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Abstract—In this paper, we propose a digital background
adaptive calibration technique for correcting offset and gain
mismatches in time-interleaved multipath analog-digital (A/D)
sigma-delta (X A) modulators. The proposed technique allows
us to cancel the spurious tones introduced by offset and gain
mismatches among the paths only by processing the digital output,
without interfering with the operation of the modulator. This solu-
tion is also effective for any other time-interleaved A/D converter
topology. Simulation results on a high-performance four-path
bandpass ¥ A modulator, operating on a 5-MHz band at a clock
frequency of 320 MHz, demonstrate the effectiveness of the pro-
posed calibration technique, which allows us to achieve significant
improvements of the signal-to-noise ratio and the spurious-free
dynamic range in the presence of mismatches.

Index  Terms—Analog—digital  conversion,
sigma—delta modulation, IV -path circuits.

calibration,

1. INTRODUCTION

UTURE electronic instruments and telecommunication

devices require integrated analog-to-digital converters
(ADCs) with high speed and, at the same time, high linearity
and resolution [1]. The easiest way to fulfill such requirements
is to increase the clock frequency by exploiting the features
of state-of-the-art CMOS manufacturing processes with very
reduced physical size, or bipolar, or bipolar-CMOS (BiCMOS)
integration technologies. However, the use of these technolo-
gies implies an increase in manufacturing costs; moreover, a
fast clock stresses the operations of the internal blocks of the
ADC.

Alternatively, the use of time-interleaved architectures is an
effective way for increasing the conversion rate: many ADCs
operate in parallel, using different clock phases [2]-[4], as
shown in Fig. 1.
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Fig. 1. Block diagram of a time-interleaved ADC.

The analog demultiplexer selects sequentially each ADC,
which therefore operates at low speed. The digital multiplexer
interleaves the digital output of the ADCs, thus producing the
overall analog—digital (A/D) conversion result. Any type of
ADC can be used, including sigma-delta (3A) modulators
[5]. Each of them operates at a clock frequency f.. /M, where
fex is the overall sampling frequency and M is the number
of channels (or paths) used. The speed requirements for each
converter are therefore relaxed by a factor M.

Unfortunately, any mismatch between the time-interleaved
ADC channels leads to degradation in the linearity performance.
In particular, offset and gain mismatches among the parallel
channels are a priori unpredictable and produce spurious tones
in the signal band, thus worsening the spurious-free dynamic
range (SFDR), as well as the signal-to-noise distortion ratio
(SNDR) performance.

Generally speaking, in the past the above-mentioned limita-
tion made difficult the use of interleaved multipath topologies
for high-resolution A/D converters, especially XA modulators.
However, spectral analysis shows that the distortion power of
offset and gain dispersion is not frequency dependent and thus it
could be compensated using appropriate calibration techniques,
offline and online, as will be described later.

However, all of these techniques exhibit some drawbacks, es-
pecially when XA modulators are considered. Indeed, the sto-
chastic behavior of YA modulators prevents the use of already
known deterministic calibration techniques.

This paper describes a calibration method which significantly
improves the SNDR and the SFDR of a time-interleaved ADC in
the presence of mismatches between the different channels and

1057-7122/04$20.00 © 2004 IEEE
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Fig. 2. (a) Four-path ©A modulator. (b) Its noise transfer function.

is effective also when dealing with A modulators. The method
has been verified on a high-performance four-path bandpass XA
modulator, operating on a 5-MHz band at a clock frequency of
320 MHz and featuring an ideal SNR better than 85 dB.

This paper is organized as follows. In Section II, the four-path
> A modulator is briefly described. The analysis of the main
mismatches (gain and offset) and the previously adopted cali-
bration methods are presented in Sections III and I'V. In Section
V, the proposed solution is described in detail. Finally, in Sec-
tions VI and VII, the method is applied to the four-path bandpass
3 A modulator described in Section II.

II. MULTIPATH XA MODULATOR

The use of A modulators in a multipath architecture leads to
interesting features [6]. Namely, a multipath architecture imple-
ments a bandpass response by using low-pass > A modulators in
the single paths (Fig. 2). This simplifies the design of the ADC,
since low-pass 2 A modulators are inherently less sensitive to
component mismatches and, therefore, dynamic range and sta-
bility become less critical issues.

It is well known that multiple-path circuits achieve, in the
sampled-data domain, the z to 2z transformation. Therefore,
if H,(z) is the transfer function of the single path, the overall
transfer function becomes

Hror = = Hp("N). (1)

If H,(z) is a low-pass filter, the response folds at multiples of
fex/M , as shown in Fig. 2(a), thus leading to a bandpass transfer
function centered around f /4.

A second benefit of multipath architectures is that each
channel operates at a lower frequency than the overall ¥A
modulator. Finally, the multipath topology achieves the same
SNDR of single-path architectures using a lower-order loop
filter, with benefits in terms of stability and complexity.
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TABLE 1
CHARACTERISTIC OF FOUR-PATH BANDPASS A MODULATOR FOR UMTS
BASE TRANSCEIVER STATIONS

Parameter Value
Clock frequency 320 MHz
Center frequency 80 MHz
Bandwidth 5 MHz
Quantizer 9 levels
Order (of each path) 4

For a third-generation mobile communication standard,
typical specifications for the A/D converter in the base trans-
ceiver station require a signal bandwidth of 5 MHz, centered
around a suitable intermediate frequency (e.g., 80 MHz), thus
enabling the conversion of three 1.28 Mb/s UMTS channels
with 1.6 MHz of bandwidth each (CWTS standard) or a single
5-MHz channel (W-CDMA standard). Distortion specifications
are demanding: the SNDR must be 85 dB (equivalent to 14 bit),
the sampling jitter around 0.5 ps, and the SFDR more than 90
dBc.

Table I summarizes the main features of an ADC suitable
for the above-mentioned applications. Observe that four paths
working at 80 MHz clock lead to an equivalent clock frequency
of 320 MHz. Moreover, a 14-bit demand for a fourth-order mod-
ulator with a nine-level quantizer, including a dynamic-element
matching algorithm for the feedback path.

The architecture of the single-path modulator was studied
previously and discussed in [6]. However, unfortunately, mul-
tipath XA modulators suffer from the typical time-interleaved
ADC drawbacks. In particular, timing, offset and gain mis-
matches among the parallel channels produce spurious tones in
the signal band, thus worsening the SNDR and SFDR perfor-
mance.

III. OFFSET MISMATCH

Assume that the ADCs in each path of the interleaved archi-
tecture of Fig. 2 are affected by offset. The ADC output will
show an offset equal to the average of the offsets of the dif-
ferent paths and additional tones, located at N (fo/M) (N =
1,...,M — 1), with amplitude proportional to the offset mis-
match among paths and independent of the input signal ampli-
tude and the frequency [8]-[10], according to

oo

k;oo A(k) - 276 [w —k ( z\;;kﬂ
2

Tr,k

where G (w) is the digital spectrum of an input sine wave sam-
pled at fo, = 1/Te, and

M-1
A(k) = Lon) e s 3
(k)= (57 Om)e 3)
m=0
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where O,, is the offset in the mth channel. The second term
in the expression of G(w) represents the tones caused by offset
mismatches which degrade the ADC performance.

Very likely, at least one of these tones will fall inside the
signal band. Therefore, the use of multipath topologies seems to
be unsuitable for high-resolution ADCs, although several cali-
bration techniques have been proposed for attenuating the spu-
rious tones due to mismatches.

In bandpass applications the anti-aliasing filter can remove
the dc components. Therefore, an online measurement of the
offset is conceptually possible. Unfortunately, the sampling fre-
quency in a single path of a time-interleaved ADC is lower than
the Nyquist limit. Therefore, high-frequency signal components
can be folded at low frequency. Moreover, due to the phase shift
between the channels, there is no correlation among the folded
dc components of the different paths.

Calibration techniques have been proposed in the past to solve
the problem. They can be divided in two groups: offline and
online.

The former are easier to be implemented since they can
be performed in factory by trimming voltages/currents as
illustrated in [10]. However, this offline solution is unable to
track offset variations with temperature or ageing over time.
Another solution is based on calibration procedures applied
in foreground as illustrated in [11]. However, the calibration
process interrupts the input signal conversion. Finally, an
offline solution specifically dedicated to XA modulators is
reported in [12]. This solution is based on finding the optimum
value for a cross-coupling coefficient by carrying out extensive
simulations during the design step. Again this solution cannot
correct variations of the offsets with temperature or ageing.

On-line calibration techniques are more difficult to im-
plement, since they operate in background while the ADC
is working normally. Several solutions for achieving online
calibration has been presented in literature, usually in the
digital domain. Unfortunately, most of them are only suitable
for deterministic time-interleaved ADCs and cannot be applied
to XA modulators in view of their stochastic behavior, which
makes the output signals obtained with the same input signal at
different times different, depending on the previous history.

An analog online calibration method for deterministic inter-
leaved A/D converter exploiting an additional path is illustrated
in [13]. If we have M + 1 paths available, one of them can be
calibrated while the remaining M operate the conversion. Once
the calibration cycle terminates another path is placed in the cal-
ibration section. Therefore, every M + 1 calibration cycles all of
the paths are calibrated and the system starts a new global cal-
ibration sequence. This technique is effective for Nyquist-rate
converters, but it cannot be applied to XA modulators, since
their output depends on the input history. Therefore, if we pe-
riodically replace one of the ¥A modulators with a calibrated
one, we introduce a periodic deviation of the single path his-
tory with respect to the ideal one. This causes a discontinuity
in the output in the time slots including the switching transient
resulting in an unacceptable degradation of the SNDR.

A first digital online calibration technique has been proposed
in [14] and [15]. This technique is based on the addition of a
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calibration signal, generated by a pseudo-random number gen-
erator, to the ADC input. Both signals are then processed si-
multaneously by means of an adaptive algorithm, which digi-
tally filters out the output to remove residual tones at frequencies
fex/M . In this case there is no need for an extra parallel channel.
This online method can be applied to any type of ADC, however
it exhibits some severe limitations. Firstly, part of the full-scale
input range of the ADC is used by the calibration signal. There-
fore, the ADC paths require extra resolution to achieve a cer-
tain dynamic range. Moreover, the input signal cannot have fre-
quency components at or near f./M because signals at this
frequency cannot be distinguished from any offset mismatch.
The last effect prevents the use of this calibration method in ap-
plications like those mentioned above, where the desired signal
is located around f /M. One way to overcome the problem is
to perform the online calibration only when the input is in the
idle state. However, this solution is no longer a true online offset
calibration.

Another interesting online calibration method suitable to be
applied to time-interleaved XA modulators has been presented
in [16]-[18]. Its principle of operations is as follows.

* The input signal is chopped with a pseudo-random se-
quence consisting of +1 and —1 and the obtained signal
is digitized by the mth-channel ADC (ADC,,).

e The mean value of the digital outputs in one time slot is
calculated and stored in a register.

» The offset value is estimated by subtracting the mean value
stored in the register from the input signal digitized by
ADC,,, suitably delayed.

* The result is chopped with the same sequence as the input
signal, which is thus restored.

The chopping transforms any input signal into noise with mean
value equal to 0 before the estimation and cancellation of the
offset. The randomization process allows us to overcome the
limitation of [15], which was ineffective for signal located
around f. /M. Moreover, a new estimation of the offset value
is calculated in each time slot and its value is updated during
normal operations. However, this technique suffers of two
problems: the chopping operates on the analog section of the
converter, which is very sensitive to parasitics. Since high
linearity and resolution are required, the influence of the cali-
bration circuit on the analog first stage of the converter could be
critical. Moreover, this method cannot correct any nonideality
of additional front-end circuits located before the chopping.

IV. GAIN MISMATCH

Another source of spurious components is the gain mismatch.
Channel gain mismatches result in amplitude modulation of the
input samples causing scaled copies of the input spectrum to
appear centered around integer multiples of the channel sam-
pling rate f./M. Intuitively, this happens because each indi-
vidual channel samples the input signal at a rate of fu./M,
causing the input spectrum to be repeated periodically at inter-
vals of fu. /M. In case of perfect matching the multiplexing pro-
duces the cancellation of the alias components except at integer
multiples of f. On the contrary, if some mismatch between
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Fig. 3. Block diagram of proposed offset calibration technique.

channels is present these repetitions do not cancel completely
and appear in the output spectrum. Sampling with mismatched
channel gains can also be regarded as modulating the analog
input by a periodic discrete-time sequence of period M T . For
an input sinusoid at frequency f;,, this modulation produces
spurious mismatch tones in the output spectrum at frequencies:
fck/M_fin7 2fck/M_fin7 3fck/M_fin7 (M_l)fck/M_fin-

An explicit expression for the output spectrum has been de-

rived in [7], [11], and [19]
2T
alo-n(5F)] @

Z B(k
k_—oo

where G (w) is the digital spectrum of an input signal sampled

at fox = 1/Tw, and

— -.qm> =i R (5)

m=0

gm being the gain of the mth channel. Note that in the gain
mismatch case the SNDR degradation is dependent on the input
signal amplitude.

Several calibration techniques have been proposed for attenu-
ating this spurious effect, as well. In the online category, some of
them share the same circuitry used to correct offset mismatches
[14], [15], [18], [21]. For this reason, they are affected by the
same limitations already highlighted in the case of offset mis-
match correction techniques.

Finally, errors in the sample times (timing mismatches) result
in phase modulation of the input samples, which also causes
scaled copies of the input spectrum to appear centered at the
same frequencies as the spurious components stemming from
gain mismatch [7]. To reduce this effect few techniques have
been proposed so far [17], [18], [20], [22], [23], which can be
applied together with the offset and gain calibration techniques
proposed in this paper.

V. PROPOSED CALIBRATION TECHNIQUE

Fig. 3 shows the block diagram of the proposed adaptive
offset calibration technique applied to a four channel A/D con-
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verter (e.g., a XA modulator) [24]. The solution uses an addi-
tional path, assumed to be the reference element.

As shown in the Fig. 3, instead of periodically placing one
path in a calibration section, the reference path (CHANNEL R)
is connected in parallel to the path that we want to calibrate. The
parallel connection lasts for NV clock cycles (N7T¢) and can be
realized by simply assigning the clock phases of the channel
under calibration to the reference path.

The difference between the digital outputs of the path under
calibration and the reference path is integrated over the calibra-
tion time slot N7k (AVERAGE). The result is a digital word
proportional to the difference between the offsets of the two
paths, while the signal components are cancelled.

Finally, this word is added to the ADC of the path under cali-
bration, thus making its offset equal to the offset of the reference
path. If required, the offset of CHANNEL R can be periodically
calibrated in order to make the offsets of all the paths equal to
zero, by introducing well know techniques, such as those in [25].

To demonstrate that, let us assume that the output y of each
channels is given by

y = (S+0)-STF + N, - NTF (©6)

where STF and NTF are the signal transfer function and the
noise transfer function of the low-pass XA modulator, respec-
tively. The difference between the outputs of the two paths av-
eraged over N samples becomes

(AO) = STTF - ZM—FSTF ZM7

n=1 n=1

N,
NTFZ @ QC )

where Og, Sg, and Ng g are offset, input and quantization
noise of the reference path, while O¢, S¢, and Ng ¢ are offset,
input and quantization noise of the path under calibration.

Since the STF is equal to one in the signal band, the first term
of (7) becomes the offset mismatch. The second term is zero,
being the two inputs equal (Sg = S¢). The NTF in the third
term is an high-pass function. Therefore, the third term vanishes
as the length of the average operation goes to infinity. In prac-
tice, a suitably long averaging makes the third term negligible.
It turns out that (AO) represents an estimation of the offset mis-
match, whose precision depends on N.

Gain mismatch possibly reduces the effectiveness of the pro-
posed offset calibration method. Indeed, (7) in the presence of
gain mismatch becomes

Oc N5
v +STF-AG-ZN7

n=1

N oo, _
(AO) = STF - Z ZRZVC
n=1

N -N

NoR, ¢
NTF-Y —2C (@
N (@)

n=1

where AG is the gain mismatch between the path under cali-
bration and the reference path. The second term of (8), that was

supposed to be zero, has a finite value. Therefore, any signal
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component around dc or multiples of f. /M affects the offset
estimation accuracy.

The same configuration illustrated in Fig. 3 together with a
more complex digital signal processing enables the measure-
ment and correction of the gain mismatches. The measurement
of the offset mismatch required to solve (6) applied to the refer-
ence and the calibrating path, accounting for the gain mismatch,
results

Y5
(yr) :STF'ZN;

n=1
N

S
(yo) = STF - Ge -y |~ +0c ©)

n=1

where G¢ and O¢ are the gain and the offset of the path under
calibration. We assumed zero offset and unity gain for the ref-
erence path, since the goal of the calibration is to compensate
mismatches and not absolute values. This set of two equations
contains three unknowns: an additional equation is required to
find the solution. The request is satisfied just waiting for the suc-
cessive calibration cycle and building two new equations, sim-
ilar to the previous ones. The difference between the first and
the second pair of equation comes from the value of input signal
(S 4 and Spg, respectively). The new sets of equation are

hE
N

=STF - a4
<yR.,A> S n:1N
N g
A
(yc,a) = STF - Gc; ~ + Oc¢ (10
and
]\T
Sp
=STF-) =
(Yyr,a) =S 2N
N g
B
(ye,p) =STF - Go -y ==+ Oc. (11)

1

n

The solution of (10) and (11) determines offset and gain mis-
matches. They are given by

(AG) = (AOc) = (yc,a) — (AG)(yr,)- (12)
Observe that the accuracy of the gain error depends on the dif-
ference of the input signal at f. /M during the two calibration
cycles considered. Therefore, with zero or constant components
(AG) is undetermined. This situation in practical cases occurs
rarely. Moreover, in idle conditions a suitable tone can be added
at the input, if required.
Main advantages of the proposed offset and gain calibration
algorithm are as follows.
* The accuracy of the offset and gain equalization is limited
only by the allowed calibration time slot, N1y, and hard-
ware capability.
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 There are no special requirement on the original offset and
gain values (the offset could be different from 0 also in the
reference channel).

* The solution works with any input signals frequencies,
including signals located around f. /M.

* The solution is independent of the ADC topology.

* The solution is simple to be implemented and robust be-
cause it is purely digital and requires only one additional
path without special calibration input signals.

* The cyclic repetition of the calibration steps allows us to
track offset and gain variations with temperature or ageing
over time.

These benefits are obtained at the expense of the introduc-
tion of an additional channel and of some digital logic. It has to
be noted that the presence of the reference channel in parallel
to the channel under calibration increases the input capacitive
load (i.e., we have M /2 + 1 channels instead of M /2 connected
at the same time to the input node). This obviously increases
the required driving capability of the input source. Eventually,
dummy capacitors can be used to equalize the capacitive load
during the different clock phases (i.e., increase the capacitive
load also when the channel under calibration and hence the ref-
erence channel is not connected to the input node).

VI. HARDWARE IMPLEMENTATION

From the equations of Section V, it turns out that (AO) rep-
resents an estimation of the offset mismatch, whose precision
depends on N. Assume that the system requires an accuracy of
the offset mismatch calibration as good as the least-significant
bit (LSB) of the overall ADC after decimation. Since the reso-
lution of (AO) from (7) is LSBga /N, with LSBga denoting
the LSB of the modulator quantizer, we obtain the condition

N =2M-K (13)
where M is the overall resolution (after decimation) and K is
the number of bit of the multibit XA modulator. A larger av-
eraging period by a given power of 2 requires truncation, but it
provides a better accuracy.

The word length of the accumulators (L acc) used in the AV-
ERAGE block must be sufficiently large to avoid overflow. Ob-
serve that even if the two 3 A modulators connected in parallel
process the same input signal, the outputs can be different even
for matched offset, since the initial conditions of the integrators
are different. Therefore, we have to foresee some extra room for
the random difference of the outputs, leading to

Lacc = Round[logZ(N . AOMAX) + 1] (14)
where AOyax is the maximum expected offset mismatch.

The proposed calibration technique operates completely in
the digital domain outside the XA modulator feedback loop. In-
deed, the offset correction is performed by adding the estimated
offset mismatch (AO) to the modulator output, while the ¥ A

modulator operates exactly as in the absence of the calibration
circuit without any SNDR degradation. When (AQ) is added
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Fig. 4. Hardware implementation of the proposed offset calibration technique.

to the output of the path under calibration, its overall offset be-
comes equal to the offset of the reference path, as already high-
lighted. This procedure is repeated for the M paths of the XA
modulator. At the end all the M paths have the same overall
offset of the reference path, thus avoiding spurious tones.

The hardware necessary to correct the gain error is more com-
plex than the simple offset compensation solution, since it re-
quires the use of multipliers. However, the complexity is com-
parable with any other digital calibration methods. As for the
offset case, the gain mismatch estimation and correction tech-
nique does not affect the performance of the A modulator,
since all the circuits operate in the digital domain.

The offset calibration algorithm have been described using
VHDL language and synthesized using a 0.35-pm CMOS tech-
nology. The resulting total area occupation is 300 pm X 300 pm,
while the estimated power consumption is about 15 mW with
a power-supply voltage of 3.3 V and a clock frequency of 80
MHz.

Fig. 4 shows in detail the hardware implementation of the
offset digital calibration circuit whose simplified diagram is
shown in the dashed box of Fig. 3.

The block MULT-INPUT includes a digital multiplexer
MUX driven by the 2-bit SEL signal, which sequentially selects
one of the N-bit digital signals CH1, CH2, CH3, and CH4 of
the paths to be calibrated. Moreover, it includes a subtractor that
calculates the algebraic difference between the N -bit reference
signal CHS and the selected signal. Finally, a K-bit register

transforms the word at the output of the subtractor into a K -bit
word (K > N) to be fed to the block AVERAGE.

The block AVERAGE includes several functions. The output
of the K-bit ACCUMULATOR is fed into the K -bit BUFFER,
which is isolated from the input of the DEMUX by the THREE-
STATE interface, which is put in high impedance state when the
ACCUMULATOR is working. At the end of the integration time
slot NT the assertion of the signal FLAG enables the block
THREE-STATE to feed the result of the accumulated offset to
the input of the DEMUX which transfers it, depending on the
signal SEL, to the proper K -bit output register. The stored value
remains stable until the next value is overwritten to allow offset
compensation with an updated value.

Finally, section FEEDFORWARD performs the N-bit to
K -bit transformation of the digital signals CH1, CH2, CH3, and
CH4 of the paths and, then, the addition to the corresponding
accumulated offset.

It is worth to point out that in most telecommunication appli-
cations a hardware implementation of the digital calibration cir-
cuit might not be necessary, since the available baseband digital
processor (digital signal processor or microprocessor) can take
care of the required functions, thus reducing the system com-
plexity.

VII. SIMULATION RESULTS

A behavioral simulation of the offset calibration method val-
idated the proposed approach. Fig. 5 shows simulation results
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for the four-path bandpass XA modulator operating at 320 MHz
(each path operates at 80 MHz).

The offset mismatch is a random number whose variance, 8, is
as large as about 10 mV. The simulation tool is AdvanceMS [26]
with VHDL-AMS [27] behavioral description of the system.
The output data were post-processed with MATLAB [28]. Fig. 5
demonstrates that the large tone caused by the offset mismatch
is reduced by 68 dB. We used a time slot of 2!7 samples and an
accumulator word-length of 22 bits.

A longer time slot improves the effectiveness of the calibra-
tion system. However, the hardware complexity increases as
well. In actual applications the choice of the averaging time
must account for other nonidealities of the XA modulator (es-
pecially those determining the harmonic distortion): the residual
tones produced by offset mismatch must be just lower than the
highest tone caused by other effects.

The combined gain and offset calibration method has been
verified with behavioral simulation on the same XA modulator
architecture used for the offset correction (four-path, bandpass
3 A modulator with 320-MHz clock frequency). An offset mis-
match of 10 mV and a gain mismatch of 0.5% leads to the output
spectrum shown in Fig. 6.

The method reduces the tone due to the offset mismatch by
about 60 dB and the tones due to the gain mismatches by about
30 dB.

VIII. CONCLUSION

This paper describes a technique for offset and gain mismatch
calibration in multipath ¥A modulators. The proposed method
offers several advantages: the accuracy of offset and gain com-
pensation is limited only by the allowed calibration time slot and
hardware complexity. Moreover, there are no special constraints
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on the original offset and gain values nor on the input signal (the
technique works in the presence of signal components around
fex/M). Finally, the proposed solution does not require any spe-
cial calibration signal that could limit the dynamic range of the
3 A modulator and it is independent of the ADC topology. The
effectiveness of the calibration technique has been verified with
behavioral (VHDL-AMS) simulations on a four-path bandpass
A modulator. Results show significant improvements of the
SNDR and the SFDR.
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