model
and percolation, by considering a modified sand pile model
in which the density is an adjustable parameter. Aside
from a few technical details, this coincides with the closed,
equilibrium analog of the sand pile model mentioned above.
Alternately, it can be thought of as a primitive, one
parameter, probabilistic design.

Suppose we can manipulate a single degree of freedom,
the density of the initial state. That is, we begin with
an empty lattice, and add grains randomly until the
systemwide density achieves the value we prescribe. We also
restrict all initial heights to be below threshold. This results
in a truncated binomial distribution of heights, restricted
to values h(i,j) € [0,1,2,3], where the mean is adjusted
to produce the prescribed density. In Fig. 5 we compute
the mean yield vs. density of this system after one grain

is added, as an average over both the initial states and the
random perturbation sites. As in percolation, densities near
the critical point produce the maximum yield. Systems
which are designed at low densities are poor performers
in terms of the number of grains left on the system after
an avalanche because so few grains were there in the first
place. At the critical density, the characteristic size of the
avalanche triggered by the perturbation becomes of order
the system size. Densities beyond the critical density often
lead to systemwide events, causing the yield to drop. In
fact, both the peak density and yield of the primitive design
are nearly equal to the time averaged yield and density of
the SOC state [25], where for each event the yield is the
total number of grains left on sites which do not topple.

It is important to note that the primitive design is not
equivalent to SOC. The mechanisms which lead the system
to the critical density are entirely different in the two
cases. In SOC the critical density is the global attractor
of the dynamics, which follows from the fact that the
system is driven at an infinitesimal rate. In contrast, the
primitive design is tuned (by varying the density) to obtain
maximum yield. Consequently, the primitive design has
statistics which mimic SOC in detail, but without any “self-
organization.” Thus it would be difficult to distinguish on
the basis of statistics alone whether a system exhibits SOC
or is merely a manifestation of a primitive design process.
III.C HOT States

In this subsection we show that it is possible to retain
maximum yields well beyond the critical point, and up to
the maximum density as N — oo. This is made possible by
selecting a measure zero subset of tolerant states. We refer
to these sophisticated designs as HOT states, because we
fix the exact configuration of the system, laying out a high
density pattern which is robust to sparks or the addition of
grains of sand.

In our designed configurations, in most respects there
will be no distinction between a designed percolation
configuration and a designed sand pile. In percolation,
densities well above the critical density are achieved by
selecting configurations in which clusters of occupied sites
are compact. In the sand pile model we construct analogous
compact regions in which most sites are chosen to be one
notch below threshold: h(i,j) = h. — 1 = 3, which are
analogous to the occupied sites in percolation. In each case
to limit the size of the avalanches, barriers of unoccupied
sites, or sites with h(i,j) = 0 are constructed, which, as
discussed in Section II, are subject to a constraint.

As stated previously in Section II, the key ingredients
for identifying HOT states are the probability distribution
of perturbations, or sparks, p(i,j), and a specification of
constraints on the optimization or construction of barriers.
We will begin by considering a global optimization over
a restricted subclass of configurations. Numerical and
analytical results for this case are obtained in Section IV.
In Section V we introduce a local incremental optimization
scheme, which is reminiscent of evolution by natural
selection. Sample HOT states are illustrated in Figs. 1 and
3.
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In the grid design, we define our constraint such that the
boundaries are composed of horizontal and vertical cuts.
For percolation, the cuts correspond to lines comprised
of unoccupied sites. In the sand pile model the cuts
correspond to lines along which (i, j) = 0. In the sand pile
model, somewhat higher yields are obtained if the cuts are
defined to have height 2, and contiguous barriers of height
two are also sufficient to terminate an avalanche when the
BTW toppling rule is iterated. However, the difference in
density between a grid formed with cuts of height zero and
2 is a finite size effect which does not alter the event size
distribution, and leads to a system which is less robust to
multiple hits.

A set of Q(n — 1) cuts {’il, iQ, ...in_l,jl,jQ, ---jn—l} defines
a grid of n? regions on the lattice. For a given configuration
(set of cuts), the distribution of event sizes and ultimately
the yield are obtained as an ensemble average. The system
is always initialized in the designed state. Event sizes
are determined by the enclosed area and contribute to the
distribution with a weight determined by the sum of the
enclosed probability p(i, j).

IV: Optimization of the Grid Design

For the grid configurations (Figs. 1b and 3c), the design
problem involves choosing the optimal set of cuts which
minimizes the expected size of the avalanche. First we
consider two simple cases. Suppose you know exactly which
site (i,7) will receive the next grain. Then clearly the
best strategy is to define one of the cuts to coincide with
that site, so that when a grain is added to the system
the site remains sub-threshold and no avalanche occurs.
Alternatively, if p(,j) is spatially uniform, then the best
design strategy is to define equally spaced cuts: i3 =
N/n,is =2N/n,...;in—1 = (n—1)N/n,j1 = N/n,...jpn—1 =
(n—1)N/n, so that the system is divided into n? regions of
equal area. In this case, all avalanches are of size (N/n)>.
Already we see that the avalanche size is considerably
less than that which would be obtained in the SOC or
percolation models at the same density (the SOC system
will never attain the high densities of the HOT state).

The more interesting case arises when you have
some knowledge of the spatial distribution of hitting
probabilities. For a specified set of cuts the expected size of
the avalanche (defined to be the number of toppling sites)
is given by

E(4) =) P(R)AR), (16)
R

where for a given set of horizontal and vertical cuts the sum
is over the rectangular regions R of the grid, and P(R) and
A(R) represent the cumulative probability and total area
of region R defined generally on a d-dimensional space X
as

P(R) :/Rp(x)dx and A(R) :/Rdx. (17)

Equation (16) can be written in terms of the hitting

probability distribution p(i,j) and the positions of the i
and j cuts as

B(A) = gg KZZ})(J)) (ZZ ] s

i=is j=jt i=is j=jt

where in the outer sums it is understood that the 0" and
nt? cuts correspond to the boundaries.

For simplicity we specialize to the subclass of
distributions of hitting probabilities for which the i and j
dependence factors: p(i,j) = p(i)p(j). In this case Eq. (18)
can be written as the product of quantities which depend
separately on the positions of the ¢ and j cuts :

B = |25 (Siteo ) (S|

= (Ten) (i) a9

The optimal configuration minimizes E(A) with respect to
the position of the 2(n — 1) cuts. The factorization allows
us to solve for the positions of the ¢ and j cuts separately.
When the distribution p(i, j) is centered at a point i = j,
the ¢ and j solutions are identical. When the distribution
p(i,7) is centered at the origin, the solution is symmetric
around the origin.

We obtain an explicit numerical solution by minimizing
the expected event size with respect to all possible
placements of the cuts. Our result for an optimal grid
subject to a Gaussian distribution of hits centered at the
origin is illustrated in Fig. 3c (where the system size is taken
to be relatively small to allow a visual comparison with
the SOC state in Fig. 3a). Figure 1b illustrates analogous
results for an asymmetric distribution with Gaussian tails,
which is peaked at the upper left corner of the lattice.
The corresponding distribution of event sizes is included in
Fig. 2b. The distribution of event sizes for the symmetric
case in a somewhat larger system is included in Fig. 4d.
The cumulative distribution of events is reasonably well fit
by a power law with P, (A) ~ A™7 with v =~ 3/2.

Sharper estimates for the exponents can be obtained in
the continuum limit, where we rescale the lattice into the
unit interval (x = i/N, y = j/N) and take the number of
lattice sites N to infinity. In the limit, the cuts become
infinitesimally thin d — 1 dimensional dividers between
continuous connected regions of high density. We begin by
solving the problem for d = 1 since the solution to our grid
problem factors into two one-dimensional problems. In each
case, we adjust the positions of (n — 1) dividers to define n
total regions, such that the minimum expected event size is
obtained. Here the event size is associated with the length
L(R) of each of the regions.

To locate the positions of the cuts which yield the
minimum expected size, we apply the variational method
[26] separately to each bracketed term on the right hand
side of Eq. (19). Determination of the stationary point with



respect to the positions of each of the (n —1) cuts yields an
iterative solution for the cut positions:

P(Ri) + L(Ri)p(z;) — P(Rit1) — L(Rir1)p(z;) = 0. (20)

The cut positions beginning at the origin are obtained
by solving Eq. (20) numerically. In Fig. 4b we illustrate
P(L) for cases in which p(x) is described by Cauchy
(p(z) = 2(a? 4+ 2?)"! with a = 1), exponential (p(z)
o~ lexp(—|z|/o), with ¢ = 10), and Gaussian (p(z)
(2m0?)~1/2 exp(—2?/20?), with ¢ = 15) distributions. The
parameters are chosen so that the optimal solution obtained
from Eq. (20), involves a cut at the origin, followed 10 cuts
in the half space ranging from z € [0, 10%].

For the Gaussian and exponential cases, even on a
logarithmic scale regions of small L are heavily clustered
near the origin. For larger values of x consecutive region
sizes grow rapidly with x, and the effect is most pronounced
for the distributions in which the rate of decay of p(z) is
greatest. In the Gaussian case, the final region encompasses
most of the system (Lip = 9950 out of the total length of
10*, while the first nine regions are clustered within a total
length of 50). The next value, Ly, is sufficiently large that
it cannot be represented as a floating point number on most
machines. For the Cauchy distribution, the lengths do not
spread out on a logarithmic scale.

Like the more general case discussed Section II, the
solution for the grid design yields power laws for a broad
class of p(x). Unlike the results in Section II where the
scaling exponents were sensitive to the specific choice of
p(z), for this case we find that asymptotically P(L) ~ 1/L
for the Cauchy, exponential, and Gaussian distributions. In
all three cases, the slope of log(P(L)) vs. log(L) never gets
steeper than —2.

A simple argument will help us see why the numerical
observation that asymptotically P(L) ~ 1/L is plausible.
Note that in each case the decay of p(x) is monotonic, so
there are no repeated region sizes. Thus consecutive points
in the distribution of event sizes P(L) vs. L are obtained
directly from consecutive terms in Eq. (20), namely P(R;)
vs. L(R;). If P(L) ~ L~! then the slope on a logarithmic
plot:

Alog(P) _ log(P(Rit1))—log(P(R:))
Alog(L) log(L(Ri+1))—log(L(R:))
_ log(P(Ri41)/p(w:)) ~log(P(R:)/p(x:))
log(L(Ri+1))—log(L(R:))

(21)

will asymptotically approach —1. The second term in
the denominator is asymptotically negligible compared
to the first since the regions sizes are large and grow
rapidly with increasing z. Combining this with Eq. (20)
a slope of —1 is obtained as long as the first term in the
numerator of (21) is negligible compared to the second.
Asymptotically, we can extend the upper limit of the
integral representation of P(R) in Eq. (17) to infinity. Then
clearly P(R;) >> P(Ri+1). If p(x) decays too rapidly (e.g.
double exponentially), the first term becomes negatively
divergent when the logarithm is evaluated. However,
this does not occur for distributions which the decay less

10

sharp. Indeed, for the Cauchy, exponential, and Gaussian
distributions we consider the first term in the numerator of
Eq. (21) is negligible compared to the second, so that in each
case asymptotically P(L) ~ 1/L. For the Gaussian and
exponential cases the numerics blows up before we reach
the asymptotic limit. For the Cauchy distribution, the fit
to the asymptotic result is excellent.

The cumulative distributions Peum,(L) are illustrated in
Fig. 4c. These are obtained from Fig. 4b by summing
probabilities of events of size greater than or equal to
L. The solution for the d 2 grid is obtained
by overlapping the two one-dimensional solutions. The
areas of the individual regions are given by A(R) =
L,(R)L,(R) and the probabilities enclosed in each region
is simply P(R) = Pr(R)Py(R). The results for power
law, exponential, and Gaussian distributions of hitting
probabilities are illustrated in Fig. 4d. In each case, the
resulting distribution of event sizes exhibits a heavy tails,
and is reasonably well fit by a power law. For comparison in
Fig. 4d we include the results for the Gaussian case on the
discrete lattice, numerically optimized with far fewer cuts.
We obtain surprisingly good agreement with the continuum
results for the exponent in the power law in spite of the
sparse data and the finite grid effects which prevents us
from obtaining an exact solution to Eq. (20) for the discrete
lattice. Discrete numerical results are expected to converge
exactly to the continuum case in the limit as n, N — oo
with n/N — 0.

Finally, we emphasize that neither our choice to use a grid
in the optimization problem nor our use of a factorizable
distributions of hitting probabilities are required to obtain
power laws tails for the distribution of events. We have
verified that similar results are obtained for concentric
circular and square regions, and for different choices of
p(i,7). The generality of our results suggests that heavy
tails in the distribution of events follow generically from
optimization of a design objective and minimizing hazards
in the presence of resource constraints.

V: Evolution to the HOT State

Most systems in engineering and biology are not designed
by global optimization, but instead evolve by exploring
local variations on top of occasional structural changes.
Biological evolution makes use of a genotype, which can
be distinguished, at least abstractly, from the phenotype.
In engineering the distinction is cleaner, as the design
specifications exist completely independently of any specific
physical instance of the design. In both cases, the genotype
can evolve due to some form of natural selection on yield.

For both the primitive design and sophisticated grid
design discussed in Section III, we can view the design
parameters as the genotype and the resulting configuration
as the phenotype. In the primitive design the density is the
only design parameter. In the advanced design, the design
parameter is the locations of the cuts.

By introducing a simple evolutionary algorithm on the
parameters we can generalize the models so that they
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evolve to an optimal state for either the primitive or
sophisticated design. The simplest scenario would involve a
large ensemble of systems that evolve by natural selection
based on yield. This is a trivial type of evolution, but it is
obvious that such a brute force approach will be globally
convergent in these special cases because the search space
of cuts is highly structured. Interestingly, both cases evolve
to a state which exhibits power law distributions, while all
other aspects of the optimal state are determined by the
design constraints. Even in the case of primitive design,
the evolution proceeds by selecting states with high yield,
and which differs from the internal mechanism by which
SOC systems evolve to the critical point. With more
design structure, systems will evolve to densities far above
criticality.

Alternatively in the context of percolation, we can
consider a local and incremental algorithm for generating
configurations which is reminiscent of evolution by natural
selection. We begin with an empty lattice, and occupy sites
one at a time in a manner which maximizes expected yield
at each step. We choose an asymmetric p(i, j):

p(i, j) = p(i)p(j)

p(z) o 27 [(mat(2/N))/ou]? (22)
where m; = 1, o = 04, m; = 0.5 and o; = 0.2,
for which the algorithm is deterministic. We choose the
tail of a Gaussian to dramatize that power laws emerge
through design even when the external distribution is
far from a power law. Otherwise Eq. (22) is chosen
somewhat arbitrarily to avoid artificial symmetries in the
HOT configurations.

Implementing this algorithm we obtain a sequence of
configurations of monotonically increasing density, which
passes through the critical density p. unobstructed. Here
pe plays no special role. At much higher densities there is a
maximum yield point followed by a drop in the yield. The
yield curve Y'(p) is plotted in Fig. 2a for the p(i, j) given in
Eq. (22).

This optimization explores only a small fraction of
the configurations at each density p. Specifically, (1 —
p)N? of the ((171\; ; ~2) possible configurations are searched.
Nonetheless, yields above 0.9 are obtained on a 32 x 32
lattice, and in the thermodynamic limit the peak yield
approaches the maximum value of unity. While the clusters
are not perfectly regular, the configuration has a clear
cellular pattern, consisting of compact regions enclosed by
well defined barriers. As shown in Fig. 2b, the distribution
of events P(A) exhibits a power law tail when p(i,7) is
given by Eq. (22). This is the case for a broad class of
p(i,7), including Gaussian, exponential, and Cauchy.

Interestingly, in the tolerant regime our algorithm
produces power law tails for a range of densities below the
maximum yield, and without ever passing through a state
that resembles the (fractal) critical state. This is illustrated
in Figs. 1d and 2b where we plot the event size distribution
P(A) (lower of the “evolved” curves) for a density which
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lies below that associated with the peak yield. Note that
this configuration has many clusters of unit size A = 1 in
checkerboard patterns in the region of high p(i,j) in the
upper left corner.

VI: Contrasts Between Criticality and HOT

Our primary result is that the designed sand piles and
percolation model produce power law distributions by a
mechanism which is quite different from criticality. The
fact that power laws are not a special feature associated
with a single density in the HOT state is in sharp contrast
to a traditional critical phenomena.

It is interesting to contrast the kind of universality we
obtain for the HOT state with that of criticality. For
critical points, the exponents which describe the power laws
depend on a limited number of characteristics of a model:
the dimensionality of the system, the dimensionality of the
order parameter, and the range of the interactions. In the
case of nonequilibrium systems, and particularly for SOC,
the concept of universality is less clear. There are numerous
examples of sand pile models in which a seemingly very
minor change in the toppling rule results in a change in the
values of the scaling exponents [22,27].

As discussed in Section II, for the HOT state we return
to a case in which only a few factors influence the scaling
exponent, for the distribution of events. These include the
exponent « which characterizes how the measure of size
scales with the area impacted by an event, 8 which relates
the area of an event to the resource density, and most
importantly the tails of the distribution of perturbations
p(x). In this sense, many models of cascading failure yield
the same scaling exponents, and thus may be said to fall
into the same optimality class.

To further illustrate the differences we now consider
quantities other than the distribution of events. For
example, the fractal regions characteristic of events at
criticality are replaced by regular, stylized, regions in
the HOT state. Indeed our sophisticated designs are
a highly simplified example of self-dissimilarity, in sharp
contrast to the self-similarity of criticality. Although this
concept has been suggested in the context of hierarchical
systems, the basic notion that the system characteristics
change dramatically and fundamentally when viewed on
different scales clearly holds in our case. Put another way,
renormalizing the sophisticated designs completely destroy
their structure. While some statistics of the HOT state,
such as time histories of repeated trials, may exhibit some
self-similar characteristics simply because of the power law
distribution, the connection with an underlying critical
phenomenon and emergent large length scales which are
central features in SOC are not present in the HOT state.

One of the most interesting differences arises when
we consider the sensitivity of the HOT state to changes
in the hitting probability density p(i,j). In random
systems, qualitatively and in most cases quantitatively
similar results are obtained regardless of the probability
density describing placements of the sparks or grains. In
the BTW model a system which is driven at a single
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point produces a distribution of events which is essentially
identical to the results obtained when the system is
driven uniformly. In contrast, the HOT state is much
more sensitive. The optimal design depends intrinsically
on p(i,j). Furthermore, if a system is designed for a
particular choice of p(i, j), and then is subject to a different
density, the results for the event size distribution change
dramatically.

This is illustrated in Figure 6, where we initialize the
system in the optimal grid designed state for a Gaussian
p(i,7) centered at the origin, but then subject the system
to a spatially uniform distribution of hits. The resulting
event size distribution increases with the size of the event,
where for the largest events P(A4) ~ A. In this sense,
random critical systems are much more generically robust
than HOT systems with respect to unanticipated changes
in the external conditions.
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FIG. 6. The HOT state is highly sensitive to the distribution
of hitting probabilities p(i, j). Here we illustrate the probability
P(A) of an event of size A for the configuration designed for a
Gaussian p(i, j) in Fig. 4d. The points marked * correspond to
the results when the system is subject to the distribution of hits
it was designed for (the results shown in Fig. 4d are obtained
from these results by computing the cumulative number of events
greater than or equal to A for each A). In contrast, +’s
correspond to the case when the system is subject to a uniform
distribution of hits. In this case the probability of large events
exceeds the likelihood of small events.

Another sense in which the HOT state exhibits strong
sensitivity relative to SOC is in terms of vulnerability to
design flaws. A single flaw may allow an event to leak past
the designed barrier. Furthermore, without incorporating
a mechanism for repairing the system, repeated events
gradually erode the barriers which leads to an overfrequency
of large events that ultimately reduces the density to the
critical point. This is illustrated in Fig. 7a for the case of
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a sand pile model with an initially uniform grid (similar
results are obtained when the initial state is optimized for,
e.g., a Gaussian).
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FIG. 7. Repeated events on the designed sand pile. Figure (a)
illustrates the density vs. time. Initially the density oscillates—
before the boundaries surrounding the center region have fully
disintegrated, mass periodically accumulates. Eventually the
system evolves back to the SOC state. In (b) we illustrate the
corresponding mean event size vs. time. The mean event size
initially decreases (shown on an expanded scale in the inset)
as the grid contracts around the center n sites. These results
are obtained on the discrete lattice for N = 64, initialized with
7 equally spaced vertical and horizontal cuts. The Gaussian
distribution of hits is centered in the middle of the lattice, with
o = 4, and is computed as the average over 10° realizations.
Results at small times converge rapidly, since each realization
begins with the same initial state. We plot the mean over a
large ensemble to obtain smoother results at long times.

While the HOT state is highly sensitive to unanticipated
perturbations or flaws, additional constraints can be
imposed on HOT designs to increase their robustness to any
desired level, but at the cost of reduced performance. At the
critical density, for example, it would be easy to design HOT
states with small isolated clusters that would be highly
robust to changes in probability distributions or flaws.
Common strategies employed in biology and engineering to
improve the system lifetime incorporate backup boundaries
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at additional cost (e.g. cuts which are more than one grid
spacing in width). or mechanisms for the system to be
repaired with regular maintenance. Engineers routinely
add generic safety margins to protect against unanticipated
uncertainties.

It is interesting to note that even large events on the
designed sand pile do not immediately destroy the design
structure when it is subject to repeated hits. When a
grain is dropped directly on a cut, the height at that site
increases but no avalanche occurs. When an avalanche is
initiated within a rectangular domain the net effect is that
the boundaries on all 4 sides step one site in towards the
center of the box, and leave a residual site of reduced height
at the previous corner points. All other sites return to their
original height. Thus implementation of an elementary
algorithm for repairing damage to the system should be
straightforward.

Our observation that the net change associated with
an avalanche in the grid design is simply to displace the
boundaries one step towards the site that was hit suggests
some degree of evolution towards the optimal state is
intrinsic to the BTW algorithm. In Figure 7 we illustrate
what happens when we begin with a regular grid of equally
spaced cuts, and subject the system to repeated events
using the BTW algorithm with hitting probabilities chosen
from a Gaussian p(i, j) centered in the middle of the lattice.
We run a long sequence of repeated events without making
repairs, and find that the mean event size initially decreases
during a period in which the density is actually increasing
(Fig. 7a), as the boundaries contract around the center of
the lattice as illustrated in Fig. 7b. However, the designed
sand pile never reaches the HOT state by this method.
Repeated hits create sufficient flaws in the boundary that
large events eventually return the system to the SOC state.
However, as illustrated in the density plot (Fig. 7a), the
transient period is extremely long.

VII: Conclusion

In summary, we have described a mechanism whereby
design optimization in the presence of constraints and
uncertainty naturally leads to heavy tailed distributions.
Common features of the HOT state include (1) high
efficiency, performance, and robustness to designed-for
uncertainties, (2) hypersensitivity to design flaws and
unanticipated perturbations, (3) nongeneric, specialized,
structured configurations, and (4) power laws. We are
not suggesting that HOT is the only alternative to SOC
which yields power laws. In many cases, statistics alone
may be responsible [28]. Furthermore, it seems likely that
in some cases real systems may combine SOC or some
other randomizing phenomenon with design in the process
of mutation and selection as they evolve towards complex
and efficient operating states.

An important consequence of the special features of the
HOT state is the development of new sensitivities at each
step along the path towards increasingly realistic models.
Unlike criticality, where systems fall into broad universality
classes which depend only on very general features, for HOT
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systems the details matter.

From a technological and environmental viewpoint,
perhaps the most important feature of HOT states is the
fact that the high performance and robustness of optimized
designs with respect to the uncertainty for which they
were designed, is accompanied by extreme sensitivity to
additional uncertainty that is not included in the design.
We considered changes to the hitting probabilities and flaws
in the initial conditions, but other changes in the “rules”
would have similar effects. In contrast, the SOC state
performed relatively poorly, but was much less sensitive to
changes in the rules.

This is one of the most important properties of
complex biological and engineering systems that has no
counterpart in physics, that complexity is driven by
profound tradeoffs in robustness and uncertainty. Indeed
there are fundamental limitations that can be viewed as
“conservation principles” that may turn out to be as
important as those due to matter, energy, entropy and
information have been in the past [29].

We conclude with a brief discussion of two examples,
one (the Internet) chosen from engineering, and one
(ecosystems) chosen from biology. While both have been
considered previously in the context of SOC/EOC, they
clearly exhibit all the features associated with the HOT
state. In discussing these examples, we will not attempt to
provide a comprehensive review of the relevant literature,
which is extensive in each case. We will simply illustrate
(for an audience which is at least somewhat familiar with
these disciplines) why these systems are good candidates for
further investigations in the context of HOT. It is important
to emphasize that our highly simplified models should
not be taken seriously as prototypes for these particular
systems. Instead, it is our intention to use toy models
to illustrate several essential ingredients in “how nature
works” which are absent in SOC. It is the general properties
of HOT states, rather than the specifics of the percolation
and sand pile models on the one hand, or internets or
ecosystems on the other, which are common to a wide range
of applications, and which therefore should be taken into
account in the development of domain specific models.
VII.LA HOT features of the Internet

We begin with the Internet which, as mentioned in the
introduction, is an astonishingly complex system. Here we
highlight a few issues that underscore the HOT features,
including ubiquitous power law statistics. = Computer
networks are particularly attractive as a prototype system
since a great deal of statistical data is available and
experiments are relatively easy to perform, certainly
compared with ecosystems. The history of the various
types of networks that have been implemented also yields a
rich source of examples. For example, familiar broadcast
ethernet, but without collision and congestion control,
would correspond to a (purely) hypothetical “random”
network and would indeed exhibit congestion induced phase
transitions at extremely low traffic densities. It is not hard
to imagine that such a primitive and inefficient network
could be made to operate in a state that might resemble
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SOC/EOC.

In contrast, modern networks use routers and switches
together with sophisticated control protocols to produce
networks which are many orders of magnitude more efficient
than if those routers, switches and protocols were removed.
Thus the internal configuration is highly structured and
specialized, and extremely robust to the main sources of
uncertainty, which are due to user behavior and network
component failure. The network is also hypersensitive to
common-mode software bugs for which it is not designed,
and thus has all the HOT features.

While the Internet, and computer systems more
generally, have self-similar network traffic and ubiquitous
power law statistics for everything from ftp and web
file transfers to CPU usage [15,30], it remains somewhat
controversial as to the origins of these effects and their
significance for network design. It is widely agreed,
however, that the “bursty” nature of network traffic
requires, say, much large router buffers than would result
from a more traditional queueing theory analysis [15].
A popular theory claims that “bursty” Internet traffic
can be traced to power law distributions in web files
[15,32]. Roughly speaking, this theory argues that large
web file transfers due to heavy tails are streamed onto the
network by TCP to produce long-term correlations, and
thus burstiness and self-similarity in network traffic. This
mechanisms seems to explain the burstiness on time scales
of seconds to hours, that is, long compared to the round-trip
packet times.

Tracing the origins of network burstiness to heavy-
tailed web file distributions is an attractive starting point
for understanding the power laws in a wide variety of
measurements since it is consistent with the observation
that the (long-time) burstiness is independent of congestion
level. Recall that, based on the evolutionary model (Section
V), we have identified power laws at all densities above
criticality as a distinction between HOT and criticality.
While this theory explains network burstiness in terms
of heavy tails in web files, so far there is no accepted
explanation for the heavy tailed web file distributions,
despite enormous statistical evidence for them [32-35].

We suspect that the power laws in web file distributions
may arise via HOT. That is, HOT features may extend not
only to the network but to the web sites themselves. High-
volume commercial web sites are constantly tuned for high
throughput, and thus we can explore what properties might
be consequences of such design. A simple model for this
would be to assume that the “document” making up a web
site is partitioned into files to minimize the expected sizes
of file transmissions. Users exhibit widely varying levels
of interest in the document, so that an “optimized ” web
site would have smaller files for high hit portions of the
document. To make the connection more precise, suppose
that we model user interest as a probability distribution
pu(x) where z is the location within the document that the
user would like to examine. Real web documents, of course,
have a great deal of a priori structure, but we will make the
the highly idealized assumption that the document itself is
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just a single contiguous object. Also, real users interact in
complex ways with the structure of the document. Thus a
model that assumes the user is interested in a single location
in an unstructured document is extremely simplified, but
allows us to use the results in Section IV.

An abstract web design problem would then correspond
to partitioning the document into N files such that the
expected file transfer is minimized. Because a hit on a
file causes the entire file to be transferred, the expected
transfer size F(S) is given by a sum over the files ¢ of the
product of the probability of the file P(i), obtained from
the probability p,(z) that z will be in file 4, and the size of
the file S(i):

E(S) = Z P(i)S(i)- (23)

Minimizing E(S) corresponds to exactly the optimization
problem we solved in Section IV for the grid design. In that
case variational methods led to Eq. (20) for the positions of
the cuts in one dimension, which in this case correspond
to cuts in the document, breaking it up into a set of
individual files. Asymptotically in Section IV we found
that for a broad class of probability distributions for the
hits we indeed obtain heavy tails. Superficially, the plots
in Figure 4c for the resulting cumulative distributions do
resemble those for web sites, but this shouldn’t be taken
too seriously as it is not a statistically precise comparison.

This view of website design is so idealized that it may
not explain in any detail why real web sites have power law
distributions. The assumption of a homogeneous document,
is particularly suspect, and intrinsic heterogeneity and
hierarchy in the original document itself may be more
important to the website layout than user interest. Also,
users typically browse a website in a sequence that reflects
the website’s structure, and thus we are exploring models
with more realistic structure. However, given how robust
the HOT mechanism for producing heavy tails is, we expect
that many different design elements could contribute in
different settings, but all would yield the same effective
network behavior. We hope that this approach may
begin to demystify some of the discussion, since it shows
that the observed power laws, including even (roughly)
the exponents, are at least consistent with the web sites
being designed. The constant tweeking of high volume
commercial web sites to maximize throughput might yield
an adaptive process which is a reasonable approximation to
HOT. Further research in this direction, particularly with
richer models for web documents and user interest, will be
needed to evaluate the significance of our speculations.
VII.B HOT features of Ecological Systems

Finally, we move to ecosystems. In comparison to the
Internet, here the analogy while suggestive is much less
precise. For the Internet, we have access to a great deal
of statistical information as well as all the details of how
the system is designed. From this we are beginning to
develop a case for HOT at the level of the file distributions
on web sites, as discussed above, as well as the network
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as a whole. We are suspicious that a similar story may
apply to ecosystems, but it is necessarily more speculative
because we have a less complete understanding of the
details. In the environmental literature, the definition
of what is meant by “ecosystem” is in itself a topic of
debate, and determining precisely how concepts such as
“optimization,” “yield,” and “events” might play a role in
the interactions between species is much more ambiguous.
Nonetheless, modeling population dynamics [36] play a
central role in environmental science. Furthermore, there
is increasing evidence that the widespread observations
of heavy tailed distributions arises as a consequence of
the dynamical response of coupled populations to external
disturbances [37]. In the case of environmental policy, there
are fundamental distinctions between the implications of
SOC/EOC and HOT.

It has been argued, principally by physicists, that
ecosystems are in a critical state because the distribution
of sizes of extinction events, as deduced from the fossil
record, is characterized by a power law [38]. This fact has
motivated the EOC based Kauffman-Johnsen model [39],
which describes the evolution of coupled fitness landscapes,
and the Bak-Sneppen model [40], which is a simple SOC
model of a set of species evolving on a fitness landscape.
However, there is an ongoing debate as to whether the
SOC/EOC models capture the essential features of real
environmental systems. The alternative perspective offered
more typically by biologists and ecosystem specialists
exhibits many features of HOT. Below we summarize a
few key results in environmental studies which support this
point of view.

Our investigation of the primitive (random) and
sophisticated designs in percolation and sand pile models
has direct parallels in studies of the role of increased
complexity and structure in ecosystems. For ecosystems,
the analog of moving towards higher densities is associated
with increasing the number of organisms and/or increasing
the number of species, which is referred to “increasing
complexity” in the ecology literature. ~The early and
influential work of Robert May [41] suggested that high
density states (high levels of complexity in ecosystems)
are not stable— in simple models increased population and
differentiation eventually leads to a bifurcation analogous to
the percolation transition in the random system. However,
according to a recent review by Polis [42], “it was clear
to empiricists and some theoreticians that natural systems
are quite complex. In any one system, a great diversity of
species is connected through many different interactions,”
in contradiction to May’s conclusions that increasing
complexity will eventually cause ecological systems to
exhibit strong fluctuations and “fall apart.”

More recent work by McCann, Hastings, and Huxel [43]
has shown that increased density (i.e. complexity) tends
to stabilize an ecosystem, damping out fluctuations and
preventing the loss of species. Their work is based on
models with a more accurate representation of the biology,
and leads to systems which stabilize at higher densities, in
a manner which is qualitatively similar to the way in which
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our sophisticated design in the evolutionary model (Section
V) passes unobstructed through the critical point associated
with a random system to reach a structured high density
state.

Additional evidence for the critical importance of evolved
structure in ecosystems is obtained in the study of
food webs [44]. In simple randomized models high
densities (i.e. complexities) destabilize food webs in a
manner which again parallels the falloff in yield which
we observe in random systems for densities which exceed
the critical point. In numerical and laboratory studies,
randomly assembled but plausible food webs typically
break down [45,46]. The results of these studies are
contradictory to observations of food webs in nature, which
are composed of large numbers of interacting species.
However, real food webs are not randomly constructed.
In model studies, incorporating design features such as
adjusting the distribution of interaction strengths to
maximize survival and introducing redundancy, lead to the
persistence of webs at more realistic densities, as well as
optimized configurations which are consistent with observed
variabilities in interaction strengths in natural systems.

Food web studies also illustrate the hypersensitivity of
ecosystems to changes that the system was not designed
to handle [44]. If food webs were in an SOC/EOC
state then their complexity would be generic and robust
to rearrangements and the introduction of new species.
However, in real ecosystems the introduction of one weedy
species, such as an exotic plant or animal species, often
leads to catastrophic consequences [47].

Finally, returning to the extinction patterns in the fossil
record, there is some controversy over whether the data
is actually well described by a power law [48]. What is
clear is that there have been mass extinctions and that
the distribution of events is at least plausibly a power
law. Almost all species that have existed are extinct (0.1%
of all recorded species currently persist), and the average
lifetime of a species is of order a million years, though the
distribution of lifetimes also has heavy tails.

There is a long running debate in paleontology about
the relative roles of random versus deterministic effects in
extinctions. This may be a false dichotomy. If ecological
systems and populations are HOT, then it is the interaction
between the unpredictable external perturbations and the
structured state of the system which is crucial.

Among paleontologists there is general consensus that
extinction vulnerability has some systematic features,
consistent with HOT states [49]. Specifically, organisms
evolve to maximize their survival within the existing
environment, and thus become vulnerable to rare events.
For example, large size, and high specialization may yield
a temporary advantage, but creates vulnerability to, say,
meteor impacts.

Thus while extinctions may be triggered by exogenous
events, the pattern of extinctions for a given disturbance
follows a fairly structured, deterministic, and even a
predictable process. In a large event it is the most
complex, terrestrial organisms which are at greatest risk.



Island species are more vulnerable than continental specials.
Tropical species are more vulnerable than nontropical
species. Within a habitat, specialization offers short-term
benefits. However, evolution towards more specialized
states inevitably ignores rare events, even if they are
catastrophic. As a consequence, specialization consistently
correlates with extinction risk in large extinctions. This
suggests that the system can be viewed as HOT on two
interdependent levels. The fact that the overall extinction
patterns are highly structured suggests that ecosystems as a
whole may be viewed as HOT, while the fact that the most
specialized organisms are most vulnerable suggests that
the evolution of individual species may lead them towards
increasingly HOT states.

There is much at stake in this debate. If ecosystems are
in a SOC/EOC state, then observations of massive species
extinctions and global warming could be attributed to the
natural behavior of the system. In this scenario, large
fluctuations emerge and recede as a natural consequence of
the internal dynamics, and would not be attributed to man
made causes. This would support a policy in which humans
could be relatively cavalier about their interactions with
the environment, because the system would be fluctuating
as observed regardless of our behavior. Alternately, if
ecosystems are in a HOT state then we expect the system
to be robust, yet fragile. Heavy tailed distributions are
expected, but the system is also hypersensitive to new
perturbations that were not part of the evolutionary history.

In terms of policy, this supports a strategy of cautious
environmental perturbation. Polis writes [42], “From a
policy point of view, the understanding that complexity is
vital to the integrity and stability of natural systems allows
ecologists to argue, more coherently, why we must preserve
the diverse elements and species that coexist in a healthy,
sustainable and well-functioning ecological community. ”
If environmental systems are HOT, then the burden of
proof in the ecological debate must shift from a policy of
“waiting for the science” to confirm negative effects such
as ozone depletion or global warming, to a policy which
requires substantial scientific investigation of whether the
perturbed system is robust to proposed changes before they
are introduced.
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