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Abstract. Cellular Automata (CA) simulations can be used to model
multiple systems, in fields like biology, physics and mathematics. In this
work, a possible framework to execute a popular CA in hybrid CPU
and GPUs (Graphics Processing Units) environments is presented. The
inherently parallel nature of CA and the parallelism offered by GPUs
makes their combination attractive. Benchmarks are conducted in sev-
eral hardware scenarios. The use of MPI /OMP is explored for CPUs,
together with the use of MPI in GPU clusters. Speed-ups up to 20 x are
found when comparing GPU implementations to the serial CPU version
of the code.
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1 Introduction

Multicore CPUs have become widely available in recent years. As an alternative,
Graphics Processing Units (GPUs) also support many cores which run in parallel,
and their peak performance outperforms CPUs in the same range. Additionally,
the computational power of these technologies can be increased by combining
them into an inter-connected cluster of processors, making it possible to apply
parallelism using multi-cores on different levels. The use of GPUs in scientific
research has grown considerably since NVIDIA released CUDA [1]. Currently,
43 supercomputers from the Top 500 List (June 2013, www.top500.org) use
GPUs from NVIDIA or AMD. Currently the most commonly used technologies
are CUDA [1] and OpenCL [2]. Recently Intel entered the accelerator’s market,
with the Xeon Phi [3] x86 accelerator, which is present in 12 supercomputers
from the Top 500 List (June 2013, www.top500.org).

This work evaluates the trade-off in the collaboration between CPUs and
GPUs, for cellular automata simulations of the Game of Life [4]. A cellular
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automaton (CA) [5] is a simple model represented in a grid, where the com-
munication between the grid points or cells is limited to a pre-determined local
neighbourhood. Each cell can have a number of finite states which change over
time, depending on the state of its neighbours and its state at a given time [6].
Even though such a model is simple, it can be used to generate complex be-
haviour. CA have been used to implement diverse systems in different fields of
science: biological systems [7], kinetics of molecular systems [8], and clustering
of galaxies [9]. CA have also been implemented in GPU architectures in biology
to simulate a simple heart model [10], infectious disease propagation[11], and
simulations of laser dynamics[12].

The Game of Life has already been extensively studied [13][14][15]. In this
paper, the model is used as a starting point to developed future CA simula-
tions in hybrid (CPU+GPU) environments, as it has already been achieved for
Lattice Boltzmann Gas simulations [16], the Cahn-Hilliard equation [17][18] and
reaction-diffusion systems [19] [20]. A relatively small code was developed to run
in multiple parallel environments, and the source code is available in the web-
site of the authors (https://sites.google.com/site/simafweb/proyectos/
ca gpu). Five implementations of the Game of Life code with C were developed:
one serial implementation which executes in a single CPU core, and four parallel
implementations, including: shared memory with OpenMP, MPI for a CPU clus-
ter, single GPU, and Multi-GPU plus MPI for a CPU-GPU cluster. The paper
is organized as follows. Section 2 describes the Game of Life in general; Section
3 contains details of the code implementation; Section 4 includes code perfor-
mance; and conclusions are presented in Section 5, including possible future code
improvements.

2 Description of the Problem

The Game of Life, through a set of simple rules, can simulate complex behaviour.
To perform the simulations of this work, a 2 dimensional (2D) grid with peri-
odic boundaries is used. The grid cells can be “alive” or “dead”, and a Moore
neighbourhood (8 neighbours) [6] is considered for each cell. According to the
cell state at time t and the state of its 8 neighbours, the new state for the cell
at time t+1 is computed. The update is done simultaneously for all cells , which
means that their change will not affect the state of neighbour cells at t+1 time.
Time t+1 is often referred to as the “next generation”. The following rules define
the state of a cell in the Game of Life[4]:

– Any living cell, with less than two living neighbours will die in t+1.
– Any living cell, with two or three living neighbours will live in t+1.
– Any living cell, with more than three living neighbours will die in t+1.
– Any dead cell, with exactly three living neighbours will be alive in t+1.
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3 Implementation

3.1 Serial Code Implementation

The serial implementation which executes the entire simulation in one CPU
processor was used to verify the correct functioning of other implementations.
The serial code is quite simple. It begins initializing the main 2D grid, size NxN,
with zeros and ones randomly placed. N has to be an even integer. A secondary
NxN 2D grid is used to store the states of each cell for the next iteration.
Any random number generator can be easily used, but the standard rand(seed)
function was used in all codes. For testing purposes, the seed used to generate
the random numbers is always the same. The code runs up to a maximum
number of iterations defined by the user. Within each iteration, every cell and
their neighbourhoods are monitored, the four rules for the CA are applied, and
the next set of states are stored into the secondary array. Once all cells are
analysed, the secondary grid is copied into the main 2D grid, concluding a given
iteration. Every m iterations, with m a pre-set integer number, the state of the
main 2D grid is written to an output file. Since this is a simulation with periodic
boundaries, care must be taken when the values of the neighbours of a cell have
to be monitored. When the simulation ends, the program prints on the screen
the amount of RAM memory used and the total execution time, separating by:
filling time of the 2D grid, evolution time, and write-up time of output files.

3.2 OpenMP Implementation

The parallel shared memory implementation of the code was developed with
OpenMP [21]. It uses two compiler directives (pragma) to execute in parallel the
for loops in the serial implementation of the code. These two loops are the loop
that iterates over the 2D grid applying the game’s rules, and the loop which
copies the secondary grid to the main grid. Each pragma was configured to use
dynamic or static scheduling, with the work assigned to each thread defined by
the type of scheduling method. When using static scheduling, each thread is
assigned a number of for loop iterations before the execution of the loop begins.
When using dynamic scheduling, each thread is assigned some portion of the
total (chunk) of iterations, and when a thread finishes its allotted assignment
returns to the scheduler for more iterations to process.

3.3 MPI Implementation

Using a cluster of computers to run the case of message passing with MPI sig-
nificantly increases the complexity of the code, especially when dealing with
periodic boundary conditions. To handle part of the communications, the strat-
egy by Newman [22] was used. The initial grid is loaded as in the serial case, then
this grid is divided into equal blocks, with block size given by the full grid size
and the number of processors in a square topology, e.g. running in 4 processors
will give a 2x2 topology. Then, each block is sent to a different processor.
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When an iteration begins, each process exchanges its grid boundaries with
its neighbouring processes. From the code by Newman [22], the functions ex-
change(), pack() and unpack() were used as basis for sending the boundaries
and corners of each block from each process to its neighbours. After performing
the boundary exchange, the number of living neighbours for each cell in each
process is calculated, the block corresponding to that process is updated, and
a new iteration begins, sending updated boundaries between neighbouring pro-
cesses. When it is necessary to copy the state of the grid to a file, the block from
each process is brought to the master process to be part of a single grid, which is
then written. Because of the simple chosen communication scheme, the current
code cannot deal with odd number of processes.

3.4 GPU Implementation

The implementation of the code for a single GPU uses NVIDIA CUDA and
takes the CPU serial code as basis. Two kernels (C code functions that run on
the GPU) were developed: one kernel controls the state of the neighbours and
modifies the secondary grid for the next iteration; the other kernel is responsible
for updating the main grid with the data obtained by the first kernel (it copies
the secondary grid into the main grid). There has to be a blocking step to ensure
that all the threads have finished executing their instructions within the same
kernel for a given iteration, making two separate kernels necessary. In order
to ensure that instructions were properly executed, it was necessary to place a
barrier outside the first kernel, in the CPU host code. Is worth mentioning that
there is extra communication time: to copy the input grid generated in the CPU
to the GPU, and to copy the system grid to the main memory each time the grid
is written to a file, because it is necessary to copy from the GPU global memory
to the CPU main memory.

3.5 Multi-GPU Implementation

The parallel code with MPI and CUDA is similar to the parallel MPI implemen-
tation explained in section 3.3 and the GPU implementation from section 3.4.
MPI sends a block of the principal grid to each node for processing, then each
of these nodes run the simulation on a GPU. Two kernels were added: the first
kernel prepares data to be sent from a GPU to neighbouring CPU nodes, and
the second kernel is responsible for loading data received from neighbouring pro-
cessors into the GPU. These kernels replace the functions pack() and unpack()
of the CPU MPI code. This multi-GPU code also outputs the time to copy data
between the CPU and GPU at each time step, and it was called “Halo time” as
in [23]. This only takes into account data transfer between CPU RAM memory
and GPU global memory, regardless of MPI communication time between nodes
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4 Benchmarks

4.1 Infrastructure

Simulations were executed in three different environments.

– Workstation Phenom: 2.8 GHz AMD Phenom II 1055t 6 cores with 12GB
DDR3 of RAM memory. NVIDIA Tesla c2050 GPU, with 448 CUDA cores
working at 1.15 GHz, and 3GB memory. Slackware Linux 13.37 64 bit oper-
ating system with kernel 2.6.38.7, OpenMPI 1.4.2, Cuda 5.0 and gcc 4.5.3.

– Workstation FX-4100: 3.4 GHz AMD FX-4100 x4 with 8 GB of DDR3 RAM
memory. NVIDIA GeForce 630 with 48 CUDA cores working at 810MHz,and
1 GB of memory. Slackware Linux 14 64 bit operating system with kernel
3.2.29, OpenMPI 1.7 beta, Cuda 4.2 and gcc 4.5.2.

– Cluster Mendieta at the Universidad Nacional de Córdoba: 8 nodes with two
2.7GHz Intel Xeon E5-2680 CPU with 32GB of memory, 12 NVIDIA Tesla
M2090 GPUs with 6 GB GDDR5 (177 GBps) of memory and 512 1.3GHz
CUDA cores. The connection between nodes is at 20 Gbps InfiniBand DDR,
with the switch using star topology. With Linux CentOS 6.4, MPICH 3.0.4
and Cuda 5.0.

Since the Phenom and FX-4100 workstations have only a single GPU, the
code developed with MPI + GPU executes various MPI processes in the same
workstation and executes the same number of independent processes in a single
GPU. Because of this, the communication time between MPI nodes through the
network is not evaluated for these two environments.

4.2 Simulation Results: Analysis and Discussion

Simulations were performed for different grid sizes, for the same number of itera-
tions (1000) in all cases. The output of the last iteration performed for all parallel
codes was checked against the serial version to verify the correct operation of
the parallel codes. All codes were compiled with optimization -O3. Grids were
NxN , with N = 500, 1000, 2000, 4000, and 6000. Four processors were used for
the parallel implementations using OpenMP, MPI, and Multi-GPUs. Simulation
times for different runs with the same configuration vary only by few percent. In
figure 1 it can be seen the evolution of a small region of a particular simulation.
In these frames it can be seen a complex pattern drawn from the simple set of
rules that are part of the Game of Life.

The performance tests performed on the Phenom workstation can be seen in
tables 1 and 2. For the smallest dimension (N=500), the code in OpenMP, MPI
and GPU is always faster than the serial version. For the Multi-GPU code the
cost of copying the “halo” between different GPU processes is high and perfor-
mance degrades. For all other simulations, parallel codes are always faster than
the serial code. The OpenMP code was executed in four independent threads
and, therefore, it was expected that the simulation time would decrease ap-
proximately four times. This was not the case, because the parallelization with
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Fig. 1. Game of life simulation, for a grid with N=500, showing the evolution of a
small region of the grid, for 12 different frames.

OpenMP was done by grid rows, and the use of the cache is far from optimal.
The average speedups vs. the serial version, for all sizes, was 2.7 x. The imple-
mentation using MPI in 4 processors is approximately six times faster than the
serial implementation, for all dimensions. The MPI code makes a division into
blocks of the grid, and it is executed for the cases shown in tables 1 and 2, on
a single workstation. Implementing OpenMP with blocks would likely increase
performance. Speedups are given in table 5. When a single process is run on the
GPU, the average speedup obtained for all grid sizes is 13 x. In the case of parallel
Multi-GPU, the average speedup is 9.1 x. The copy time between GPU processes
considering the smaller cases of the grid (500, 1000 and 2000) is greater than the
computational time in each process. Therefore, running on a single GPU turns
to be faster than using Multi-GPU for the grid sizes considered in this work. On
the Phenom workstation (which has only one GPU), the Multi-GPU code exe-
cutes multiple independent processes in the same GPU, at the same time. The
largest case (N=6000) executes faster in multiple processes on the same GPU
(Multi-GPU) than in a single process in the GPU, giving a 17 x speedup over the
serial version. This improvement is due to the way in which the GPU scheduler
administers the execution of the threads [24]. In addition, domain decomposition
provides data locality, improving memory latencies [24] [25].

Tests performed on the cluster “Mendieta” were the same tests performed in
the Phenom workstation. In the case of the cluster “Mendieta”, two nodes with
two GPUs in each node were used. All tests were performed using one GPU per
node, except for the largest case with N = 6000, which was also executed for
two GPUs per node.

“Mendieta” was being shared with others users at the time of testing. This
might be the reason why some execution times were greater than when using the
Phenom workstation, which was used exclusively for these tests. Tables 3 and 4
contain the results. There are large differences in communication time between
the multi-GPU case in Mendieta and the Phenom workstation for the transfer
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Table 1. Simulation time in seconds for CPU serial, OpenMP and MPI codes, execut-
ing in the Phenom Workstation.

N CPU Serial OpenMP MPI

fill evolve output total fill evolve output total fill evolve output total

500 0.003 2.25 0.05 2.3 0.003 0.93 0.05 0.99 0.004 0.22 0.05 0.28

1000 0.01 10.03 0.17 10.21 0.01 3.44 0.19 3.64 0.02 1.15 0.21 1.37

2000 0.04 39.85 0.66 40.55 0.04 14.55 0.74 15.33 0.07 7.84 0.88 8.79

4000 0.16 167.15 2.64 169.95 0.16 56.75 2.95 59.86 0.25 30.23 3.47 33.95

6000 0.37 387.07 7.08 394.52 0.35 128.96 7.72 137.03 0.58 69.07 8.18 77.83

Table 2. Simulation time in seconds for GPU and Multi-GPU codes, executing in the
Phenom Workstation.

N GPU Multi-GPU

fill evolve output total fill evolve output halo total

500 0.07 0.16 0.05 0.29 0.25 0.44 0.07 1.64 2.38

1000 0.09 0.56 0.2 0.86 0.26 0.77 0.24 1.65 2.93

2000 0.12 1.82 0.78 2.72 0.32 1.53 0.97 1.72 4.54

4000 0.26 7.35 3.21 10.81 0.49 4 4.06 2.99 11.53

6000 0.48 18.55 8.11 27.15 0.74 9.9 9.3 2.65 22.6

of information between GPUs (“halo” table column). When the GPU is used in
the Phenom workstation, four parallel processes are executed in the same GPU,
which causes an increase in the communication time in the PCI-Express bus.
Using four GPUs for the larger case shows an improvement in the simulation
time, decreasing it from 26.4 to 19.3 seconds. Speedups can be seen in table 6.

Table 3. Simulation time in seconds for CPU serial, OpenMP and MPI codes, execut-
ing in the Mendieta Cluster.

N CPU Serial OpenMP MPI

fill evolve output total fill evolve output total fill evolve output total

500 0.03 2.21 0.04 2.25 0.005 1.30 0.06 1.37 0.006 0.41 0.1 0.52

1000 0.01 8.94 0.16 9.11 0.01 5.25 1.07 6.33 0.03 1.22 0.41 1.66

2000 0.04 40.27 0.62 40.93 0.04 25.33 1.05 26.41 0.14 4.35 1.54 6.03

4000 0.16 188.49 3.78 192.42 0.27 101.05 4.23 105.54 0.59 26.66 7.01 34.26

6000 0.34 376.71 5.58 382.64 0.35 225.56 9.66 235.57 1.32 59.59 13.86 74.76

Tests were also performed on the FX-4100 workstation, for a single simu-
lation, with N=2000 and 1000 steps. Results are: Serial = 44.42 s, OpenMP
= 18.63 s, MPI = 9.82 s, GPU = 17.5 s, Multi-GPU = 16.94 s. The video card
installed in this machine is a low-range card and, as a result, its performance
compare to CPUs is far from what could be reached with a high-range card.

190



Table 4. Simulation time in seconds for GPU and Multi-GPU codes, executing in the
Mendieta Cluster.

N GPU Multi-GPU

fill evolve output total fill evolve output halo total

500 3.78 0.13 1.15 5.06 3.99 0.51 0.19 0.43 5.11

1000 3.81 0.43 0.31 4.55 4.08 0.53 0.42 0.55 5.59

2000 3.9 1.64 0.8 6.34 4.06 0.75 1.73 0.8 7.34

4000 4.09 5.66 2.98 12.73 4.3 1.32 6.77 1.28 13.67

6000 4.21 14.36 13.35 31.92 4.7 3.43 15.05 3.21 26.39

6000 running in 2 GPU per node 1.48 3.29 14.31 0.18 19.27

Table 5. Speedups for all paral-
lel codes vs the serial code in the
Phenom workstation

dim Speedup vs Serial Code

MPI OMP GPU Multi-GPU

500 8.32 2.33 8 0.97

1000 7.44 2.8 11.92 3.49

2000 4.62 2.64 14.91 8.94

4000 5.01 2.84 15.72 14.73

6000 5.07 2.88 14.53 17.46

AVG 6.09 2.70 13.02 9.12

Table 6. Speedups for all paral-
lel codes vs the serial code in the
Mendieta cluster

dim Speedup vs Serial Code

MPI OMP GPU Multi-GPU

500 4.33 1.64 0.45 0.44

1000 5.50 1.44 2.00 1.63

2000 6.79 1.55 6.46 5.58

4000 5.62 1.82 15.11 14.08

6000 5.12 1.62 11.99 14.50

6000 in 2 GPUs per node 19.86

AVG 5.47 1.62 7.20 9.35

5 Conclusions and future works

The implementation of the popular Game of Life [4] was used in this paper
as a possible introduction to the problem of parallel processing of a CA on
CPU+GPU hybrid environments. Improvements in the execution times in the
pure GPU implementation and the Multi-GPU implementation have been achieved,
with speed-ups approaching 20 x, when compared to a serial CPU implementa-
tion. The MPI implementation of the code gave better timing than the im-
plementation using OpenMP, but the development time for the MPI code was
higher. The OpenMP implementation did not perform as expected, and it would
be necessary to carry out a detail code analysis with a tool like perf [26] to
improve it. Using the Multi-GPU code provides significant speed-ups, but only
for large grids (above a few million grid points).

There are several possible improvements for the codes presented here. For
instance, the codes could be adapted to support square grids with N being an
odd number, non-square grids, and odd number of processes. In addition, MPI
and Multi-GPU codes deal with neighbours in a simple way, but MPI provides
functions which could be used to perform these tasks more efficiently. There
was no optimization of the codes, beyond the standard compiler optimization.
There are several ways to optimize and improve performance in GPU codes:
management of shared memory, monitoring and reducing the number of registers
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used by each kernel, etc. Starting with CUDA 4.0, GPUDirect (http://goo.gl/
g7D1p) technology is available and supported by MVAPICH [27], and data can
be directly transferred between GPUs without passing through the main memory
system.

Once an efficient CA is implemented in multiple GPUs, one could move to
related problems, such as the Reaction-Diffusion Equations [19] [20], the Cahn-
Hilliard equation [17][18], or a CA representing some general problem of interest
[28].
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