
On-Stack Replacement, Distilled
Daniele Cono D’Elia
delia@dis.uniroma1.it

Sapienza University of Rome
Italy

Camil Demetrescu
demetres@dis.uniroma1.it
Sapienza University of Rome

Italy

Abstract
On-stack replacement (OSR) is essential technology for adap-
tive optimization, allowing changes to code actively exe-
cuting in a managed runtime. The engineering aspects of
OSR are well-known among VM architects, with several im-
plementations available to date. However, OSR is yet to be
explored as a general means to transfer execution between
related program versions, which can pave the road to un-
precedented applications that stretch beyond VMs.We aim at
filling this gap with a constructive and provably correct OSR
framework, allowing a class of general-purpose transforma-
tion functions to yield a special-purpose replacement. We
describe and evaluate an implementation of our technique
in LLVM. As a novel application of OSR, we present a feasi-
bility study on debugging of optimized code, showing how
our techniques can be used to fix variables holding incorrect
values at breakpoints due to optimizations.

CCS Concepts • Software and its engineering→Com-
pilers; Correctness; Just-in-time compilers; Software testing
and debugging;

Keywords Dynamic compilers, deoptimization, debugging.

ACM Reference Format:
Daniele Cono D’Elia and Camil Demetrescu. 2018. On-Stack Re-
placement, Distilled. In PLDI ’18: ACM SIGPLAN Conference on

Programming Language Design and Implementation, June 18–22,

2018, Philadelphia, PA, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3192366.3192396

1 Introduction
On-stack replacement (OSR) is a mechanism employed by
modern runtimes to support on-the-fly transitions between
variants of a currently executing function. OSR was first
prototyped in the SELF VM [24] and has since become a
fundamental element of multi-tier architectures in advanced

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PLDI ’18, June 18–22, 2018, Philadelphia, PA, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5698-5/18/06. . . $15.00
https://doi.org/10.1145/3192366.3192396

runtimes. OSR is commonly used to transfer the execution
between a base version of a function, which either is being
interpreted or a baseline compiler has produced code for it,
to a more optimized version, usually generated by a dynamic
compiler based on the run-time behavior. As speculative opti-
mizations are essential for high performance, deoptimization
may become necessary: it can be supported either by recon-
structing a frame for the interpreter or the baseline compiled
code, which both have a fixed stack layout, or by performing
OSR into dynamically generated code as in Jikes RVM [15].
Following the classification proposed in [29], we use OSR to
refer to both optimizing and deoptimizing transitions.
A multi-tier approach increases the implementation and

maintenance costs for a VM. Compilers have to encode the
metadata and glue code needed to get the program state to a
correct resumption point. For instance, unoptimized frame
reconstruction normally requires the creation of scope de-
scriptors accounting for program location and live variables
at each deoptimization point. Deoptimization entry points
may also be placed manually in the base tier as in V8 [45].
Also, restrictions may be put on optimizations to preserve
the feasibility of OSR at specific points.
As a key motivation for our work, we argue that gen-

eralizing OSR to support transitions at arbitrary program
points in the face of common classes of code transforma-
tions may not only be of interest for a VM implementor, but
more importantly pave the way to unprecedented interest-
ing use cases for OSR. For instance, one wishes to collect
information about a program crash in an optimized produc-
tion environment: OSR could be used to revert the state so
that a core dump would reflect the expected behavior at the
source level, reporting correct values for variables that are
live at the crash point. As a second example, a program can
be obfuscated to prevent security attacks via dynamic di-
versity by randomly diverting execution between different
program versions at arbitrary execution points. Furthermore,
OSR could be employed to switch between instrumented and
uninstrumented code in tools that perform IR instrumenta-
tion such as dynamic memory safety checkers.

Contributions and Overview. In this paper we contribute
to the theory and practice of OSR with a framework that
explores soundness and flexibility of OSR transitions be-
tween different versions of a program in the face of common
code transformations. The techniques presented here can be
implemented in a general-purpose compiler with a modest

https://doi.org/10.1145/3192366.3192396
https://doi.org/10.1145/3192366.3192396

PLDI ’18, June 18–22, 2018, Philadelphia, PA, USA Daniele Cono D’Elia and Camil Demetrescu

effort, and may provide useful building blocks to compiler
architects. Our contributions are three-fold:
• We distill the essence of OSR to an abstract program
morphing problem: code transformations can be made
OSR-aware in isolation, and then composed in arbi-
trary ways. For a class of common optimizations, we
devise an algorithm to generate the state realignment
code possibly required for a transition to take place.
A key observation is that for several classes of code
transformations it is enough to reconstruct just the
values of live variables rather than the entire state.
• We show that light changes are needed to accommo-
date our techniques in a general-purpose compiler. We
discuss an implementation of our ideas in LLVM, and
assess it over code drawn from popular benchmarks.
• We present a feasibility study of a novel OSR appli-
cation in optimized-code debugging. While optimiza-
tions can cause variables to hold inconsistent values
at breakpoints, our techniques are able to reconstruct
most values expected at the source level.

Section 2 introduces formal preliminaries. Section 3 and 4
describe our OSR theoretical framework. An implementation
is discussed in Section 5 and evaluated in Section 6. The
feasibility study is presented in Section 7. Section 8 addresses
related work. Section 9 presents directions for future work.

2 Language Framework
In this section we introduce some basic definitions used in
our representation of programs and code transformations.

2.1 Program Syntax and Semantics
Our discussion is based on a minimal imperative language
whose syntax is reported in Figure 1.

Definition 2.1 (Program). A program is a sequence of in-
structions of the form:

p = ⟨I1, I2, . . . , In⟩ ∈ Proд =
∞⋃
i=2

Instr i

where:
• Ii ∈ Instr is the i-th instruction of the program, in-
dexed by program point i ∈ [1,n]
• I1 = in · · · is the initial instruction
• ∀i ∈ [2,n − 1] : Ii , in · · · ∧ Ii , out · · ·

• In = out · · · is the final instruction

Instruction inmust appear at the beginning of a program and
specifies the variables that must be defined prior to entering
the program. Similarly, out occurs at the end and specifies
the variables that are returned as output. We indicate by
e[x] that x is a variable of the expression e ∈ Expr , and by
|p| = n the number of instructions in p = ⟨I1, I2, . . . , In⟩.
In order to provide a formal semantics, we need to intro-

duce definitions for program state and memory store:

Instr ::= Var := Expr
| if (Expr) goto Num
| goto Num
| skip | abort
| in Var · · ·Var | out Var · · ·Var

Expr ::= Num | Var | Expr + Expr | . . .

Var ::= X | Y | Z | . . .

Num ::= . . . | -2 | -1 | 0 | 1 | 2 | . . .

Figure 1. Program Syntax
Il = x:=e ∧ (σ , e) ⇓ v

(σ , l) ⇒p (σ [x← v], l + 1)
(1)

Il = goto m

(σ , l) ⇒p (σ , m)
(2)

Il = skip

(σ , l) ⇒p (σ , l + 1)
(3)

Il = if (e) goto m ∧ (σ , e) ⇓ 0
(σ , l) ⇒p (σ , l + 1)

(4)

Il = if (e) goto m ∧ (σ , e) ⇓ v ∧ v , 0
(σ , l) ⇒p (σ , m)

(5)

I1 = in x y · · · ∧ σ (x) , ⊥ ∧ σ (y) , ⊥ ∧ · · ·

(σ , 1) ⇒p (σ , 2)
(6)

In = out x y · · · ∧ σ (x) , ⊥ ∧ σ (y) , ⊥ ∧ · · ·

(σ , n) ⇒p (σ |{x,y, ··· }, n + 1)
(7)

Figure 2. Big-step semantics for the language of Figure 1.
Transition relation⇒p ⊆ State ×State is defined using meta-
variables x, y ∈ Var , e ∈ Expr , and m ∈ Num. For a transition
to apply, we assume that Il is defined, i.e., l ∈ [1,n].

Definition 2.2 (Memory Store). A memory store is a total
function σ : Var → Z∪ {⊥} that associates integer values to
defined variables, and ⊥ to undefined variables. We denote
by Σ the set of all possible memory stores.

By σ [x← v] we denote the same memory store function as
σ , except that x takes valuev . Furthermore, for anyA ⊆ Var ,
σ |A denotes σ restricted to the variables in A, i.e., σ |A (x) =
σ (x) if x ∈ A and σ |A (x) = ⊥ if x < A.

Definition 2.3 (Program State). The state of a program
p = ⟨I1, I2, . . . , In⟩ is described by a pair (σ , l), where σ is a
memory store and l ∈ [1,n] is the program point of the next
instruction to be executed. We denote by State = Σ × N the
set of all possible program states.

In Figure 2 we provide a big-step semantics for the language
using the transition relation⇒p⊆ State×State that specifies
how a single instruction of a program p affects its state. Our
description relies on the relation ⇓⊆ (Σ×Expr)×Z to describe
how expressions are evaluated in a given memory store.

Definition 2.4 (Program Semantic Function). We define the
semantic function [[p]] : Σ→ Σ of a program p as:
∀σ ∈ Σ : [[p]](σ) = σ ′ ⇐⇒ (σ , 1) ⇒∗p (σ ′, |p| + 1)

where⇒∗p is the transitive closure of⇒p.

Note that a program has undefined semantics if its execution
on a given store does not reach the final out instruction. This

On-Stack Replacement, Distilled PLDI ’18, June 18–22, 2018, Philadelphia, PA, USA

accounts for infinite loops, abort instructions, exceptions,
and ill-defined programs or input stores.We define the notion
of program semantic equivalence as follows:

Definition 2.5 (Program Equivalence). Two programs p1
and p2 are semantically equivalent iff [[p1]] = [[p2]].

Finally, we provide a definition of trace of a transition system
that will be useful to reason about feasible executions:

Definition 2.6 (Traces). For a transition system (S, R ⊆ S2)
a trace starting at s ∈ S is a sequence τ = ⟨s0, s1, . . . , si , . . .⟩
such that s0 = s and ∀i ≥ 0 : si ∈ τ ∧ si R si+1⇐⇒ si+1 ∈ τ .
We denote by TR,s the system of all traces starting from s .

For the deterministic transition relation⇒p of our language,
the system of traces T⇒p, (σ ,1) of the execution transition
system (Store,⇒p) contains a single trace starting at state
(σ , 1) for any initial store σ . We denote such trace by τpσ .

2.2 Program Properties and Transformations
In this section we present a formalism based on computation

tree logic (CTL) that is amenable to automated reasoning [9].
The same formalism can be used to reason about program
properties and to express program transformations.

Program Properties. A property can be expressed using a
Boolean formula with free meta-variables that combine facts
that must hold globally or at certain program points. Amodel

checker can check formulas against concrete programs: for
any program p and formula ϕ, the checker verifies whether
there exists a substitution θ that binds free meta-variables
with program objects so that θ (ϕ) is satisfied in p. ByA |= ϕ
we mean that structure A is a model of formula ϕ as in [9].

Analyses that involve finite maximal paths in the control
flow graph (CFG) such as liveness and dominance can be
expressed using first-order CTL operators to specify prop-
erties of CFG nodes and paths. In particular, temporal CTL
operators can be used to express properties of some or all
possible future computational paths, any one of which might
be an actual path that is realized. We say that for any point
l in a program p and two formulas ϕ and ψ , the following
predicates are satisfied at l if ϕ holds:

•
−−→
AX (ϕ): for all immediate successors of l ;
•
−−→
EX (ϕ): for at least one immediate successor of l ;
•
−→
A (ϕ U ψ): on all paths from l , untilψ holds;

•
−→
E (ϕ U ψ): on at least one path from l , untilψ holds.

Corresponding operators ←−−AX and ←−−EX are defined for immedi-
ate predecessors of l , while ←−A and ←−E refer to backward paths
from l . Operators A and E are quantifiers over paths, while
X and U path-specific quantifiers. Notice that an expression
of the form ϕ U ψ requires thatψ has to hold in the future.
Figure 3 shows a number of local predicates that will be

useful throughout this paper. For instance, p, l |= lives(x)

def(x) ≜ Il = x:=e ∨ Il = in · · · x · · ·

[x is defined by instruction Il in p]
use(x) ≜ Il = y:=e[x] ∨ Il = if (e[x]) goto m ∨

Il = out · · · [x is used by instruction Il in p]
stmt(I) ≜ I = Il [I is the instruction at l in p]

point(m) ≜ m = l [program point m is l in p]
trans(e) ≜ Il = x:=e’ ∧ ¬freevar(x, e) ∨ Il , x:=e’

[no constituent of e is modified by instr. Il in p]

lives(x) ≜
←−−
AX
←−
A (trueU def(x)) ∧

−→
E (¬def(x) U use(x))

[x is live at program point l in p]

Figure 3. Predicates expressing local properties of a point
l ∈ [1,n] in a program p = ⟨I1, . . . , In⟩, with meta-variables
e, e’ ∈ Expr , x, y ∈ Var , and l , m ∈ Num.

holds iff on all backward paths (←−A) starting at all the prede-
cessors (←−−AX) of l , x has been defined somewhere, and there
is at least one forward path from l that eventually reads x .
This allows us to define the set of live variables at any

given point of a program, which will play a central role in
this paper.

Definition 2.7 (Live Variables). The set of live variables of
a program p at point l is defined as:

live(p, l) ≜ { x ∈ Var : p, l |= lives(x) }

Later onwewill also use two global predicates: freevar(x, e),
which holds iff x is a free variable of expression e, and
conlit(c), which holds iff expression c is a constant literal.
Program Transformations. To describe transformations,
we use rewrite rules with side conditions drawn from CTL
formulas in a similar manner to [26, 28]. We consider gener-
alized rules that transform multiple instructions at once.

Definition 2.8 (Rewrite Rule). A rule T has the form:
T = m1 : Î1 =⇒ Î ′1 · · · mr : Îr =⇒ Î ′r if ϕ

where ∀k ∈ [1, r],mk is a meta-variable that denotes a pro-
gram point, Îk and Î ′k are program instruction patterns that
can contain meta-variables, and ϕ is a side condition that
states whether the rule can be applied to the input program.

The following example encodes a trivial peephole optimiza-
tion based on aweak form of operator strength reduction [10],
using three meta-variables m, x, and y:

m : y := 2 ∗ x =⇒ y := x + x if true

Rules can be applied to concrete programs by a transfor-
mation engine based on model checking. When a substitu-
tion θ can bind free meta-variables with program objects so
that θ (ϕ) is satisfied in p and θ (Îk) = Iθ (mk) ∈ p for some
k ∈ [1, r], then Iθ (mk) is replaced with θ (Î ′k) = I ′θ (mk)

∈ p′:

Definition 2.9 (Rule Semantics). Let T be a rewrite rule as
in Definition 2.8. The transformation function ⌈T ⌉ : Proд →
Proд is defined as follows:

PLDI ’18, June 18–22, 2018, Philadelphia, PA, USA Daniele Cono D’Elia and Camil Demetrescu

∀p, p′ ∈ Proд : p′ = ⌈T ⌉ (p) ⇐⇒ ∃ θ : p |= θ (ϕ) ∧

∀k ∈ [1, r] : θ (Îk) = Iθ (mk) ∈ p ∧ θ (Î ′k) = I ′θ (mk)
∈ p′

We say that T is semantics-preserving if for any program p it
holds [[p]] = [[p′]], where p′ = ⌈T ⌉ (p).

3 On-Stack Replacement Framework
OSR embodiments have to ensure that, whenever control
is transferred from a currently running function version to
another one, execution can transparently continue without
altering the intended program semantics. In the adaptive
optimization practice, optimizing OSR transitions typically
happen at places where state realignment is simple, i.e., at a
method or loop entry. The placement of deoptimizing OSR
points is determined by the runtime: it can emit them for
all instructions that might deoptimize [37], or group them
and resume execution from the last instruction in the deop-
timized code that causes outside-visible effects [49].
A framework for reasoning on the feasibility and sound-

ness of state transfers could not only be valuable in gener-
alized OSR applications such as those outlined in Section 1,
but provide novel ideas to VM architects as well. Previous
work has shown that performing OSR at more points can
enable additional optimization opportunities [13]. Similar
considerations can be made for deoptimization in multi-tier
VMs: for instance, current strategies may hamper optimiza-
tions in the deoptimization target code, such as those that
make new values alive across deoptimization points [45].
We propose a model based on OSR mappings with com-

pensation code. Code transformations become OSR-aware
in isolation, and can then be combined in arbitrary ways.

3.1 OSR Mappings
An OSR mapping encodes the machinery required to transfer
execution from a point l in a program p to a point l ′ in a
program p′, relying on a compensation code c to fix the
memory store so that execution can safely continue in p′.
Ideally, this should be done for any realizable state s of p, i.e.,
s is reachable by p from some initial store σ̂ , to a realizable
state s ′ of p′. For each point l where the mapping is defined,
c computes the expected values for live variables at the OSR
landing point l ′ in p′ from the live store at l in p.We formalize
these concepts in the following definition:

Definition 3.1 (OSR Mapping). For any p, p′ ∈ Proд, an
OSR mapping from p to p′ is a (possibly partial) function
Mpp′ : [1, |p|]→ [1, |p′ |] × Proд such that:

∀σ̂ ∈ Σ,∀s = (σ , l) ∈ τpσ̂ : l ∈ dom(Mpp′),

∃σ̂ ′ ∈ Σ,∃s ′ = (σ ′, l ′) ∈ τp′σ̂ ′ :
Mpp′ (l) = (l ′, c) ∧ [[c]](σ) |live(p′,l ′) = σ ′ |live(p′,l ′)

We say that the mapping is strict if σ̂ ′ = σ̂ .

OSR

(a) (b)

X

X

Figure 4. (a) OSR mapping allowing a transition from pro-
gram p at l to program p′ at l ′. (b) Algorithm reconstruct
identifies an assignment x := e at l ′def that reaches both l ′

and l ′at, and no other definition of x is possible.

The scenario of Definition 3.1 is illustrated in Figure 4(a).
Note that we use traces to describe feasible execution states
for the two programs.
If p′ has been derived from p via a code transformation

T , we say that T can be made OSR-aware if we can build a
forward mapping Mpp′ and a backward mapping Mp′p. When
a mapping is partial, there are points where OSR is not sup-
ported.

To simplify the discussion, we have used a weak notion of
store equality restricted to live variables, leaving load/store
instructions for discussion in Section 5.3.
The correctness of fixing only live variables in an OSR

mapping stems from the following claim, which states that
replacing at any time a store with another one where we
only keep live variables does not lead to a different output
for the program:

Theorem 3.2. Given any program p ∈ Proд and any initial
store σ̂ ∈ Σ, it holds that for any state (σ , l) ∈ τpσ̂ :

(σ , l) ⇒∗
p
(σ ′, |p|) ⇐⇒ (σ |live(p,l), l) ⇒

∗
p
(σ ′′, |p|)

where σ ′ |live(p, |p |) = σ
′′ |live(p, |p |) specifies the content of the

output variables of the program.

Proof (Sketch). To prove the claim, it is sufficient to reason
inductively on the number of transitions required to reach
the final instruction at program point |p| using the following
argument. For any state (σ1, l1) ∈ τpσ̂ , it holds:

(σ1, l1) ⇒p (σ2, l2) ⇐⇒ (σ1 |live(p,l1), l1) ⇒p (σ
′
2, l2)

where σ2 |live(p,l2) = σ ′2 |live(p,l2) , that is σ2 and σ ′2 have the
same live variables at l2. This follows by noticing that, if Il1
kills/creates a live variable when executed on (σ1, l1), then it
does the same when executed on (σ1 |live(p,l1), l1). Also, if an
expression is evaluated by Il1 , then all variables it contains
must be live, otherwise we would be contradicting the def-
inition of liveness. Hence, they are defined with the same
value in both σ1 and σ1 |live(p,l1) , leading to the same effect
of Il1 . Therefore, the resulting stores σ2 and σ ′2 concide on
the set of live variables of p at l2. 2

Theorem 3.2, applied to p′, allows concluding that an OSR
transition from p to p′ leads to a state from which we get the
same output we would have obtained by running p′ instead
of p.

On-Stack Replacement, Distilled PLDI ’18, June 18–22, 2018, Philadelphia, PA, USA

3.2 OSR Mapping Composition
A relevant property of our framework is that OSR mappings
can be composed. This allows us to make transformation
OSR-aware in isolation and apply them in sequence, as their
compensation code is amenable to program composition.

Definition 3.3 (Program composition). We say that two
programs p = ⟨I1, . . . , In⟩ and p′ = ⟨I ′1, . . . , I

′
n′⟩ are com-

posable if In = out x1, . . . ,xk and I ′1 = in x ′1, . . . ,x
′
k ′ with

{x ′1, . . . ,x
′
k ′ } ⊆ {x1, . . . ,xk }. For any pair of composable pro-

grams p, p′, we define p ◦ p′ = ⟨I1, . . . , In−1, Î ′2, . . . , Î ′n′⟩,
where ∀i ∈ [1,n′], Î ′i is obtained from I ′i by relocating each
goto targetm withm + n − 2.

The semantic function [[p◦p′]](σ) is defined as [[p′]] ([[p]](σ))
for any input store σ . Mapping composition is as follows:

Theorem 3.4 (Mapping Composition). Let p, p′, p′′ ∈ Proд,
let Mpp

′ and Mp
′
p
′′ be OSR mappings as in Definition 3.1, and let

Mpp
′ ◦Mp

′
p
′′ be a composition of mappings defined as follows:

∀l ∈ dom(Mpp
′) : Mpp

′ (l) = (l ′, c) ∧ l ′ ∈ dom(Mp
′
p
′′) :

Mp
′
p
′′ (l ′) = (l ′′, c′) =⇒ (Mpp

′ ◦Mp
′
p
′′) (l) = (l ′′, c ◦ c′)

Then Mpp
′ ◦Mp

′
p
′′ is an OSR mapping from p to p

′′
.

The theorem allows us to flexibly combine transformation
rules, provided that an OSR mapping between the original
and modified programs can be produced for each rule.

3.3 Discussion
Our framework aims at supporting classic and also specula-
tive optimizations, making them OSR-aware in isolation.
Observe that while strict mappings are a natural fit for
semantics-preserving transformations, Definition 3.1 is rather
general, as a non-strict mapping may capture transitions to
a program p′ that is not semantically equivalent to p. For in-
stance, p′ may contain speculatively optimized code, or just
some optimized fragments of p as in tracing JIT [3, 17, 18].
Execution in p′ can then be invalidated by firing an OSR
back to p or to some other recovery program.

Minor modifications are required to include function calls
and memory accesses, which we support already in the im-
plementation. However, one limitation is that the current for-
malization would not allow an executing function to trigger
an OSR for its caller: we plan to address frame replacement
in future work. Also, we wish to add support for optimiza-
tions such as software pipelining [26] where the OSR landing
location depends on the run-time values of variables.

4 Automating OSR Mapping Generation
In this section we describe how to automatically construct
OSR mappings between program versions generated using
compiler transformations T that satisfy a natural property
that we call live-variable equivalence.

Constant propagation (CP)
m : x := e[v] =⇒ x := e[c]
if conlit(c) ∧ m |=

←−
A (¬def(v) U stmt(v := c))

Dead code elimination (DCE)
m : x := e =⇒ skip

ifm |=
−−→
AX ¬

−→
E (true U use(x))

Code hoisting (Hoist)
p : skip =⇒ x := e
q : x := e =⇒ skip

if p |=
−→
A (¬use(x) U point(q)) ∧

q |=
←−
A ((¬def(x)∨point(q))∧trans(e) U point(p))

Figure 5. Rewrite rules for LVE common transformations.

4.1 Live-Variable Equivalent Transformations
Intuitively, live-variable equivalence of a transformation T
states that the live variables a program p and its transformed
version p′ = ⌈T ⌉ (p) have in common at any corresponding
state hold the same values. By corresponding states we mean
those that would be reached at any time by running simul-
taneously the two programs from the same initial store. To
characterize this property more precisely and prove that a
transformation is live-variable equivalent, we need to intro-
duce some formal machinery based on bisimulation.

Definition 4.1 (ProgramBisimulation). A relationR ⊆ State
× State is a bisimulation relation between two programs p
and p′ if for any input store σ ∈ Σ it holds:

s ∈ τpσ ∧ s ′ ∈ τp′σ ∧ s R s ′ =⇒

1) s ⇒p s1 =⇒ s ′ ⇒p′ s
′
1 ∧ s1 R s ′1

2) s ′ ⇒p′ s
′
1 =⇒ s ⇒p s1 ∧ s1 R s ′1

Our notion of bisimulation between programs p and p′ re-
quires that R be a bisimulation between transition systems
(τpσ ,⇒p) and (τp′σ ,⇒p′) for any store σ ∈ Σ. This implies
that for any σ , τpσ is finite iff τp′σ is finite; also, if they are
finite, then they have the same length. This assumption can
be made without loss of generality, as equal length of traces
can be enforced by padding programs with skip statements.

As a second ingredient, we need to characterize relations
between states that tolerate differences, as those that we
would get by comparing the corresponding states of two
different, but semantically equivalent, program versions:

Definition 4.2 (Partial State Equivalence). For any function
A : N → 2Var , the partial state equivalence relation RA ⊆
State × State is defined as:
RA ≜ {(s, s ′) : s = (σ , l) ∧ s ′ = (σ ′, l) ∧ σ |A(l) = σ

′ |A(l) }

Using this notion, we say that two programs p and p′ are
live-variable bisimilar if for any initial store they hold at
any time the same values for variables that are live in both
programs:

Definition 4.3 (Live-Variable Bisimilar Programs). p and p′
are live-variable bisimilar (LVB) if RA is a bisimulation rela-
tion between them, where A = l 7→ live(p, l) ∩ live(p′, l)

PLDI ’18, June 18–22, 2018, Philadelphia, PA, USA Daniele Cono D’Elia and Camil Demetrescu

is the function that yields for each program point l the set
of variables that are live at l in both p and p′.
Finally, we characterize live-variable equivalent transforma-
tions as those that yield LVB programs:
Definition 4.4 (Live-Variable Equivalent Transformation).
A program transformationT is live-variable equivalent (LVE)
if for any program p, p and ⌈T ⌉ (p) are live-variable bisimilar.
Live-variable equivalence is a natural property of funda-
mental compiler optimizations that insert, delete, or move
instructions around. We report in Figure 5 three examples
of semantics-preserving (see [27, 28]) LVE transformations.
Theorem 4.5. Transformations CP, DCE, and Hoist of Fig-

ure 5 are live-variable equivalent.

The argument for the proof follows the bisimulation relations
used in [27] to prove them correct. For CP, R is simply the
identity relation, while for DCE and Hoist it is piecewise-
defined on the indexes of the traces. Notice that Hoist expects
a skip to exist at the point where an instruction is moved.

4.2 Mapping Generation
We now discuss how to enhance an existing LVE transfor-
mation so that forward and backward OSR mappings for the
rewritten program can be generated automatically. We pro-
pose a general OSR_trans(p,T)→(p′,Mpp′,Mp′p) algorithm
that for an input program p and an LVE transformation T
builds:

1. a program p′ = ⌈T ⌉ (p);
2. a forward OSR mapping Mpp′ from p to p′;
3. a backward OSR mapping Mp′p from p′ to p.

The algorithm relies on two subroutines:
1. apply(p,T) → (p′,∆pp′,∆p′p)

Builds a program p′ by applying a transformation T
on program p, and two functions ∆pp′,∆p′p that map
program points between p and p′.

2. reconstruct(x, p, l , p′, l ′, l ′at) → c
Takes a variable x, the OSR origin and destination
points l and l ′ in programs p and p′, respectively, and
an additional point l ′at in p′. It builds a compensation
code fragment c that assigns x with the value it would
have had at l ′at just before reaching l ′, had execution
been carried on in p′ instead of p. This scenario is
illustrated in Figure 4(b).

The workflow of OSR_trans is as follows. To construct an
OSRmappingMpp′ from p to p′, it attempts to build a compen-
sation code c for each ordered pair (l , l ′) of program points
in the ∆pp′ function returned by apply(p,T). c is a program
that takes as input the x1, . . . ,xk live variables for the OSR
source location l in p, and assigns the correct values to the
x ′1, . . . ,x

′
k ′ live variables for execution to resume at l ′ in p′.

When dealing with an LVE transformation, reconstruct
needs only to be invoked for variables that are live at the OSR

ALGORITHM 1: Value reconstruction for LVE programs.

let ud(x , p̄, ld, lr) ≜ p̄, lr |=
←−−
AX
←−
A (¬def(x)U point(ld) ∧ def(x))

procedure reconstruct(x, p, l , p′, l ′, l ′at)
1 if ∃ l ′

def
: ud(x, p′, l ′

def
, l ′
at
)

2 if l ′
def

is visited return ⟨⟩
3 mark l ′def as visited
4 if ud(x, p, l ′

def
, l ′) ∧ x ∈ live(p′, l ′) ∩ live(p, l) return ⟨⟩

5 c← ⟨⟩
6 foreach y : y ∈ freevar(e) ∧ p

′, l ′
def
|= stmt(x:=e)

7 c← c · reconstruct(y, p, l , p′, l ′, l ′def)
8 return c← c · x:=e
9 else throw undef

destination but not at the source. The LVB hypothesis for p
and p′ entails that for any pair of corresponding locations,
variables that are live in both programs hold the same value.
We exploit this property in the formulation of reconstruct
given in Algorithm 1 for LVE transformations.

Algorithm description. reconstruct is called with l ′at =
l ′ by OSR_trans. The algorithm first checks1 whether there
is a unique reaching definition for x at some point l ′def in p′
reaching l ′at. In the presence of multiple reaching definitions,
the algorithm gives up. If x is live both at the origin l and at
the destination l ′, and the definition of x at l ′def that reaches
l ′at is also a unique reaching definition for x at l ′ (line 4),
then x would have assumed at l ′at the same value available
at l ′. For the LVB hypothesis, if x is already available at the
origin no value reconstruction is needed (return at line 4).

If x is not available at l , reconstruct iterates over all the
constituents of the assignment x := e computed at l ′def, i.e.,
the variables that occur in e, and recursively builds code to
compute the values that they would have assumed at l ′def
just before reaching l ′ if execution had been carried on in
p′. Once the recursively generated code has been added to c,
the assignment x := e is appended to it. Note that we mark
program points to avoid work repetition.

Construction of the Mp′p mapping is analogous up to index
renaming, thus details are not reported. The LVB hypothesis
is a sufficient condition for the correctness of our approach:
Theorem 4.6. For any program p and LVE transformationT ,
if apply(p,T) ≜ (p′,∆i,∆i) where ∆i : [1, |p|]→[1, |p|] is the
identity mapping between program points, then OSR_trans
(p,T)→(p′,Mpp

′,Mp
′
p) yields strict forward and backward OSR

mappings Mpp
′ and Mp

′
p, respectively, for programs p and p

′
.

Discussion. Theorem 3.4 provides us with the flexibility
to compose mappings generated from the LVE formulation
given in Algorithm 1 for reconstruct with mappings from
other transformations. Hence, it would be interesting to ex-
plore variants of the algorithm tailored to other classes of
optimizations (e.g., vectorization-based ones) as well.
1Predicate ud(x, p̄, ld, lr) captures the existence in a program p̄ of a unique
definition, located at ld, for variable x that reaches location lr.

On-Stack Replacement, Distilled PLDI ’18, June 18–22, 2018, Philadelphia, PA, USA

Algorithm 1 currently gives up when analyzing a variable
with multiple reaching definitions. Compilers using a static
single assignment (SSA) representation [12] model such a
variable using a ϕ function. Gating functions [36] might of-
fer a solution to us, as they capture the control conditions
that determine which incoming definition for a ϕ function
will provide the value. Compensation code could thus eval-
uate them against the current state and materialize a value
accordingly. We plan to explore this direction as future work.

5 Implementation
In this section we first describe the steps required for imple-
mentors to accommodate our ideas in a general-purpose com-
piler, then we present details for an embodiment in LLVM.

5.1 Mapping Program Points and Variables
In our abstract model, we implicitly map variables by the
same name, and unrealistically assume that corresponding
states for LVB programs are located at the same points.
In practice, OSR embodiments and deoptimization han-

dlers typically use scope descriptors to track program points
and local variables [45]. When such metadata are not avail-
able, one can instrument optimizations at places where IR
manipulations happen. We argue that for LVE transforma-
tions, it is enough to track the following primitive actions:

1. add(inst , loc): insert a new instruction at loc
2. delete(loc): delete instruction at loc
3. hoist(loc,newLoc): hoist instr. from loc to newLoc
4. sink(loc,newLoc): sink instr. from loc to newLoc
5. replace(oldOp,newOp, [inst]): uses of an operand in

inst or in the entire code are replaced with another
This comes at a little cost in some environments: for instance,
the profiling technique described in [51] relies on similar
actions (e.g., node elimination and movement, value node
replacement) that are exposed by the Graal compiler as IR
graph manipulations. Others such as LLVM require instead
manual placement of hooks inside the transformations, re-
gardless of where one wants to place an OSR point. Once the
tracking is done, no further changes to LVE optimizations
are required to support OSR.

5.2 Reconstructing Missing Variables
Once optimizations have been applied and IR mappings cre-
ated by apply, compensation code can be automatically built
using reconstruct. When an SSA representation is used, im-
plementing Algorithm 1 is easier, as the reaching definition
for a variable is unique at any point it dominates.
In general, a code optimizer might decide to keep a vari-

able alive to support deoptimization at some location, pro-
vided that the optimized version can still execute faster. In
a similar spirit, we devise two variants of reconstruct: a
live version using only live variables at the OSR source, and
an avail version that keeps alive already-computed values

that the algorithm cannot reconstruct otherwise. Keeping a
variable x alive should not be a concern in terms of register
pressure increase, as registers are occupied for the minimum
necessary: when x is assigned to a register, a compiler spills
it when about to be clobbered, to only reload it later when an
OSR is about to happen; when assigned to a stack location
instead, x is loaded to a physical register only at OSR time.

5.3 Supporting Memory Manipulation
Compilers rely on load and store operations to transfer
values between memory and registers. A simple sufficient
condition for correctness of transitions is that store instruc-
tions are executed at the same program point in all versions.
Indeed, when two program versions assign to a variable with
a load from the same address, and the variable is live at some
same program point in both versions, then the value read
from memory has to be the same in both versions. Our im-
plementation preserves the store invariant above while al-
lowing instructions that do not access memory to be hoisted
above or sunk below a store instruction. Notice that com-
mon LLVM optimizations such as loop hoisting and code
sinking deal with store instructions in a similar manner.
A possible extension for scenarios where the above as-

sumption might be too restrictive is as follows. Suppose that
a store is sunk during optimization. For each CFG location
between the original location and the insertion point: (a) in
an optimizing OSR, no compensation code is required, as the
store has been executed already, and re-executing it at the
insertion point will be harmless; (b) in a deoptimizing OSR,
we realign the memory state by executing the sunk store,
which has not been reached yet in the optimized version.

5.4 LLVM Implementation
We conclude the section by reporting implementation details
specific to LLVM. For the reader not familiar with it, opti-
mizations are expressed as passes that manipulate IR in SSA
form and are shared by front-ends for a variety of languages.
Architecture-specific optimizations are performed instead in
the back-end. For simplicity, front-ends are allowed to place
variables on the stack: the mem2reg pass will then promote
stack references to registers in SSA form.
Compared to our abstract model, IR conditionals and as-

signment instructions uniquely determine program locations,
while virtual registers correspond to variables in the store.

Making Passes OSR-Aware. Our implementation of apply
takes as input a function and a sequence of optimizations,
clones the function, optimizes the clone, and eventually con-
structs a mapping for program points and local variables
between the two versions by processing the history of ap-
plied actions (Section 5.1). IR mapping construction is imple-
mented in ~300 C++ LOC.

PLDI ’18, June 18–22, 2018, Philadelphia, PA, USA Daniele Cono D’Elia and Camil Demetrescu

Table 1. Edits performed to original LLVM passes.

A
D
CE

CP CS
E

LI
CM

SC
CP

Si
nk

LC LC
SS
A

ot
he
r

LOC 64 60 423 413 987 167 521 191 613
changed 4 5 16 13 12 6 45 17 31
actions 1 2 10 8 4 1 11 3 13

We make OSR-aware a number of standard optimizations,
including aggressive dead code elimination (ADCE), con-
stant propagation (CP), common subexpression elimination
(CSE), loop-invariant code motion (LICM), sparse conditional
constant propagation (SCCP), and code sinking (Sink). We
also augment the natural loop canonicalization (LC) and the
loop-closed SSA form-construction (LCSSA) utility passes
required by LICM. Optimizations performed in the back-end
such as instruction scheduling and register allocation do not
require instrumentation, as we operate at IR level.

if (isInstructionTriviallyDead(Inst , ...)) {

OSR_CM->deleteInstruction(Inst);
Inst ->eraseFromParent ();

Changed = true; continue; }

if (SimpleValue :: canHandle(Inst)) { // value number

if (Value *V = AvailableValues ->lookup(Inst)) {

OSR_CM->replaceAllUsesWith(Inst, V);
OSR_CM->deleteInstruction(Inst);
Inst ->replaceAllUsesWith(V);

Inst ->eraseFromParent ();

Changed = true; continue; } [...]

if (LoadInst *LI = dyn_cast <LoadInst >(Inst)) { [...]

// check for available load from right generation

std::pair <Value*, unsigned > InV =

AvailableLoads ->lookup(Inst ->getOperand (0));

if (InV.first != nullptr && InV.second == CurGen) {

if (!Inst ->use_empty ()) {
OSR_CM->replaceAllUsesWith(Inst, InV.first);
Inst ->replaceAllUsesWith(InV.first); }

OSR_CM->deleteInstruction(Inst);
Inst ->eraseFromParent ();

Changed = true; continue; } [...] }

Figure 6. Excerpt of instruction processing block in CSE. An
OSR_CM mapper object is used to track primitive actions.

Table 1 reports figures for our edits to the original code,
along with the number of primitive actions we track in each
pass. Changes involve updating a CodeMapper object (which
tracks IR updates) by instrumenting points where manipula-
tions happen. The last column describes changes to utility
methods that are shared between passes and that we analyze
only once. Figure 6 shows an excerpt of an OSR-aware pass:
actions (Section 5.1) often mimic common utilities for LLVM
IR manipulation, thus are simple to place once one has an
understanding of the high-level behavior of a pass.

reconstruct can take advantage of peculiarities of LLVM
IR, too. For instance, we identify and reconstruct ϕ-nodes

that always evaluate to the same value, such as those artifi-
cially inserted when constructing the LCSSA form. We also
capture implicit aliasing information from replace actions.

OSR Transitions. LLVM is used as a dynamic compiler in
several projects. The OSRKit library [13] provides the ma-
chinery to devise an OSR transition between two program
points, requiring the VM’s front-end to provide a mapping
between virtual registers in the two versions and the state
realignment code possibly required for the transition. [13]
tackles the engineering aspects for supporting OSR in LLVM,
presenting a case study in which glue code is hand-written
to support type specialization via dynamic inlining in MAT-
LAB. We hopefully make a step forward by showing for LVE
transformations how to automatically generate glue code
(and IR mappings) and compose them on top of OSRKit.

OSRKit can insert an OSR point in a function f at a location
l to a variant f’, guarding it with a user-provided condition.
The transition is modeled as a call that transfers the live state
to a continuation function f’to that can be generated ahead of
time or on the fly. f’to will execute any compensation code c
placed in its entry block before jumping to the resumption
point l ′. As OSRKit works at IR level, we provide it with a
mapping between live IR registers at the OSR point, and a
sequence c of instructions that can materialize values that
are live in f’ but not in f. As OSR metadata, we only maintain
the CodeMapper for the IR objects of the two code versions,
as glue code is generated on demand by reconstruct.

Note that as f’to is a specialization of f’ having l ′ as unique
entry point, it can typically execute faster than the original
f’ [15]. In our case, deleting unreachable blocks yields more
compact code, possibly improving register allocation, too.
Also, f’to in principle can be further optimized, including c.

Due to its placement, c does not affect optimization de-
cisions nor the steady-state overhead from the presence of
OSR points, which is minimal for OSRKit [13]. c is executed
only once and is typically small in practice (Table 3). OSR
guards are transparent to our framework, as we reason about
uninstrumented code variants. To extend the liveness range
of a virtual register for avail , it is sufficient to add it as argu-
ment for the call to f’to. An optional OSR edge probability
can be used to refine native code generation.

6 Evaluation
A preliminary investigation on classic benchmarks suggests
that our techniques may enable bidirectional OSR almost
everywhere in the face of common code optimizations.

6.1 Benchmarks and Environment
We integrate our techniques in the TinyVM artifact2 from
the OSRKit paper [13] for IR optimization, JIT compilation,
and benchmarking. Construction and composition of OSR

2Additions are available at https://github.com/dcdelia/tinyvm.

https://github.com/dcdelia/tinyvm

On-Stack Replacement, Distilled PLDI ’18, June 18–22, 2018, Philadelphia, PA, USA

Table 2. IR features of analyzed code. We report the number
of instructions |f| (|ϕ | of which are ϕ-nodes) in fbase and fopt,
and primitive actions tracked during optimization.

Benchmark |f b
as
e
|

|ϕ
ba
se
|

|f o
pt
|

|ϕ
op

t|

ad
d

de
le
te

ho
is
t

si
nk

re
pl
ac
e

bzip2 657 32 596 44 16 77 12 3 73
h264ref 671 28 576 36 9 105 4 21 102
hmmer 568 6 383 8 2 187 13 1 187
namd 1737 159 1636 224 68 169 36 73 162

perlbench 5574 305 5001 355 86 667 96 28 627
sjeng 1940 93 1540 105 13 413 20 34 413
soplex 195 2 154 2 0 41 2 4 41
bullet 587 24 553 42 26 60 37 3 52
dcraw 590 37 545 49 13 58 25 6 58
ffmpeg 618 34 462 40 11 168 9 17 103

fhourstones 288 29 284 39 14 20 3 0 16
vp8 334 41 299 60 19 54 17 34 54

mappings takes place when a sequence of passes is applied
to a function to obtain an optimized variant of it.

We evaluate our technique on the SPEC CPU2006 [21] and
the Phoronix PTS [38] benchmarking suites, reporting data
for a subset of their C/C++ benchmarks. We profile the
hottest method in each benchmark and when it accounts
for at least 5% of the execution time, we generate LLVM IR
for an fbase version using clang with the sole mem2reg pass
enabled. We then produce an fopt version by applying the
optimizations discussed in Section 5.4.
To validate our implementation, we compile and run the

code we generate for a sample of all feasible OSR source-
destination pairs. We use a machine equipped with an Intel
Core i7-3632QM, Ubuntu 14.10 64-bit and LLVM 3.6.2.

6.2 Results
In Table 2 we report aggregate figures for IR manipulations
performed by the optimizations. While the fopt version is typ-
ically shorter than its fbase counterpart, it might have a larger
number of ϕ-nodes: most extra nodes are commonly gen-
erated during the LCSSA-form construction and optimized
away in the back-end. SCCP can eliminate a large number
of unreachable blocks from ffmpeg, while CSE performs the
majority of deletions in the other benchmarks.

Optimizing OSR. Figure 7 shows how many of the pro-
gram points are feasible for an OSR from fbase to fopt depend-
ing on the version of reconstruct in use. Locations that do
not need a compensation code for OSR, i.e., c = ⟨⟩, account
for a limited fraction of all the program points (less than
10% for most benchmarks), suggesting that optimizations
can significantly affect how the live state of a program looks.

We observe that live performs well on most benchmarks:
for 9 out of 12 programs, we can build a compensation code
using only live variables at the OSR source for more than 60%
of the program points. For avail the percentage of feasible

 0

 20

 40

 60

 80

 100

bzip2

h264ref

hm
m

er

nam
d

perlbench

sjeng

soplex

bullet

dcraw

ffm
peg

fhourstones

vp8

P
ro

g
ra

m
 p

o
in

ts
 (

%
)

C = 〈 〉 live avail

Figure 7. Breakdown of feasible fbase → fopt OSR points.

 0

 20

 40

 60

 80

 100

bzip2

h264ref

hm
m

er

nam
d

perlbench

sjeng

soplex

bullet

dcraw

ffm
peg

fhourstones

vp8

P
ro

g
ra

m
 p

o
in

ts
 (

%
)

C = 〈 〉 live avail

Figure 8. Breakdown of feasible fopt → fbase OSR points.

OSR points grows almost to 100% for all benchmarks. The
ability to identify ϕ-nodes yielding a constant value is crucial
to support OSR at ∼20% of the program points in bullet.

In Table 3 we report average and peak size of the compen-
sation code c generated by live and avail for feasible OSR
points. Notice that averages are calculated on different sets
of program points, i.e., avail extends the set from live . The
assignment step of Algorithm 1 (line 8) generates an average
number of instructions typically smaller than 20, with the
notable exception of perlbench. Its hottest function highly
benefits from CSE: no less than 583 out of its 667 deleted
instructions (∼10% of the size of fbase) are removed by it.
Local CSE may reduce the size of the OSR entry block, too.
However, we do not optimize c by default as the impact of
compensation code on performance is hardly noticeable.

Table 3 also reports average and peak number of variables
(|Kavail |) that are not live at the source location, but avail
artificially keeps alive to support OSR at more points. Their
average number is less than 3 for 9 out of 12 benchmarks,
with a maximum of 6.15 for bullet. Also, notice that avail
uses a simple backtracking strategy to identify the minimal
set of variables that cannot be reconstructed otherwise.

Deoptimizing OSR. Figure 8 shows how many program
points are eligible for fopt-to-fbase deoptimization. We ob-
serve that the fraction of locations that can fire an OSR with
an empty c varies significantly among benchmarks, suggest-
ing a dependence on the structure of the original program.
For 9 out of 12 benchmarks, compensation code can be

built using only live variables for more than 50% of potential
OSR points. When the avail version is used, the percentage
of OSR-feasible program points is greater than 90% on all
benchmarks and nearly 100% for 9 out of 12 of them.

PLDI ’18, June 18–22, 2018, Philadelphia, PA, USA Daniele Cono D’Elia and Camil Demetrescu

Table 3. Average and peak size |c| of the compensation code generated by the two versions of reconstruct. |Kavail | is the
size of the set of variables to be kept artificially alive for OSR at program points represented by the top bars in Figure 7 and 8.

fbase → fopt fopt → fbase
|c | ← l ive |c | ← avail |Kavail | |c | ← l ive |c | ← avail |Kavail |

Benchmark Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max
bzip2 4.3 14 4.73 13 3.6 8 1.55 4 1.77 4 1.47 4
h264ref 2.9 5 3.37 5 1.02 2 4.46 9 2.82 9 1.45 7
hmmer 16.11 23 16.63 24 4.02 7 1 1 1 1 1.02 2
namd 18.61 28 17.82 28 3.38 6 1.5 2 5.93 15 4.74 18

perlbench 46.12 57 45.82 57 1.24 12 4.09 12 4.22 12 1.37 11
sjeng 9.72 21 18.52 32 4.2 12 1.29 2 1.67 11 4.09 14
soplex 5.02 7 4.38 7 2.34 4 3.3 4 3.3 4 1.00 1
bullet 16.69 46 15.93 46 6.15 17 1 1 1.26 3 1.14 2
dcraw 7.6 15 7.32 15 1.97 7 1.68 2 3.84 6 4.06 8
ffmpeg 5.05 8 4.03 8 1.85 3 1.94 5 1.95 6 1.08 4

fhourstones 4.5 6 4.98 6 1.7 2 0 0 1.12 4 1.42 4
vp8 10.51 16 10.13 17 2.35 6 5.74 13 5.51 13 1.18 5
Avg 12.26 20.50 12.81 21.50 2.82 7.17 2.30 4.58 2.87 7.33 2.00 6.67

In Table 3 we report statistics on the size of the compen-
sation code generated across feasible OSR points and the
number of variables to be kept alive by avail . Compared to
the optimizing OSR scenario, the size of c is much smaller,
suggesting that shorter portions of execution need to be re-
constructed in a deoptimizing OSR. Although we report a 0
size for fhourstones, some realignment is still needed: our
code contains minor optimizations not discussed here that
can detect when there is a live alias for a variable x that can
be used in its place throughout the IR.

7 Symbolic Debugging of Optimized Code
In this section we present a feasibility study of how our
algorithms for compensation code generation can provide
useful novel building blocks for optimized-code debuggers.
On prominent C benchmarks, reconstruct is able to recover
the expected source-level values for the vast majority of
scalar user variables that might not be reported correctly by a
debugger due to the effects of classic compiler optimizations.

7.1 Background
A source-level (or symbolic) debugger allows a programmer to
monitor an executing program at the source-language level.
Interactive mechanisms are typically provided to the user to
halt/resume the execution at breakpoints, and to inspect the
state of the program in terms of its source language.
The importance of the design and use of these tools was

already clear in the ’60s [14]. Optimizations are desirable in a
production environment, and bugs can surface when they are
enabled: a debuggable translation may hide them, or differ-
ences in timing behavior may trigger race conditions. Also,
optimization may be mandatory due to memory limitations,
efficiency reasons, or other platform-specific constraints [1].
Hennessy [20] describes the classic conflict between the

use of optimizations and the ability to debug a program
symbolically. A debugger provides the user with the illusion

that the source program is executing one statement at a time.
Optimizations preserve semantic equivalence, but can alter
the structure and the intermediate results of the program.

Two problems surface when trying to symbolically debug
optimized code [2, 25]: i) the code location problem, as the
debugger must determine the position of a breakpoint in the
optimized code, and ii) the data location problem, as users
expect values of variables at a breakpoint to be consistent
with the source code, but instructions may have been deleted
or reordered, or values been “lost” due to register allocation.
When attempting to debug optimized programs, debug-

gers may thus give misleading information about the value
of variables at breakpoints. Hence, the programmer has the
difficult task of attempting to unravel the optimized code and
determine what values the variables should have [20]. When
global optimizations can cause the run-time value of a vari-
able to be inconsistent with the source-level value expected
at the breakpoint, the variable is called endangered [2].
A symbolic debugger has two ways of presenting mean-

ingful information for an optimized program [47]: a) it can
provide expected behavior by hiding the effects of optimiza-
tions, presenting the program state consistently with what
the user expects from the source; or b) it can provide truthful
behavior bymaking them aware of the effects of the optimiza-
tions, and warning them of possibly surprising outcomes.
Constraining optimizations or adding extra code during

compilation to aid debugging does not solve the problem of
debugging the optimized translation of a program, as the
user debugs suboptimal code [1]. Source-level debuggers
should thus explore techniques to recover expected behavior
without relying on intrusive compiler extensions.

7.2 Using reconstruct for State Recovery
Dynamic deoptimization was pioneered in the SELF VM to
provide expected behavior with globally optimized code [23].

On-Stack Replacement, Distilled PLDI ’18, June 18–22, 2018, Philadelphia, PA, USA

Table 4. SPEC CPU2006 C benchmarks suite: for endangered
functions, we report weighted Avдд and unweighted Avдu
average of the fraction of program points with endangered
user variables, then mean, standard deviation, and peak num-
ber of endangered variables at such points. We use the num-
ber of IR instructions |fbase | as weight forAvдw , and consider
only IR program points corresponding to source locations.

Endangered functions

Fraction of End. user vars
Functions affected points per aff. point

Benchmark |Ftot | |Fopt | |Fend | Avдw Avдu Avg σ Max
bzip2 100 66 24 0.17 0.12 1.22 0.55 5
gcc 5 577 3 884 1 149 0.25 0.22 1.13 0.31 14

gobmk 2 523 1 664 893 0.40 0.29 1.48 0.72 9
h264ref 590 466 163 0.45 0.55 1.69 1.23 14
hmmer 538 429 80 0.17 0.22 1.13 0.37 5
lbm 19 17 2 0.30 0.51 1.97 1.37 3

libquantum 115 85 9 0.13 0.10 1.06 0.17 2
mcf 24 21 11 0.35 0.32 1.00 - 1
milc 235 157 34 0.24 0.21 1.14 0.29 3

perlbench 1 870 1 286 593 0.37 0.35 1.16 0.36 8
sjeng 144 113 31 0.26 0.20 1.24 0.42 3

sphinx3 369 275 76 0.29 0.31 1.19 0.44 6
Mean 0.26 0.25 1.26 0.47 6.08

Debugging information was supplied by the compiler at dis-
crete interrupt points that acted as a barrier for optimizations,
letting the compiler run unhindered between them. Moti-
vated by the observation that our algorithms do not limit
LVE transformations and can be applied at any location, we
investigate whether they can also encode useful information
for providing expected behavior in a source-level debugger.

As in most recent works on the topic, we focus on identi-
fying and recovering scalar source variables in the presence
of global optimizations. LLVM front-ends encode debug-
ging information as metadata attached to IR objects (e.g.,
instructions, global variables, functions). Metadata are trans-
parent to passes (i.e., they do not affect optimization) and
agnostic to both the source language and the target de-
bugging data format. Two intrinsics (llvm.dbg.value and
llvm.dbg.declare) are used to associate source variables
with a virtual register or the address of an alloca buffer.

We extend TinyVM to rebuild this mapping and identify
which locations in the unoptimized IR fbase correspond to
source-level locations (i.e., possible breakpoints) for a func-
tion. An OSR mapping is constructed as well when we apply
LVE transformations to generate fopt. For each location in
fopt that might correspond to (i.e., have as OSR landing pad)
a source-level location in fbase, we determine which live vari-
ables at the destination are live also at the source (and thus
yield the same value), andwhich ones are instead endangered
and may need recovery.

7.3 The SPEC CPU2006 Benchmarks
To capture a variety of programming patterns and styles from
applications with different sizes, we analyze each method of

each C benchmark from the SPEC CPU2006 suite, applying
the OSR-aware optimization passes from Section 5.4 to the
baseline IR version fbase obtained with clang −O0 followed
by mem2reg. Table 4 reports for each benchmark the code size
(LOC), the total number of functions in it (|Ftot |), the number
of functions modified by the applied optimizations (|fopt |)
and, in turn, how many optimized functions are endangered
(|Fend |), i.e., contain endangered user variables.

We observe that 11% (libquantum) to 54% (gobmk) of the
optimized functions are endangered, while for 10% to 33% of
the functions in each benchmark, the applied passes do not
kick in. For endangered functions, on average at more than
25% of program points there is at least a user variable whose
source value might not be reported correctly. For most func-
tions in the benchmarks, the average number of affected user
variables at such points ranges between 1 and 2, although
we sometimes observe higher peaks at specific points (e.g.,
as high as 9 for gobmk and 14 for gcc and h264ref).

To investigate possible correlations between the size of a
function and the number of user variables affected by source-
level debugging issues, we analyze the corpus of functions
for the three largest benchmarks in our suite, i.e., gcc, gobmk,
and perlbench. Our findings suggest that, although larger
functions might be more prone to have a large number of
affected variables, such issues frequently arise for smaller
functions as well.

7.4 Experimental Results
We evaluate the ability of reconstruct to recover the source-
level expected value for endangered user variables in the
SPEC CPU2006 experiments. For each function, we measure
the average recoverability ratio, defined as the average across
all IR points corresponding to source-level locations of the
ratio between recoverable and endangered user variables at
the point. Two versions of reconstruct can be used here.
Implementing live should not be difficult for debuggers

such as gdb and LLDB that can evaluate expressions over the
current program state, as it only needs to access the live state
of the optimized program at the breakpoint. avail could use
invisible breakpoints to spill a number of available values
before they are overwritten. Such breakpoints are largely em-
ployed in source-level debuggers [25, 47, 50]. Using spilled
values and the current live state, expected values for endan-
gered user variables can be reconstructed as for live . In a VM
with debugging features, one can recompile a function when
the user inserts a breakpoint in it, extending the liveness
range for available values possibly needed by reconstruct.
Figure 9 shows for each benchmark the global average

recoverability ratio achieved by live and avail on the set of
affected functions Fend . We observe that avail performs par-
ticularly well on all benchmarks, with a global ratio higher
than 95% for half of the benchmarks, and higher than 90%
for 10 out of 12 benchmarks. In the worst case (gobmk), we
observe a global ratio slightly higher than 83%. Results thus

PLDI ’18, June 18–22, 2018, Philadelphia, PA, USA Daniele Cono D’Elia and Camil Demetrescu

Table 5. Values to be preserved for avail . For functions that
have at least one such value, we report the fraction f rac of
|Fend | they cumulatively account for, the average number avд
of values to preserve across such functions, and the standard
deviation σ for it. No liveness extension is required in lbm.

bz
ip
2

gc
c

go
bm

k

h2
64
re
f

hm
m
er

lib
qu

an
tu
m

m
cf

m
ilc

pe
rlb

en
ch

sj
en
g

sp
hi
nx

3

M
ea
n

f rac 0.71 0.72 0.16 0.71 0.70 0.67 1.00 0.76 0.66 0.77 0.72 0.69
avд 3.24 2.77 2.31 4.90 2.79 3.00 1.82 2.19 4.76 1.88 2.31 2.91
σ 3.38 5.12 2.22 9.23 2.33 3.46 0.87 1.94 4.94 1.12 2.08 3.34

 0

 0.2

 0.4

 0.6

 0.8

 1

bzip2

gcc
gobm

k

h264ref

hm
m

er

lbm
libquantum

m
cf

m
ilc

perlbench

sjeng

sphinx3

live avail

Figure 9. Global average recoverability ratio, defined as the
weighted average of each function’s average recoverability
ratio. As in Table 4, we use |fbase | as weight for the average.

suggest that reconstruct can recover expected values for
the vast majority of source-level endangered variables.

To estimate how many values should be preserved to inte-
grate avail in a debugger, we collect for each function the
“keep” set of non-live available values to be saved to support
deoptimization across all program points corresponding to
source locations. We then compute the average and the stan-
dard deviation for the size of this set on all the endangered
functions. Figures reported in Table 5 show that typically a
third of the endangered functions do not require preserving
any value. For the remaining functions, 2.91 values need to
be preserved on average, with a peak of 4.90 for h264ref.
Observe that values in the keep set do not necessarily

need to be preserved all simultaneously or at all points, as
the minimal set to be maintained may change across function
regions. Typically when debugging, values are saved using an
invisible breakpoint before they are overwritten, and deleted
as soon as they are no longer needed [25].

8 Related Work
On-Stack Replacement. The SELF VM has pioneered dy-
namic deoptimization for source-level debugging [23] and
OSR [24] for efficient dynamic recompilation. The rise of the
Java language has then brought OSR technology to the mass
market, employing it in the most sophisticated runtimes.
HotSpot Server [37] instruments function entry points

and backward branches to optimize performance–critical
methods, and transfers execution to the interpreter when an
instruction triggers deoptimization, e.g., after class loading.
Jikes RVM places instrumentation as in HotSpot to en-

able a profile-driven deferred compilation mechanism [15].

OSR enables recovery from speculative inlining too, using a
stub to divert execution to a newly generated function. An
OSRBarrier can be injected when lowering bytecode for in-
terruptible methods to capture the JVM-level program state
before the bytecode is executed.

Graal [49] aggressively optimizes code via partial evalua-
tion, tracking the interpreter (i.e., unoptimized) state through-
out the compilation: FrameState metadata are thus used to
reconstruct interpreter frames during deoptimization. [45]
proposes an alternate scheme by letting the optimizing com-
piler generate also the deoptimization target code. This sim-
plifies the implementation of a deoptimization handler, as
frames are now described in a uniform format. The Truffle
language implementation framework [46] relies on Graal
and exposes deoptimization to the programmer, allowing
them to transition back to the interpreter and throw away
the machine code for a specialization state of a method [48].
We have discussed OSR in LLVM in Section 5.4. Also, an

earlier work [29] provides support in the legacy JIT for tran-
sitions at loop headers when no state adjustment is required.

V8 uses multiple compilers with the recent addition of an
interpreter. The IR graph is processed in an abstract fashion,
incrementally tracking changes to program state performed
by single instructions. In the lowering phase this information
is materialized as deoptimization data where needed. Its
highly optimizing TurboFan compiler supports OSR at loop
headers, generating a continuation function specialized for
the current variable values (as in Jikes) at the loop entry.
Most aforementioned works have an interpreter as de-

optimization target and focus on efficiency aspects related
to where to support bidirectional OSR transitions between
interpreted and compiled code; our goal has been to investi-
gate relations between program points and variables across
code versions. We share similarities with [48] in allowing
the same compiler for both code versions, and we hope that
our algorithms could help [48] support optimizations that
make new values alive across deoptimization entry points.
We share the goal of crystallizing OSR abstractions and

explore reusable solutions with [43], which prototypes in the
Mu micro VM [44] a frame replacement API with an abstract
view of stacks that can easily be used in any runtime, and
has been implemented even on concrete hardware.

Correctness of Compiler Optimizations. Translation val-
idation [35, 39] aims at verifying semantic equivalence for
an optimized translation of a specific program. [27, 28] use
rewrite rules with CTL-based side conditions to express
transformations and prove them correct, while [30, 31] in-
vestigate automated soundness proofs for transformations
expressed in a similar manner. Alive [32] has emerged as a
domain-specific language for writing sound LLVM peephole
optimizations. While these works focus on proving optimiza-
tions sound, in this paper we aim at proving OSR correct in
the presence of optimizations that we know to be sound.

On-Stack Replacement, Distilled PLDI ’18, June 18–22, 2018, Philadelphia, PA, USA

[26] aims at proving the equivalence of parameterized

programs, which yields correctness of transformation rules
once for all. This approach deserves further investigation
in our setting, as it could provide a principled approach to
computing mappings between equivalent points in different
versions in the face of complex optimizations. [16] studies
the correctness of speculative JIT optimizations, showing
how incorporating assumptions in the IR makes it easier to
reason about equivalence. We look forward to investigating
how our techniques and theirs might benefit from each other.

Optimized-Code Debugging. We only know of one work
that supports full symbolic debugging with expected behav-
ior. TARDIS [5] is a time-traveling debugger for VMs that
saves program state on a regular basis, and runs the unop-
timized code in a restored snapshot to answer queries. Our
solution is different, as it lies at the performance-preserving
end of the spectrum [1], and in some ways more general, as
it can be applied to statically compiled languages such as C.
Wu et al. [47] propose a framework to selectively take

control of the execution by inserting four kinds of break-
points, and perform a forward recovery process in an emula-
tor that executes the optimized instructions mimicking their
ordering at the source level. The emulation scheme however
cannot report values whose reportability is path-sensitive.
FULLDOC [25] makes a step further, as it can provide truth-
ful behavior for deleted values, and expected behavior for
the other values. The authors remark that FULLDOC can be
integrated with techniques for reconstructing deleted values:
our reconstruct might be an ideal candidate.

Hennessy [20] presents value recovery algorithms for lo-
cal (with weaker extensions to global) optimizations, but
advances in modern compilers make a revision of the as-
sumptions behind them necessary [11]. Adl-Tabatabai [1]
presents algorithms that identify aliases for source variables
in compiler temporaries introduced by global optimizations.
This idea is captured by our technique, which can also use
facts recorded during IR manipulation when recursively re-
constructing portions of the original program’s state.

Other Related Work. Product programs [6] used in verifi-
cation of relational and k-safety properties are orthogonal to
multi-version programs, which embody the notion of OSR
and rely on CTL andmodel checking. [8] discusses loop tiling
in the face of throw statements that thwart optimizations:
to roll back out-of-order updates during deoptimization, an
algorithm identifies a minimal number of elements to back
up. Our work does not log incremental state changes, and
may resort to liveness extension for available variables only.

We share similarities with the formalism from [19] for ver-
ifiable dynamic software updating (DSU): patches come with
heap transformer expressions, while a language construct in-
dicates where updates can take place; symbolic execution [4]
and Thor [34] are used for verification. DSU [22] faces more

complex requirements than OSR, for instance involving dif-
ferent object versions [33], but can take place once execution
reaches a safe point. [41, 42] discuss how to integrate DSU
in a VM and devise extensions to the OSR support of Jikes.

Of a different flavor, but in a similar spirit as ours, [18] uses
bisimulation to study what trace optimizations are sound. A
dynamic compiler uses OSR to replace whole methods; a trac-
ing JIT aggressively optimizes linear recorded instruction
sequences, which control flow can leave through guarded
side exits only: for instance, RPython [40] uses trampolines
to analyze resume information for a guard and runs a com-
pensation code to leave the trace, while SPUR [7] uses a
transfer-tail JIT to bridge the execution to the baseline JIT.

9 Conclusions
This paper aims at making a first step towards a more general
applicability of OSR. We hope that our ideas can provide the
foundation for exploring novel applications of OSR and shed
light on its flexibility. Optimizations can significantly affect
the live state of a program across its locations: we show how
to generate compensation code that runs in O(1) time by
recursively reassembling portions of the state for the target
function. Preliminary evidence suggests that our techniques
can provide useful building blocks for symbolic debuggers.
Also, we enable bidirectional transitions at most program
locations in a dynamic compilation setting. While we have
prototyped them in LLVM, our ideas are general and do not
depend on a specific platform or IR representation.

A number of directions for future work are possible. Cur-
rently, we only study static transformations that are often
enabled by dynamic optimizations: we would like to explore
handling purely dynamic ones as well, for instance to ma-
terialize objects that have been optimized by scalar replace-
ment. We also plan to model frame replacement and identify
other classes of transformations for which a special-purpose
replacement can be automatically generated. Heavy-duty
transformations may likely require state logging as in the
tiling case [8], leaving interesting performance/flexibility
trade-offs for exploration. Compensation code with control
flow (e.g., using gating functions) might enable state recon-
struction at points that our live reconstruction algorithm
currently does not support. More flexibility might come from
observational equivalence as well, by allowing for execution
transfers to the last state-changing instruction in lieu of the
equivalent program point, letting the target code re-execute
side-effect free instructions as in Graal. reconstruct may
also be used to rematerialize dead values in a VM, instead of
keeping them alive in optimized code.

Acknowledgements. We are grateful to Gustavo Petri for
suggesting the use of bisimulation in our theoretical frame-
work, to Jan Vitek for some enlightening discussions, and
to the anonymous PLDI reviewers and our shepherd Iulian
Neamtiu for their many useful comments.

PLDI ’18, June 18–22, 2018, Philadelphia, PA, USA Daniele Cono D’Elia and Camil Demetrescu

References
[1] Ali-Reza Adl-Tabatabai. 1996. Source-Level Debugging of Globally

Optimized Code. Ph.D. Dissertation. Carnegie Mellon University, Pitts-
burgh, PA, USA. Advisor(s) Gross, Thomas. URL http://citeseerx.ist.
psu.edu/viewdoc/summary?doi=10.1.1.73.5762. Accessed: 2016-06-18.

[2] Ali-Reza Adl-Tabatabai and Thomas Gross. 1996. Source-level De-
bugging of Scalar Optimized Code. In Proceedings of the ACM SIG-

PLAN 1996 Conference on Programming Language Design and Im-

plementation (PLDI ’96). ACM, New York, NY, USA, 33–43. https:
//doi.org/10.1145/231379.231388

[3] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. 2000. Dy-
namo: A Transparent Dynamic Optimization System. In Proceedings

of the ACM SIGPLAN 2000 Conference on Programming Language De-

sign and Implementation (PLDI ’00). ACM, New York, NY, USA, 1–12.
https://doi.org/10.1145/349299.349303

[4] Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Deme-
trescu, and Irene Finocchi. 2018. A Survey of Symbolic Execution
Techniques. ACM Comput. Surv. 51, 3 (2018).

[5] Earl T. Barr and Mark Marron. 2014. TARDIS: Affordable Time-travel
Debugging in Managed Runtimes. In Proceedings of the 2014 ACM

International Conference on Object Oriented Programming Systems Lan-

guages & Applications (OOPSLA ’14). ACM, New York, NY, USA, 67–82.
https://doi.org/10.1145/2660193.2660209

[6] Gilles Barthe, Juan Manuel Crespo, and César Kunz. 2011. Rela-
tional Verification Using Product Programs. In Proceedings of the

17th International Conference on Formal Methods (FM’11). Springer-
Verlag, Berlin, Heidelberg, 200–214. http://dl.acm.org/citation.cfm?
id=2021296.2021319

[7] Michael Bebenita, Florian Brandner, Manuel Fahndrich, Francesco
Logozzo, Wolfram Schulte, Nikolai Tillmann, and Herman Venter.
2010. SPUR: A Trace-based JIT Compiler for CIL. In Proceedings of the

ACM International Conference on Object Oriented Programming Systems

Languages and Applications (OOPSLA ’10). ACM, New York, NY, USA,
708–725. https://doi.org/10.1145/1869459.1869517

[8] Abhilash Bhandari and V. Krishna Nandivada. 2015. Loop Tiling in
the Presence of Exceptions. In 29th European Conference on Object-

Oriented Programming (ECOOP 2015) (Leibniz International Proceed-

ings in Informatics (LIPIcs)), John Tang Boyland (Ed.), Vol. 37. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 124–
148. https://doi.org/10.4230/LIPIcs.ECOOP.2015.124

[9] E. M. Clarke, E. A. Emerson, and A. P. Sistla. 1986. Automatic Ver-
ification of Finite-state Concurrent Systems Using Temporal Logic
Specifications. ACM Transactions on Programming Languages and

Systems 8, 2 (April 1986), 244–263. https://doi.org/10.1145/5397.5399
[10] Keith D. Cooper, L. Taylor Simpson, and Christopher A. Vick. 2001.

Operator Strength Reduction. ACM Transactions on Programming

Languages and Systems 23, 5 (Sept. 2001), 603–625. https://doi.org/10.
1145/504709.504710

[11] Max Copperman and Charles E. McDowell. 1993. A Further Note on
Hennessy’s “Symbolic Debugging of Optimized Code”. ACM Transac-

tions Programming Languages and Systems 15, 2 (April 1993), 357–365.
https://doi.org/10.1145/169701.214526

[12] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. 1991. Efficiently Computing Static Single Assign-
ment Form and the Control Dependence Graph. ACM Transactions

on Programming Languages and Systems 13, 4 (Oct. 1991), 451–490.
https://doi.org/10.1145/115372.115320

[13] Daniele Cono D’Elia and Camil Demetrescu. 2016. Flexible On-stack
Replacement in LLVM. In Proceedings of the 2016 International Sym-

posium on Code Generation and Optimization (CGO 2016). ACM, New
York, NY, USA, 250–260. https://doi.org/10.1145/2854038.2854061

[14] Thomas G. Evans and D. Lucille Darley. 1966. On-line Debugging
Techniques: A Survey. In Proceedings of the November 7-10, 1966, Fall

Joint Computer Conference (AFIPS ’66 (Fall)). ACM, New York, NY, USA,

37–50. https://doi.org/10.1145/1464291.1464295
[15] Stephen J Fink and Feng Qian. 2003. Design, Implementation and

Evaluation of Adaptive Recompilation with On-Stack Replacement. In
Proceedings of the International Symposium on Code Generation and

Optimization: Feedback-directed and Runtime Optimization (CGO ’03).
IEEE Computer Society, 241–252. https://doi.org/10.1109/cgo.2003.
1191549

[16] Olivier Flückiger, Gabriel Scherer, Ming-Ho Yee, Aviral Goel, Amal
Ahmed, and Jan Vitek. 2017. Correctness of Speculative Optimizations
with Dynamic Deoptimization. Proc. ACM Program. Lang. 2, POPL,
Article 49 (Dec. 2017), 28 pages. https://doi.org/10.1145/3158137

[17] Andreas Gal, Brendan Eich, Mike Shaver, David Anderson, David
Mandelin, Mohammad R. Haghighat, Blake Kaplan, Graydon Hoare,
Boris Zbarsky, Jason Orendorff, Jesse Ruderman, EdwinW. Smith, Rick
Reitmaier, Michael Bebenita, Mason Chang, and Michael Franz. 2009.
Trace-based Just-in-Time Type Specialization for Dynamic Languages.
In Proceedings of the 30th ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI ’09). ACM, New York, NY,
USA, 465–478. https://doi.org/10.1145/1542476.1542528

[18] Shu-yu Guo and Jens Palsberg. 2011. The Essence of Compiling with
Traces. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Sym-

posium on Principles of Programming Languages (POPL ’11). ACM, New
York, NY, USA, 563–574. https://doi.org/10.1145/1926385.1926450

[19] Christopher M. Hayden, Stephen Magill, Michael Hicks, Nate Foster,
and Jeffrey S. Foster. 2012. Specifying and Verifying the Correctness
of Dynamic Software Updates. In Proceedings of the 4th International

Conference on Verified Software: Theories, Tools, Experiments (VSTTE’12).
Springer-Verlag, Berlin, Heidelberg, 278–293. https://doi.org/10.1007/
978-3-642-27705-4_22

[20] John Hennessy. 1982. Symbolic Debugging of Optimized Code. ACM
Transactions on Programming Languages and Systems 4, 3 (July 1982),
323–344. https://doi.org/10.1145/357172.357173

[21] John L. Henning. 2006. SPEC CPU2006 Benchmark Descriptions.
SIGARCH Computer Architecture News 34, 4 (Sept. 2006), 1–17. https:
//doi.org/10.1145/1186736.1186737

[22] Michael Hicks and Scott Nettles. 2005. Dynamic Software Updating.
ACM Trans. Program. Lang. Syst. 27, 6 (Nov. 2005), 1049–1096. https:
//doi.org/10.1145/1108970.1108971

[23] Urs Hölzle, Craig Chambers, and David Ungar. 1992. Debugging
Optimized Code with Dynamic Deoptimization. In Proceedings of the

ACM SIGPLAN 1992 Conference on Programming Language Design and

Implementation (PLDI ’92). ACM, New York, NY, USA, 32–43. https:
//doi.org/10.1145/143095.143114

[24] Urs Hölzle and David Ungar. 1994. A Third-generation SELF Implemen-
tation: Reconciling Responsiveness with Performance. In Proceedings

of the Ninth Annual Conference on Object-oriented Programming Sys-

tems, Language, and Applications (OOPSLA ’94). ACM, New York, NY,
USA, 229–243. https://doi.org/10.1145/191080.191116

[25] Clara Jaramillo, Rajiv Gupta, and Mary Lou Soffa. 2000. FULLDOC: A
Full Reporting Debugger for Optimized Code. In Proceedings of the 7th

International Symposium on Static Analysis (SAS ’00). Springer, Berlin,
Heidelberg, 240–259. https://doi.org/10.1007/978-3-540-45099-3_13

[26] Sudipta Kundu, Zachary Tatlock, and Sorin Lerner. 2009. Proving
Optimizations Correct Using Parameterized Program Equivalence. In
Proceedings of the 30th ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI ’09). ACM, New York, NY,
USA, 327–337. https://doi.org/10.1145/1542476.1542513

[27] David Lacey, Neil D. Jones, Eric Van Wyk, and Carl Christian Fred-
eriksen. 2002. Proving Correctness of Compiler Optimizations by
Temporal Logic. In Proceedings of the 29th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL ’02). ACM,
New York, NY, USA, 283–294. https://doi.org/10.1145/503272.503299

[28] David Lacey, Neil D. Jones, Eric Van Wyk, and Carl Christian Fred-
eriksen. 2004. Compiler Optimization Correctness by Temporal Logic.
Higher-Order and Symbolic Computation 17, 3 (Sept. 2004), 173–206.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.73.5762
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.73.5762
https://doi.org/10.1145/231379.231388
https://doi.org/10.1145/231379.231388
https://doi.org/10.1145/349299.349303
https://doi.org/10.1145/2660193.2660209
http://dl.acm.org/citation.cfm?id=2021296.2021319
http://dl.acm.org/citation.cfm?id=2021296.2021319
https://doi.org/10.1145/1869459.1869517
https://doi.org/10.4230/LIPIcs.ECOOP.2015.124
https://doi.org/10.1145/5397.5399
https://doi.org/10.1145/504709.504710
https://doi.org/10.1145/504709.504710
https://doi.org/10.1145/169701.214526
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/2854038.2854061
https://doi.org/10.1145/1464291.1464295
https://doi.org/10.1109/cgo.2003.1191549
https://doi.org/10.1109/cgo.2003.1191549
https://doi.org/10.1145/3158137
https://doi.org/10.1145/1542476.1542528
https://doi.org/10.1145/1926385.1926450
https://doi.org/10.1007/978-3-642-27705-4_22
https://doi.org/10.1007/978-3-642-27705-4_22
https://doi.org/10.1145/357172.357173
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1145/1108970.1108971
https://doi.org/10.1145/1108970.1108971
https://doi.org/10.1145/143095.143114
https://doi.org/10.1145/143095.143114
https://doi.org/10.1145/191080.191116
https://doi.org/10.1007/978-3-540-45099-3_13
https://doi.org/10.1145/1542476.1542513
https://doi.org/10.1145/503272.503299

On-Stack Replacement, Distilled PLDI ’18, June 18–22, 2018, Philadelphia, PA, USA

https://doi.org/10.1023/B:LISP.0000029444.99264.c0
[29] Nurudeen A. Lameed and Laurie J. Hendren. 2013. A Modular Ap-

proach to On-Stack Replacement in LLVM. In Proceedings of the

9th ACM SIGPLAN/SIGOPS International Conference on Virtual Ex-

ecution Environments (VEE ’13). ACM, New York, NY, USA, 143–154.
https://doi.org/10.1145/2451512.2451541

[30] Sorin Lerner, Todd Millstein, and Craig Chambers. 2003. Automatically
Proving the Correctness of Compiler Optimizations. In Proceedings of

the ACM SIGPLAN 2003 Conference on Programming Language Design

and Implementation (PLDI ’03). ACM, New York, NY, USA, 220–231.
https://doi.org/10.1145/781131.781156

[31] Sorin Lerner, Todd Millstein, Erika Rice, and Craig Chambers. 2005.
Automated Soundness Proofs for Dataflow Analyses and Transforma-
tions via Local Rules. In Proceedings of the 32Nd ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL ’05). ACM,
New York, NY, USA, 364–377. https://doi.org/10.1145/1040305.1040335

[32] Nuno P. Lopes, David Menendez, Santosh Nagarakatte, and John
Regehr. 2015. Provably Correct Peephole Optimizations with Alive.
In Proceedings of the 36th ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI ’15). ACM, New York, NY,
USA, 22–32. https://doi.org/10.1145/2737924.2737965

[33] Stephen Magill, Michael Hicks, Suriya Subramanian, and Kathryn S.
McKinley. 2012. Automating Object Transformations for Dynamic
Software Updating. In Proceedings of the ACM International Conference

on Object Oriented Programming Systems Languages and Applications

(OOPSLA ’12). ACM, New York, NY, USA, 265–280. https://doi.org/10.
1145/2384616.2384636

[34] Stephen Magill, Ming-Hsien Tsai, Peter Lee, and Yih-Kuen Tsay.
2008. THOR: A Tool for Reasoning About Shape and Arithmetic.
In Proceedings of the 20th International Conference on Computer Aided

Verification (CAV ’08). Springer-Verlag, Berlin, Heidelberg, 428–432.
https://doi.org/10.1007/978-3-540-70545-1_41

[35] George C. Necula. 2000. Translation Validation for an Optimizing
Compiler. In Proceedings of the ACM SIGPLAN 2000 Conference on

Programming Language Design and Implementation (PLDI ’00). ACM,
New York, NY, USA, 83–94. https://doi.org/10.1145/349299.349314

[36] Karl J. Ottenstein, Robert A. Ballance, and Arthur B. MacCabe. 1990.
The Program DependenceWeb: A Representation Supporting Control-,
Data-, and Demand-driven Interpretation of Imperative Languages.
In Proceedings of the ACM SIGPLAN 1990 Conference on Programming

Language Design and Implementation (PLDI ’90). ACM, New York, NY,
USA, 257–271. https://doi.org/10.1145/93542.93578

[37] Michael Paleczny, Christopher Vick, and Cliff Click. 2001. The Java
HotSpot™ Server Compiler. In Proceedings of the 2001 Symposium on

JavaTM Virtual Machine Research and Technology Symposium - Volume

1 (JVM’01). USENIX Association, Berkeley, CA, USA.
[38] Phoronix. 2016. Phoronix Test Suite (PTS). (2016). URL http://www.

phoronix-test-suite.com/. Accessed: 2017-04-09.
[39] Amir Pnueli, Michael Siegel, and Eli Singerman. 1998. Translation

Validation. In Proceedings of the 4th International Conference on Tools

and Algorithms for Construction and Analysis of Systems (TACAS ’98).
Springer-Verlag, London, UK, UK, 151–166. https://doi.org/10.1007/
bfb0054170

[40] David Schneider and Carl Friedrich Bolz. 2012. The Efficient Handling
of Guards in the Design of RPython’s Tracing JIT. In Proceedings of the

Sixth ACM Workshop on Virtual Machines and Intermediate Languages

(VMIL ’12). ACM, New York, NY, USA, 3–12. https://doi.org/10.1145/
2414740.2414743

[41] Suriya Subramanian. 2010. Dynamic Software Updates: A VM-Centric

Approach. Ph.D. Dissertation. The University of Texas at Austin, Austin,
TX, USA. Advisor(s) McKinley, Kathryn. URL https://suriya.github.io/
papers/suriya-thesis-final.pdf. Accessed: 2017-11-13.

[42] Suriya Subramanian, Michael Hicks, and Kathryn S. McKinley. 2009.
Dynamic Software Updates: A VM-centric Approach. In Proceedings of

the 30th ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI ’09). ACM, New York, NY, USA, 1–12. https:
//doi.org/10.1145/1542476.1542478

[43] Kunshan Wang, Stephen M. Blackburn, Antony L. Hosking, and
Michael Norrish. 2018. Hop, Skip, & Jump: Practical On-Stack Re-
placement for a Cross-Platform Language-Neutral VM. In Proceedings

of the 14th ACM SIGPLAN/SIGOPS International Conference on Virtual

Execution Environments (VEE ’18). ACM, New York, NY, USA, 1–16.
https://doi.org/10.1145/3186411.3186412

[44] Kunshan Wang, Yi Lin, Stephen M. Blackburn, Michael Norrish, and
Antony L. Hosking. 2015. Draining the Swamp: Micro Virtual Ma-
chines as Solid Foundation for Language Development. In 1st Summit

on Advances in Programming Languages, SNAPL 2015, May 3-6, 2015,

Asilomar, California, USA. 321–336. https://doi.org/10.4230/LIPIcs.
SNAPL.2015.321

[45] Christian Wimmer, Vojin Jovanovic, Erik Eckstein, and Thomas
Würthinger. 2017. One Compiler: Deoptimization to Optimized
Code. In Proceedings of the 26th International Conference on Com-

piler Construction (CC 2017). ACM, New York, NY, USA, 55–64. https:
//doi.org/10.1145/3033019.3033025

[46] Christian Wimmer and Thomas Würthinger. 2012. Truffle: A Self-
optimizing Runtime System. In Proceedings of the 3rd Annual Confer-

ence on Systems, Programming, and Applications: Software for Humanity

(SPLASH ’12). ACM, New York, NY, USA, 13–14. https://doi.org/10.
1145/2384716.2384723

[47] Le-Chun Wu, Rajiv Mirani, Harish Patil, Bruce Olsen, and Wen-mei W.
Hwu. 1999. A New Framework for Debugging Globally Optimized
Code. In Proceedings of the ACM SIGPLAN 1999 Conference on Program-

ming Language Design and Implementation (PLDI ’99). ACM, New York,
NY, USA, 181–191. https://doi.org/10.1145/301618.301663

[48] Thomas Würthinger, Christian Wimmer, Christian Humer, Andreas
Wöß, Lukas Stadler, Chris Seaton, Gilles Duboscq, Doug Simon,
and Matthias Grimmer. 2017. Practical Partial Evaluation for High-
performance Dynamic Language Runtimes. In Proceedings of the 38th

ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI 2017). ACM, New York, NY, USA, 662–676.
https://doi.org/10.1145/3062341.3062381

[49] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler,
Gilles Duboscq, Christian Humer, Gregor Richards, Doug Simon, and
Mario Wolczko. 2013. One VM to Rule Them All. In Proceedings of

the 2013 ACM International Symposium on New Ideas, New Paradigms,

and Reflections on Programming & Software (Onward! 2013). ACM, New
York, NY, USA, 187–204. https://doi.org/10.1145/2509578.2509581

[50] Polle T. Zellweger. 1983. An Interactive High-level Debugger for
Control-flow Optimized Programs. In Proceedings of the Symposium

on High-level Debugging (SIGSOFT ’83). ACM, New York, NY, USA,
159–172. https://doi.org/10.1145/1006147.1006183

[51] Yudi Zheng, Lubomír Bulej, and Walter Binder. 2015. Accurate Profil-
ing in the Presence of Dynamic Compilation. In Proceedings of the 2015

ACM SIGPLAN International Conference on Object-Oriented Program-

ming, Systems, Languages, and Applications (OOPSLA 2015). ACM, New
York, NY, USA, 433–450. https://doi.org/10.1145/2814270.2814281

https://doi.org/10.1023/B:LISP.0000029444.99264.c0
https://doi.org/10.1145/2451512.2451541
https://doi.org/10.1145/781131.781156
https://doi.org/10.1145/1040305.1040335
https://doi.org/10.1145/2737924.2737965
https://doi.org/10.1145/2384616.2384636
https://doi.org/10.1145/2384616.2384636
https://doi.org/10.1007/978-3-540-70545-1_41
https://doi.org/10.1145/349299.349314
https://doi.org/10.1145/93542.93578
http://www.phoronix-test-suite.com/
http://www.phoronix-test-suite.com/
https://doi.org/10.1007/bfb0054170
https://doi.org/10.1007/bfb0054170
https://doi.org/10.1145/2414740.2414743
https://doi.org/10.1145/2414740.2414743
https://suriya.github.io/papers/suriya-thesis-final.pdf
https://suriya.github.io/papers/suriya-thesis-final.pdf
https://doi.org/10.1145/1542476.1542478
https://doi.org/10.1145/1542476.1542478
https://doi.org/10.1145/3186411.3186412
https://doi.org/10.4230/LIPIcs.SNAPL.2015.321
https://doi.org/10.4230/LIPIcs.SNAPL.2015.321
https://doi.org/10.1145/3033019.3033025
https://doi.org/10.1145/3033019.3033025
https://doi.org/10.1145/2384716.2384723
https://doi.org/10.1145/2384716.2384723
https://doi.org/10.1145/301618.301663
https://doi.org/10.1145/3062341.3062381
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/1006147.1006183
https://doi.org/10.1145/2814270.2814281

	Abstract
	1 Introduction
	2 Language Framework
	2.1 Program Syntax and Semantics
	2.2 Program Properties and Transformations

	3 On-Stack Replacement Framework
	3.1 OSR Mappings
	3.2 OSR Mapping Composition
	3.3 Discussion

	4 Automating OSR Mapping Generation
	4.1 Live-Variable Equivalent Transformations
	4.2 Mapping Generation

	5 Implementation
	5.1 Mapping Program Points and Variables
	5.2 Reconstructing Missing Variables
	5.3 Supporting Memory Manipulation
	5.4 LLVM Implementation

	6 Evaluation
	6.1 Benchmarks and Environment
	6.2 Results

	7 Symbolic Debugging of Optimized Code
	7.1 Background
	7.2 Using reconstruct for State Recovery
	7.3 The SPEC CPU2006 Benchmarks
	7.4 Experimental Results

	8 Related Work
	9 Conclusions
	References

