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Outline

@ Basic graph-theoretic concepts

@ Markov chain

@ Markov random field (MRF)

@ Gauss-Markov random field (GMRF), and applications

@ Other popular MRFs
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Basic graph-theoretic concepts

e A graph G = (V,€) is a finite collection of nodes (or vertices)
V = {ni,na,...,ny} and set of edges £ C (‘2})

@ We consider only undirected graphs
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Basic graph-theoretic concepts

e A graph G = (V,€) is a finite collection of nodes (or vertices)
V = {ni,na,...,ny} and set of edges £ C (‘2])

@ We consider only undirected graphs
e Neighbor: Two nodes n;,n; € V are neighbors if (n;,n;) € £
e Neighborhood of a node: N'(n;) = {n; : (n;,n;) € £}

o Neighborhood is a symmetric relation: n; € N'(n;) < n; € N(n;)
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Basic graph-theoretic concepts

e A graph G = (V,€) is a finite collection of nodes (or vertices)
V = {ni,na,...,ny} and set of edges £ C (‘2})

@ We consider only undirected graphs

@ Neighbor: Two nodes n;,n; € V are neighbors if (n;,n;) € £

e Neighborhood of a node: N'(n;) = {n; : (n;,n;) € £}

o Neighborhood is a symmetric relation: n; € N'(n;) < n; € N(n;)

o Complete graph:
Vn; €V, N(nl) = {(nla nj)aj = {]-7 2,..., N}\{Z}}

o Clique: a complete subgraph of G.

@ Maximal clique: Clique with maximal number of nodes; cannot add
any other node while still retaining complete connectedness.
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[[lustration

D 2)

@

)

—_—ie)

o V=1{1,234506}

o £=1{(1,2),(1,3),(2,4),(2,5).(3,4),(3,6),(4,6),(5,6)}
o N(4) ={2,3,6}

o Examples of cliques: {(1),(3,4,6),(2,5)}

o Set of all cliques: VUE U {3,4,6}
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Separation

e
YV

o Let A, B, C be three disjoint subsets of V

o ( separates A from B if any path from a node in A to a node in B
contains some node in C'

e Example: C' = {1,4,6} separates A = {3} from B = {2,5}
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Markov chains

@ Graphical model: Associate each node of a graph with a random
variable (or a collection thereof)

@ Homogeneous 1-D Markov chain:

p(@nlzi,i <n) =p(@n|rn-1)

@ Probability of a sequence given by:

N
p(ﬂi) = p(l‘o) H p(xn|mn—1)
n=1
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2-D Markov chains

@ Advantages:
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o Simple expressions for probability

o Simple parameter estimation

@ Disadvantages:

o No natural ordering of image pixels

o Anisotropic model behavior
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Random fields on graphs

o Consider a collection of random variables x = (z1, z2,...,zy) with
associated joint probability distribution p(x)

o Let A, B, C be three disjoint subsets of V. Let x4 denote the
collection of random variables in A.

e Conditional independence: A 1L B | C

o AL B|C & p(xa,xs|xc) = p(xalxc)p(xs|xc)
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Random fields on graphs

o Consider a collection of random variables x = (z1, z2,...,zy) with
associated joint probability distribution p(x)

o Let A, B, C be three disjoint subsets of V. Let x4 denote the
collection of random variables in A.

e Conditional independence: A 1L B | C

o AL B|C & p(xa,xs|xc) = p(xalxc)p(xs|xc)

@ Markov random field: undirected graphical model in which each
node corresponds to a random variable or a collection of random
variables, and the edges identify conditional dependencies.
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Markov properties

Pairwise Markovianity:

@ (n;,n;) ¢ €= x; and z; are independent when conditioned on all
other variables

p(xi, 2|\ (i 53) = P(@ilx\ (,51)P(25]%\ (i,53)
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Markov properties

Pairwise Markovianity:

@ (n;,n;) ¢ €= x; and z; are independent when conditioned on all
other variables

(s, 250%\ (i 5y) = p(@ilx 5,51)0(25]%) 6 ,51)

Local Markovianity:
@ Given its neighborhood, a variable is independent on the rest of the
variables
p(@ilxy\(iy) = p(@ilxari))
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Markov properties

Pairwise Markovianity:

@ (n;,n;) ¢ €= x; and z; are independent when conditioned on all
other variables

P, T5]x\ (3,5y) = pl@ilxqigy)p(; % gi 1)

Local Markovianity:

@ Given its neighborhood, a variable is independent on the rest of the
variables

p(@ilxy\(iy) = p(@ilxari))
Global Markovianity:
o Let A, B, C be three disjoint subsets of V. If
C separates A from B = p(x4,xp|xc) = p(xalxc)p(xB|X0),

then p(-) is global Markov w.r.t. G.
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Hammersley-Clifford Theorem

Consider a random field x on a graph G, such that p(x) > 0. Let C
denote the set of all maximal cliques of the graph.

o If the field has the local Markov property, then p(x) can be written
as a Gibbs distribution:

p(X)GXP{ ZVC Xc }

ceC

where Z, the normalizing constant, is called the partition function;
Ve(xc) are the clique potentials
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Hammersley-Clifford Theorem

Consider a random field x on a graph G, such that p(x) > 0. Let C
denote the set of all maximal cliques of the graph.

o If the field has the local Markov property, then p(x) can be written
as a Gibbs distribution:

p(x) = GXP{ ZVC Xc }
cec

where Z, the normalizing constant, is called the partition function;
Ve(xc) are the clique potentials

o If p(x) can be written in Gibbs form for the cliques of some graph,
then it has the global Markov property.
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Hammersley-Clifford Theorem

Consider a random field x on a graph G, such that p(x) > 0. Let C
denote the set of all maximal cliques of the graph.

o If the field has the local Markov property, then p(x) can be written
as a Gibbs distribution:

p(X)GXP{ ZVC Xc }

ceC

where Z, the normalizing constant, is called the partition function;
Ve(xc) are the clique potentials

o If p(x) can be written in Gibbs form for the cliques of some graph,
then it has the global Markov property.

Fundamental consequence: every Markov random field can be specified
via clique potentials.
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Regular rectangular lattices

‘11.11}_{114_{11.]“‘

‘M.J 1 }_{ =y }_{ Iu.m‘

o V={(i,4),i=1,...,.M,5=1,...,N}
@ Order-K neighborhood system:
N (i g) = {(m,n) : (i = m)* + (j —n)* < K}
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Auto-models

@ Only pair-wise interactions
@ In terms of clique potentials: |C| > 2= V(1) =0

@ Simplest possible neighborhood models
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Gauss-Markov Random Fields (GMRF)

@ Joint probability function (assuming zero mean):

_ 1 1 7
#) = e {2 )

@ Quadratic form in the exponent:

i

xI'y~1x = Z Z xixiE;jl = auto-model
J
@ The neighborhood system is determined by the potential matrix

271
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Gauss-Markov Random Fields (GMRF)

Joint probability function (assuming zero mean):

_ 1 1 7
#) = e {2 )

Quadratic form in the exponent:

xI'y~1x = Z Z xixiEfjl = auto-model

z J

The neighborhood system is determined by the potential matrix
271

Local conditionals are univariate Gaussian
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Gauss-Markov Random Fields

@ Specification via clique potentials:

Ve(xe) = % <Z a?xZ-) = %

i€C

2
i€V

@ The exponent of the GMRF density becomes:

-3 Velxe) = —éZ(Za?azi)Q

cec ceC \ieVy

%Z Z (Z ozicajc> Tiwj = —%XTE_lx.

i€V jeV \CeC

aslongasi¢ C=af =0
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GMREF: Application to image processing

@ Classical image “smoothing” prior

o Consider an image to be a rectangular lattice with first-order pixel
neighborhoods

o Cliques: pairs of vertically or horizontally adjacent pixels

o Clique potentials: squares of first-order differences (approximation of
continuous derivative)

1
Vi), 6,i—1)3 @iy Tij—1) = 5(331',3' —xij1)?

@ Resulting ¥7!: block-tridiagonal with tridiagonal blocks
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Bayesian image restoration with GMRF prior

@ Observation model:

y=Hx+n, n~ N(0,0°T)

@ Smoothing GMRF prior: p(x) o exp{—1x’ =~ 'x}
o MAP estimate:

x=[0?T ' +H'H] 'H"y
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Bayesian image restoration with GMRF prior

Figure: (a) Original image, (b) Blurred and slightly noisy image, (c) Restored
version of (b), (d) No blur, severe noise, (e) Restored version of (d).

@ Deblurring: good

@ Denoising: oversmoothing; “edge discontinuities” smoothed out
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Bayesian image restoration with GMRF prior

Figure: (a) Original image, (b) Blurred and slightly noisy image, (c) Restored
version of (b), (d) No blur, severe noise, (e) Restored version of (d).

@ Deblurring: good
@ Denoising: oversmoothing; “edge discontinuities” smoothed out

@ How to preserve discontinuities?
o Other prior models

o Hidden/latent binary random variables

e Robust potential functions (e.g. L2 vs. Li-norm) I
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Compound GMRF

@ Insert binary variables v to “turn off” clique potentials

o Modified clique potentials:

1
V(@i j,i,5-1,vi,5) = 5(1 — ;) (@ij — wij-1)°
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Compound GMRF

@ Insert binary variables v to “turn off” clique potentials

o Modified clique potentials:
1 2
Vi, 2ij-1,0i5) = 5(1 = viy)(@ij = zij-1)
Intuitive explanation:

e v =0 = clique potential is quadratic (“on")

e v =1= V(-) = 0 — no smoothing; image has an edge at this
location.
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Compound GMRF

@ Insert binary variables v to “turn off” clique potentials

o Modified clique potentials:

1 2
Vi, 2ij-1,0i5) = 5(1 = viy)(@ij = zij-1)
Intuitive explanation:
e v =0 = clique potential is quadratic (“on")

e v =1= V(-) = 0 — no smoothing; image has an edge at this
location.

@ Can choose separate latent variables v and h for vertical and
horizontal edges respectively

1
p(x|h,v) x exp {—2XTE_1(h, V)X}
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Compound GMRF

@ Insert binary variables v to “turn off” clique potentials

Modified clique potentials:

1
V(@i j,i,5-1,vi,5) = 5(1 — i) (@i — Tij1)?
Intuitive explanation:

e v =0 = clique potential is quadratic (“on")

e v =1= V(-) = 0 — no smoothing; image has an edge at this
location.
@ Can choose separate latent variables v and h for vertical and

horizontal edges respectively

1
p(x|h,v) x exp {—2XTE_1(h, V)X}

@ MAP estimate:
x = [0’ (h,v) + H'H 'H”y
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Discontinuity-preserving restoration

Convex potentials:
o Generalized Gaussians: V(x) = |z|P,p € [1, 2]

@ Stevenson:

z2, z| <a
V(x)z{ ) ]

2a|z| —a*, x| >a
o Green: V() = 2a?log cosh(z/a)
Non-convex potentials:

e Blake, Zisserman: V(z) = (min{|z|,a})?

2

z2+a?

@ Geman, McClure: V(z) =
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Ising model (2-D MRF)

Cliques:

Boundary:

o|o|o|Oo|O|O (O |O
ol|lo|o|o|o|o|o|o
o|o|o|Oo|O|O OO
olo|o|lo|=|=]o|o
o|jol=jo]|= =0 |0
ol=[=|=|=|=|=]o
olo|al|lo|o]=|=]o
olo|o|o|o|o|o|o

o V(x;,x;) = Bd(x; # x;), B is a model parameter

@ Energy function:

Z Ve (x¢) = B(boundary length)
cec

@ Longer boundaries less probable
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Application: Image segmentation

Y - Texture feature vectors
observed from image.

X - Unobserved field containing
the class of each pixel

@ Discrete MRF used to model the segmentation field

o Each class represented by a value X, € {0,..., M — 1}
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Application: Image segmentation

Y - Texture feature vectors
observed from image.

X - Unobserved field containing
_— the class of each pixel

@ Discrete MRF used to model the segmentation field

o Each class represented by a value X, € {0,..., M — 1}

@ Joint distribution function:

P{Y € dy, X =z} = p(y|z)p(x)
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Application: Image segmentation

Y - Texture feature vectors
observed from image.

X - Unobserved field containing
_— the class of each pixel

@ Discrete MRF used to model the segmentation field
o Each class represented by a value X, € {0,..., M — 1}

@ Joint distribution function:

P{Y € dy, X =z} = p(y|z)p(x)

o (Bayesian) MAP estimation:
X = argmaxp,|y (¢]Y) = arg max(log p(Y|z) + log(p(2)))
PENNSTATE
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MAP optimization for segmentation

@ Data model:
DPy|z y|l‘ Hp ys|xs
sES

@ Prior (Ising) model:

Pa(x) = %eXp{—ﬁh(x)},

where t1(z) is the number of horizontal and vertical neighbors of «
having a different value
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MAP optimization for segmentation

@ Data model:

DPy|z y|l‘ Hp ys|xs
ses

@ Prior (Ising) model:

Pa(x) = %eXp{—ﬁh(x)},

where t1(z) is the number of horizontal and vertical neighbors of «
having a different value

@ MAP estimate:
& = argmin{—log py |- (y|z) + St ()}
@ Hard optimization problem
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Some proposed approaches
@ lIterated conditional modes: iterative minimization w.r.t. each pixel
@ Simulated annealing: Generate samples from prior distribution

@ Multi-scale resolution segmentation

5%
SEP e lwg’bi’}’rf

Figure: (a) Synthetic image with three textures, (b) ICM, (c) Slmulated
annealing, (d) Multi-resolution approach. e
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Summary

@ Graphical models study probability distributions whose conditional
dependencies arise out of specific graph structures

@ Markov random field is an undirected graphical model with special
factorization properties

@ 2-D MRFs have been widely used as priors in image processing
problems

@ Choice of potential functions leads to different optimization problems
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