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Binomial Term Structure Models
In this article, the authors develop several discrete versons of term structure
models and study their major properties. We demonstrate how to program
and calibrate such models as Black-Derman-Toy and Black-Karasinski. In
addition we provide some simple methods for pricing options on interest
rates.

by Simon Benninga and Zvi Wiener

T he term structure models discussed in our previ-
ous article (“Term Structure of Interest Rates,” MiER
Vol. 7, No. 3) such as the Vasicek 1978] or the [Cox-

Ingersoll-Ross 1985] model may not match the current
term structure. The Black-Derman-Toy (BDT) and Black-
Karasinksi models discussed in this article are important
examples of models in which the current term structure
can always be replicated.

1. BINOMIAL INTEREST RATE MODELS
Before introducing these models, we give a short intro-
duction to binomial interest rate models. It is helpful to
consider the following example. Suppose that one-period
interest rates develop in a binomial model according to
the following stochastic process:

In this example the interest rate process is as follows:
The short-term interest rate today is 4% (for “short-term,”
read “one period”). In each succeeding period, the short-
term interest rate either goes up or goes down by one
percent.

Clearly, this process has some problems: For example,

at some point interest rates will become negative, a highly
undesirable property of a model which is supposed to
describe nominal interest rates! For the moment we ignore
this problem, and forge on with the example.

Risk-neutrality: using the model to calculate the term
structure
To use our simple model for price calculations, we have
to make two more assumptions:

a. The probability of the interest rate going up or down
from each node is 0.5.

b. The state probabilities can be used to do value calcu-
lations: The value of a state-dependent security is the
present value of its expected payoffs.

Together, these assumptions are the risk-neutrality
assumption. In this article we shall not justify this as-
sumption on economic grounds. Here’s what risk-neutral-
ity means: Consider the problem of calculating the price at
time 0 of a two-period, pure discount bond. Such a bond
has payoffs only at date 2; with no loss in generality, we
assume that these payoffs are $1:

The prices of the bond (as yet to be calculated) are
indicated in the drawing above. “price(1,3%)” refers to the
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price of the bond at date 1 when the one-period interest
rate is 3%. To calculate the prices, we first discount the
bond payoffs to date 1:

The problem now is to find the price today, price(0,4%).
Here’s where risk neutrality comes in. Assuming risk neu-
trality, we can calculate

In[1]:= price [0, 0.04 ] =
0.5 ∗ price [1, 0.03 ] + 0.5 ∗ price [1, 0.05 ]

1.04
/.

{price [1, 0.03 ] → 1/1.03,
price [1, 0.05 ] → 1/1.05 }

Out[1]= 0.924642

Thus the tree of prices for this date-two pure discount
bond looks like:

Note that price(0,4%) gives us the two-date pure dis-
count yield:

In[2]:= r 2 =



0.5 ∗ J 1
1+r 111

+ 1
1+r 101

N
1 + r 1




−0.5

− 1 /.

{r 1 → 0.04, r 111 → 0.05, r 101 → 0.03 }

Out[2]= 0.0399519

(Here we have started to sneak in some notation: rtjm
is the m-period interest rate at time t when the interest
rate has made j “up” moves. Thus, in the above example,
r001 = 4%, r111 = 5%, r101 = 3%, and we have now
shown that r002 = 3.9952%.) Clearly, we could go on:
Extending the tree by one date and considering a 3-date
pure discount bond will allow us to calculate more interest

rates. Here, for example, is the price tree for a date-3 pure
discount bond:

This price tree enables us to calculate the 3-period pure
discount rate at date 0 (r003) and also the 2-period pure
discount rates at date 1, r102 and r112:

(The rates are listed under each other at each node,
in increasing order: I.e., at date 0 the one-period rate is
4%, the two period rate is 3.9952%, the three-period rate
is 4.3194%.)

Pricing options on the term structure: an example
We can also use this simple model to price options whose
payoffs are functions of the term structure. Suppose, for
example, that we are trying to price an interest-rate cap.
This is a security which offers the borrower a loan at a
guaranteed rate in the future. For this simple example, we
consider a cap which offers the borrower a one-period
loan of $1,000,000 at date 1 with a rate no higher than
4%. Here is a picture which explains it all:
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When the cap is taken up (as you can see in the above
picture, this only happens when the interest rate tomor-
row is 5%), the savings are $10,000/1.05 = $9,523.81.
Given risk-neutrality, we discount these savings to arrive
at the value of the cap today:

Thus, if we were offered an option to get a one pe-
riod loan tomorrow at an interest rate no higher than
4%, this option would be worth (today) $4,578.75. Clearly
we could use our model to price other, more compli-
cated, derivative securities whose value depends on inter-
est rates.

What is a “reasonable” interest rate tree?
The above example is an effective way of seeing why we
would like a binomial model of interest rates. It illustrates
some of the tools we will be using in the rest of the article,
and it also illustrates some of the problems which we may
encounter (it is clear, for example, that extending the tree
for a couple of more dates will give us negative interest
rates, an undesirable property).

To set the stage for the two models we will be dis-
cussing next, we state what we want from a good bino-
mial interest rate model.

Í Recombining in interest rates. In order to make com-
putations easy, the interest rate which results from an
“up-down” sequence should be equal to the interest
rate resulting from a “down-up” sequence of moves. In
principle, we could have an interest rate model which
looks like the following picture, but this would give us
severe computational problems.

Í Non-negative interest rates. Assuming that the tree mod-
els nominal interest rates, we want these rates to be al-
ways positive. (Although we should add a caveat: Full-
blown general equilibrium models of the term structure
almost always model real interest rates, which are quite
often negative.)

Í Incorporates risk-neutrality. If we have risk-neutrality,
then asset values are determined by discounting their
expected future values. This means that prices and yields
are easy to calculate.

Í Replicates the current term structure of interest rates.
At date 0 (today), the tree should give the currently
observed yields for pure discount bonds.

Í Replicates other "reasonable" properties of interest rates
and interest rate-derivative securities. Some "reasonable"
properties might include: a) The model replicates currently-
observed cap prices. b) The model incorporates some
mean-reversion of interest rates. In general we think we
see that high rates tend to go down and vice versa.

2. THE BLACK-DERMAN-TOY MODEL
The BDT model is the simplest recombining interest rate
model which replicates the current term structure. The
insight from which the BDT model starts is the following:
At any particular point in time we know the term structure
of interest rates; for example, suppose that today:

one period pure discount rate, r001 = 10%,

two-period pure discount rate, r002 = 11%,

three-period pure discount rate, r003 = 12%,

four-period pure discount rate, r004 = 12.5%,

five-period pure discount rate, r005 = 13%.

Now suppose that we make the following assumptions:

Í The interest rates “develop” in a binomial model. Each
node of this model has a one-period interest rate at-
tached to it. Our convention is to use rtjm to represent
the m-term interest rate at time t when there have been
j “up” moves in the interest rate.

Í The probabilities of the occurrence of the states in the
model are always 1

2 .

Í We have some other information about the interest rates
(we will be more specific later).
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To see why these assumptions are important, look at
the above figure, in which we have indicated the one-
period interest rates at each node (nodes are numbered by
the time period and the number of “up” moves). The logic
of this figure was explained in the previous section: The
purpose here is to calculate the 3-period pure discount
rate.

At time 3, the bond reaches maturity and has value 1,
irrespective of the state of nature.

At time 2, the value of the bond is 1/(1 + r2j1), where
j is the number of “up” moves.

At time 1, the value of the bond is the expected dis-
counted value of its value one-period hence discounted
at the one-period discount rate at time 2 (this rate is, of
course, state dependent). Here we use risk neutrality and
our assumption about the interest rates!

At time 0, the value of the bond is the expected dis-
counted value of its time 1 value, discounted at r001, the
one-period rate at time 0.

The development of the interest rate process in the
BDT model
BDT assume that the interest rates at date t are defined by
rtj1 = rt01e2jqt . qt is the standard deviation of the natural
logarithm of the one-period interest rates at date t. To
see where this structure comes from, look at the one-
period interest rates at time 1: r101 and r111. Assume
that r111 = r101e

2y. Then calculating the mean and the
variance of the logarithm of the interest rates, we get:

mean log interest rate =
1
2

[log(r101ey) + log(r101)] = log(r101) +
y
2

variance of log interest rate =
1
2

A log(r101ey) - I log(r101) +
y
2

ME
2

+

1
2

A log(r101) - I log(r101) +
y
2

ME
2

=
y2

4

so that standard deviation of log interest rate = y
2

BDT assume that the standard deviation of the log in-
terest rates at any date t isqt . It thus follows that at date
1, r111 = r101e

2q1 . Similarly, at any date t, we will have
rtj1 = rt01e2jqt .

The BDT assumption about the volatility of the short-
term interest rates at any date t means that rt01 can be
adjusted in order to fit the current term structure. Here is
an example of how this works. The table below gives the
term structure for years 1, 2, . . . , 5 as well as a list of s,
one for each year.

maturity yield to volatility of one-
(years) maturity(%) period rate = qt

1 10%
2 11% 19%
3 12% 18%
4 12.5% 17%
5 13% 16%

3. CALIBRATING THE BDT MODEL
Given this information, we can calculate the term structure
of the interest rates Suppose we know the risk-neutral
probabilities, the current term structure and the volatility
of the interest rates. The whole interest rate tree, in Excel,
is shown below; after the picture of the tree we show you
how to check that the interest rates are indeed correct:

4. PROGRAMMING BLACK-DERMAN-TOY
Excel is a nice way to illustrate the BDT model, but Mathe-
matica is much better for programming the model. The
advantage of Mathematica is that it allows us to write
the present value functions as recursive functions, which
saves a lot of time and allows for much greater clarity.

First we write a function which takes the present value
on the tree, assuming that the local interest rates are given
by r [t,j ]:

In[3]:= Clear [discount, pv, r ]
discount [r_ ] := 1/ (1 + r ); pv[n_] :=

Module [{recurse}, recurse [t_, j_ ] :=
recurse [t, j ] =

If [t == n, 1, discount [r [t, j ]]*
(recurse [t + 1, j + 1] +

recurse [t + 1, j ])];
recurse [0, 0]/2ˆn ]
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pv [n] is the n-period discount factor. Here are some
examples, to show you that the recursive function pv de-
fines these discount factors correctly:

In[4]:= Print ["pv [0] = ", pv[0]]
Print ["pv [1] = ", pv[1]]
Print ["pv [2] = ", pv[2]]

pv[0] = 1

pv[1] =
1

1 + r [0,0 ]

pv[2] =
2

1+r [1,0 ] + 2
1+r [1,1 ]

4 (1 + r [0,0 ])

If we now add the definition which is central to BDT:

In[5]:= r [t , j ] := r [t ] ∗ Exp[2 ∗ θ[t ] ∗ j ];

Then we see that the present value factors are com-
pletely determined by the theta[1], theta[2], . . . and by r[0],
r[1], . . . :

In[6]:= Print [pv[2] =, pv [2]]

pv[2] =

2
1+r [1] + 2

1+e2 q[1] r [1]

4 (1 + r [0])

You will recognize that:

r [0] is the one-period interest rate today.

r [1] is the lowest one-period interest rate at time t = 1.
The other interest rate at time 1 is determined by theta[1],
which is the q of the interest rates at time t = 1, so that
r [1,j ] = r [1]*Exp [2*theta [1]*j ], j = 0, 1, 2 ... .
In general: r [n,j ] = r [n]*Exp [2*theta [n]*j ], j =
0, 1, ..., n

We can now solve for the BDT term structure. We have
to know two things:

The term structure itself; we will denote this by R[1],
R[2], ...

The theta[1], theta[2], ...

Here is the program:

In[7]:= Clear [discount, pv, r, theta ]
theta [1] = 0.19 ; theta [2] = 0.18 ;
theta [3] = 0.17 ;

theta [4] = 0.16 ; R[1] = 1/1.1 ;
R[2] = 1/1.11ˆ2 ; R[3] = 1/1.12ˆ3 ;
R[4] = 1/1.125ˆ4 ; R[5] = 1/1.13ˆ5 ;

r [t_, j_ ] := r [t ]*Exp [2*theta [t ]*j ];
discount [r_ ] := 1/ (1 + r );

pv[n_] :=
Module [{recurse}, recurse [t_, j_ ] :=

recurse [t, j ] =
If [t == n, 1, discount [r [t, j ]]*

(recurse [t + 1, j + 1] +
recurse [t + 1, j ])];

recurse [0, 0]/2ˆn ]

To get the output:

In[8]:= Clear [rr ]
rr [0] = FindRoot [pv[1] == R[1],

{r [0], {0, 1}} ]

a = pv[2] == R[2] /. rr [0];
rr [1] = FindRoot [a, {r [1], {0, 1}} ]

b = pv[3] == R[3] /. rr [0] /. rr [1];
rr [2] = FindRoot [b, {r [2], {0, 1}} ]

c = pv[4] == R[4] /. rr [0] /.
rr [1] /. rr [2];

rr [3] = FindRoot [c, {r [3], {0, 1}} ]

d = pv[5] == R[5] /. rr [0] /. rr [1] /.
rr [2] /. rr [3];

rr [4] = FindRoot [d, {r [4], {0, 1}} ]

MatrixForm [Table [Table [rr [t ][[1, 2]]*
Exp[2*theta [t ]*j ], {j, 0, t} ], {t, 0, 4} ]]

{r [0] Æ 0.1 }

{r [1] Æ 0.0979156 }

{r [2] Æ 0.0958616 }

{r [3] Æ 0.0823614 }

{r [4] Æ 0.0778718 }

ÊÁÁÁÁÁÁÁÁÁÁÁÁÁ
Ë

{0.1 }
{0.0979156,0.14318 }

{0.0958616,0.137401,0.19694 1}
{0.0823614,0.115713,0.1 62571, 0.228 404 }

{0.0778718,0.107239,0.14 7682,0 .20337 7,0.28 0077 }

ˆ̃
˜̃
˜̃
˜̃
˜̃
˜̃
˜̃
¯

The last lines of the output give the whole development
of the term structure–all of the one-period interest rates.

5. SIMPLE ALTERNATIVES TO BLACK-DERMAN-TOY
Once you understand the logic of BDT, it is easy to see
that there are many alternative binomial term structure
models which might also work. In this section we present
three such models.

5.a. Putting the lowest interest rate on top

In the BDT model the relation between interest rates at
time t and time t + 1 is weak, but not totally arbitrary. For
example, suppose that we specify that the interest rates
at time t , instead of developing as rtj1 = rt01e2 qj , develop
as rtj1 = rt01e-2 qj . This means that the bottom interest rate
in the tree at each time will be the highest instead of the
lowest interest rate. The resulting interest rates will be
the same as before. Here is the revised program and the
output:

In[9]:= Clear [discount, pv, r, theta ]
theta [1] = 0.19 ; theta [2] = 0.18 ;
theta [3] = 0.17 ; theta [4] = 0.16 ;
R[1] = 1/1.1 ; R[2] = 1/1.11ˆ2 ;
R[3] = 1/1.12ˆ3 ; R[4] = 1/1.125ˆ4 ;
R[5] = 1/1.13ˆ5 ;
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r [t_, j_ ] := r [t ]*Exp [-2*theta [t ]*j ];
discount [r_ ] := 1/ (1 + r );

pv[n_] :=
Module [{recurse}, recurse [t_, j_ ] :=

recurse [t, j ] =
If [t == n, 1, discount [r [t, j ]]*

(recurse [t + 1, j + 1] +
recurse [t + 1, j ])];

recurse [0, 0]/2ˆn ]

In[10]:= Clear [rr ]
rr [0] = FindRoot [pv[1] == R[1],

{r [0], {0, 1}} ];
a = pv[2] == R[2] /. rr [0];
rr [1] = FindRoot [a, {r [1], {0, 1}} ];
b = pv[3] == R[3] /. rr [0] /. rr [1];
rr [2] = FindRoot [b, {r [2], {0, 1}} ];
c = pv[4] == R[4] /. rr [0] /. rr [1] /.

rr [2];
rr [3] = FindRoot [c, {r [3], {0, 1}} ];
d = pv[5] == R[5] /. rr [0] /. rr [1] /.

rr [2] /. rr [3];
rr [4] = FindRoot [d, {r [4], {0, 1}} ];
MatrixForm [Table [Tabl e[rr [t ][[1,2 ]]*

Exp[-2*theta [t ]*j ], {j, 0, t} ],
{t, 0, 4} ]]

ÊÁÁÁÁÁÁÁÁÁÁÁÁÁ
Ë

{0.1 }
{0.14318, 0.0979156 }

{0.196941, 0.137401, 0.0958616 }
{0.228404, 0.162571, 0.115713, 0.0823614 }

{0.280077, 0.203377, 0.147682, 0.107239, 0.0778717 }

ˆ̃
˜̃
˜̃
˜̃
˜̃
˜̃
˜̃
¯

5.b. A more radical change
We can make the relation between dates more explicit by
changing the model. For example, we could write:

; rt+1,j+1,1 = rtj1emt +q, if interest rates move up
rt+1,j ,1 = rtj1emt -q, if interest rates move down

This guarantees that the interest rate tree is recombining.
In this interest rate process: The interest rate increments
q are node and time independent, but the mt , on the
other hand, are time dependent but node independent.
In this process the structure of the interest rate dynamics
guarantees that interest rates will never be negative.

5.c. Another model
Another version of a recombining term structure model
is to write the whole term structure as a function of the
initial short-term interest rate r :

We leave the calculation of this model as an exercise.

6. THE BLACK-KARASINSKI MODEL
The BDT model may match the current term structure,
but it does not have enough degrees of freedom to match
other currently-observed market prices. For example, BDT
may not match the prices of interest rate caps. It will cer-
tainly fail to capture the mean-reversion of interest rates.

The Black-Karasinski (BK) model aims to solve this
problem by adding additional degrees of freedom to the
interest rate process. The cost–as we shall see–is that the
model’s time structure is somewhat different from that of
a standard binomial interest rate model.

In the BK model we assume that the stochastic pro-
cess which defines the interest rates is given by d(log r ) =
f(t)[logp(t) - log r ]dt + s(t)dz . BK refer to p(t) as the
target rate, f(t) as the mean reversion, and s(t) as the lo-
cal volatility of log r . Consider the following tree, and let’s
consider what it would take to make this tree recombining
in the BK model:

In order for the tree to be recombining, we must have
E = F. Substituting B into E and C into F gives:
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Setting these two expressions equal and cleaning up
gives:

This last equation is BK’s equation (3). What this equa-
tion shows is that the length of the interval t2 and the
mean reversion f(2) are functions of each other. Black-
Karasinski claim that the solution to this equation is:

We do not prove this directly, but rather use version
3 of Mathematica to show that this is the correct solu-
tion (we need version 3 because it contains the command
//FullSimplify , which is more powerful than version
2’s //Simplify .) We first use Solve to give us a so-

lution to the equation f(2) = 1
t2

A1 - s(2)
0

t2
s(1)

0
t1

E in terms of
t2.

In[11]:= sol = Solve [phi2 − 1/delta2
(1 − 1/s ∗ Sqrt [delta2 /delta1 ]) == 0,

delta2 ]

Out[11]=

99 delta2 Æ

1 + 2 delta1 phi2 s2 -
0

1 + 4 delta1 phi2 s2

2 delta1 phi2 2 s2 =,
9 delta2 Æ

1 + 2 delta1 phi2 s2 +
0

1 + 4 delta1 phi2 s2

2 delta1 phi2 2 s2 ==
The two solutions of this equation are given below:

In[12]:= s1=sol [[1,1,2 ]]
s2=sol [[2,1,2 ]]

Out[12]=
1 + 2 delta1 phi2 s2 -

0
1 + 4 delta1 phi2 s2

2 delta1 phi2 2 s2

1 + 2 delta1 phi2 s2 +
0

1 + 4 delta1 phi2 s2

2 delta1 phi2 2 s2

The Black-Karasinski solution is written as:

In[13]:= BKSoln =
delta1*4*sˆ2/

(1+Sqrt [1+4*phi2*sˆ 2*delt a1])ˆ2

Out[13]=
4 delta1 s2

I1 +
0

1 + 4 delta1 phi2 s2M2

We now use FullSimplify to show that s1 is the
same as the BK solution, whereas s2 is not (this is very
inelegant, but it works):

In[14]:= BKSoln - s1//FullSimplify

Out[14]= 0

In[15]:= BKSoln - s2//FullSimplify

Out[15]= -

0
1 + 4 delta1 phi2 s2

delta1 phi2 2 s2

What does the BK solution mean? A first illustration
The Black-Karasinksi solution means that as n gets larger,
the number of divisions of a given time period gets corre-
spondingly larger. We give 2 illustrations, both based on
numbers from BK. We assume that phi1 =phi2 = ... =
0.1 and that s = 1 (this means that all s(i) are constant).
The BK solution can be written as a recursive function:

In[16]:= Clear [δ]

δ[0] = 1;
δ[n ] := δ[n] = FractionBox ()

4 ∗ δ[n − 1] ∗ s2

J1 +
0

1 + 4 ∗ δ[n − 1] ∗ phi2 ∗ s2N2 /. {

phi2 → 0.1, s → 1}

A table of the first 10 Dt shows that they get progres-
sively smaller:

In[17]:= Table [δ[j ], {j, 0, 10}]

Out[17]= {1, 0.839202, 0.722343, 0.633694, 0.564205,
0.508305, 0.462385, 0.424006, 0.391459,
0.363516, 0.339269 }

What does the BK solution mean?
A second illustration
BK have another way of illustrating this time dependence
of Dt : Suppose we want to divide a 10-year period into
160 subperiods. How big should our initial t0 be so that
10 years will be covered exactly by 160 subperiods?

To solve this problem, we first redefine our function
delta , to make it dependent on the initial t0 (which we
call, of course, delta0 ):

In[18]:= Clear [delta, time ]
delta [n_, delta0_ ] :=

delta [n, delta0 ] =
If [n == 0, delta0,

4*delta [n - 1, delta0 ]*
sˆ2/ (1 + Sqrt [1 + 4*phi*sˆ2*

delta [n - 1, delta0 ]])ˆ2 /.
{phi - > 0.1, s - > 1} ]

time [n_, delta0_ ] :=
time [n, delta0 ] =

Sum[delta [j, delta0 ], {j, 0, n - 1} ]

The function time gives the total time elapsed (i.e.,
the sum of all the delta ), given the initial delta0 . Here
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is a plot of time for a range of delta0 :

In[19]:= data =
Table [{delta0, time [160, delta0 ] - 10},

{delta0, 0.18, 0.2, 0.01} ];
ListPlot [data,

PlotJoined - > True,
AxesLabel - > {delta0, ""} ];

0.18 0.185 0.19 0.195
delta0

-0.3

-0.2

-0.1

0.1

The solution is to put the initial delta somewhere
between 0.194 and 0.195. To solve exactly, we use a vari-
ation of the bisection routine we first illustrated in the
article on finding the implied Black-Scholes option pric-
ing volatility:

In[20]:= Module [{high, low}, high = 0.2 ;
low = 0.19 ;
While [Abs[time [160, (high + low )/2 ] -

10] > 0.00001,
Print [" (high + low )/2 = ",

(high + low )/2 ];
Print ["time [160, (high + low )/2 ] = ",

time [160, (high + low )/2 ]];
If [time [160, (high + low )/2 ] > 10,

high = (high + low )/2,
low = (high + low )/2 ]];

Print [delta0 = N[(high + low )/2 ]]]

(high + low )/2 = 0.195
time [160, (high + low )/2 ] = 10.0112
(high + low )/2 = 0.1925
time [160, (high + low )/2 ] = 9.95391
(high + low )/2 = 0.19375
time [160, (high + low )/2 ] = 9.98264
(high + low )/2 = 0.194375
time [160, (high + low )/2 ] = 9.99694
(high + low )/2 = 0.1946875
time [160, (high + low )/2 ] = 10.0041
(high + low )/2 = 0.194531
time [160, (high + low )/2 ] = 10.0005
(high + low )/2 = 0.194453
time [160, (high + low )/2 ] = 9.99873
(high + low )/2 = 0.194492
time [160, (high + low )/2 ] = 9.99962
(high + low )/2 = 0.194512
time [160, (high + low )/2 ] = 10.0001
(high + low )/2 = 0.194502
time [160, (high + low )/2 ] = 9.99985
(high + low )/2 = 0.194507
time [160, (high + low )/2 ] = 9.99996

(high + low )/2 = 0.194509
time [160, (high + low )/2 ] = 10.
(high + low )/2 = 0.194508
time [160, (high + low )/2 ] = 9.99999
0.194509

This particular routine prints out intermediate results;
the last result shows that delta0 = 0.194509 gives ten
years. Notice that the last line of the above routine also
names delta0 , (we do this by writing Print [delta0 =
N[(high +low )/2 ] ] ). ... (Not all the output printed)

Time in the BK model

Black-Karasinksi time is non-linear! Suppose, for example,
we continue the BK example, dividing a 10 year period
into 160 intervals. As we have seen above, this means
that the length of the first interval is 0.194509; as we also
showed above, the intervals get progressively shorter. This
means that more and more periods are needed for a spe-
cific time interval, as shown in the graph below:

In[21]:= Plot [time [n, delta0 ], {n, 0, 160},
FrameLabel - >

{"number of periods",
"elapsed time, years"},

Frame - > {True, True, False, False},
DefaultFont - > {"Helvetica", 8},
PlotLabel - >

"Black-Karisinski Time is Nonlinear" ];
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Black-Karisinski Time is Nonlinear

BK (in Table 1 of their paper) have yet another way
of illustrating this: How many years have passed after
1/5 of the intervals (i.e., 32 periods) have elapsed? After
2/5 of the intervals? Clearly the answer is given by our
Mathematica function time [32,delta0 ], time [64,
delta0 ], etc.:

In[22]:= time [32,delta0 ]
time [64,delta0 ]
time [96,delta0 ]
time [128,delta0 ]

4.10683
6.33608
7.87391
9.04894
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7. CALCULATING A BLACK-KARASINSKI TERM
STRUCTURE
Suppose we try to calculate a BK term structure for the
following parameter values:

initial interest rate = 8%
mean reversion f(t) = 4 (i.e., not time dependent)
standard deviation s(t) = 0.05 (also not time depen-

dent)
target interest rate p(t) = 10% (time independent)
The following Mathematica program calculates the term

structure:

Clear [f, g, delta, time, yield, discount ]
$RecursionLimit = 1000 ; target = 0.1 ;
phi = 4; sigma = 0.05 ; initial = 0.08 ;

delta0 = 0.7 ; delta [n_] :=
delta [n] = If [n == 0, delta0,

4*delta [n - 1]/
(1 + Sqrt [1 + 4*phi*delta [n - 1]])ˆ2 ]

time [n_] :=
time [n] = Sum[delta [j ], {j, 0, n - 1} ]

f [0, 0] := Log[initial ]; f [n_, j_ ] :=
f [n, j ] = If [n == 0, f [0, 0],

If [j >= 1, phi* (Log[target ] -
f [n - 1, j - 1])*delta [n] +
sigma*Sqrt [delta [n]] + f [n - 1, j - 1],

phi* (Log[target ] - f [n - 1, 0])*delta [n] -
sigma*Sqrt [delta [n]] + f [n - 1, 0]]]

g[n_, j_ ] := Exp[f [n, j ]]
discount [n_, j_ ] :=

discount [n, j ] =
If [n == 0, 1, 0.5*discount [n - 1, j - 1]*

Exp[-g [n - 1, j - 1]*delta [n - 1]]]
yield [n_] := yield [n] =

Log[Sum[Binomial [n, j ]*discount [n, j ],
{j, 0, n} ]]/-time [n]

We can now use the program to plot a sample term
structure:

a = Table [{time [h], yield [h]}, {h, 1, 350} ];
ListPlot [a, PlotJoined - > True,
AxesOrigin - > {0, 0.08}, PlotRange - > All,

Frame - > {True, True, False, False},
DefaultFont - > {"Helvetica", 10},
FrameLabel - > {time, interest},
PlotLabel - >

StyleForm [
"A Black-Karasinski Term Structure \n",
"Section" ]];
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