

Computer Systems
Incremental Systems Engineering

Sean Lawless

This book is for sale at http://leanpub.com/computersystems

This version was published on 2019-08-26

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader feedback, pivot until you
have the right book and build traction once you do.

© 2018 - 2019 Sean Lawless

http://leanpub.com/computersystems
http://leanpub.com/
http://leanpub.com/manifesto

Contents

Chapter 1: Binary Computers . 1
1.1 Introduction . 1
1.2 Binary Numbers . 2
1.3 Large Binary Numbers . 8
1.4 Binary Computers . 11
1.5 Bit Manipulation . 13
Chapter 1 Glossary . 14
Chapter 1 Exercises . 16

Chapter 2: Machine Language . 18
2.1 Algorithms and Machine Language . 18
2.2 Bit Endianess . 19
2.3 Assembly Language . 20
2.4 Create a Program in Assembly Language . 21
2.5 Variable sizes and roll over . 22
2.6 Branching and Loops in Assembly Language 24
Chapter 2 Glossary: . 25
Chapter 2 Exercises: . 26

Chapter 3: Compiled Systems . 28
3.1 Origin of the C Language . 28
3.2 C Language Basics . 29
3.3 C Language Data Types and Sizes . 32
3.4 C Language Math and Bit Manipulation . 34
3.5 C Language Functions . 38
3.6 C Language Organization . 39
3.7 The C main() function . 40
3.8 C Language Variable Scope and Volatility . 41
Chapter 3 Glossary: . 42

CONTENTS

Chapter 3 Exercises: . 44

Chapter 4: System Architecture . 45
4.1 Address Space and Software Memory Map 45
4.2 Memory Address and Pointers . 46
4.3 Using C Pointers with Peripheral Registers 47
4.4 Create Software with an Editor and Compiler 49
4.5 Creating an Executable with the Linker . 50
4.6 Configuring General Purpose Input Output (GPIO) pins 51
4.7 Debugging . 53
Chapter 4 Glossary: . 55
Chapter 4 Exercises: . 56

Chapter 5: Timer Design . 57
5.1 Hardware Clocks . 57
5.2 System Software for Hardware Clocks . 58
5.3 Software Interface for Clocks . 59
5.4 Software timer uses . 63
5.5 Building Software with Make . 64
5.6 Project Management . 67
5.7 System Software Organization . 68
Chapter 5 Glossary: . 69
Chapter 5 Exercises: . 70

Chapter 6: Universal Asynchronous Receiver Transmitter (UART) 71
6.1 UART Introduction . 71
6.2 UART Hardware . 71
6.3.1 Configure the Development PC . 73
6.3.2 Configure the System Software . 73
6.4 Send Data with Software . 76
6.5 Receive data with Software . 79
6.6 System Shell . 80
Chapter 6 Glossary: . 87
Chapter 6 Exercises: . 88

Chapter 1: Binary Computers
1.1 Introduction

This journey into the world of understanding computer systems encourages cre-
ativity and attention to detail. Modern computer systems can be overwhelming
to understand, however when concepts are introduced carefully and cumulatively,
the passage of knowledge has its best chance. Every concept learned will build
upon the last, creating a knowledge base. Open your mind as you embark on an
incredible, no experience necessary, journey to bring a computer to life with software!
Computer hardware is nothing but hazardous waste without software, while software
is meaningless text and gobbledygook without working computer hardware. Only by
combining these two incredible technologies can something meaningful be achieved.

Computers can only compute, they cannot think. This statement may sound simple, or
even untrue with the impressive capabilities of modern handhelds and the cloud. In
order to understand how to communicate with CPU’s, hardware peripherals and
other hardware resources with software, one must learn to think like a computer
and to understand the limitations and capabilities. To direct this journey, the first
major goal will be to activate an LED light on physical hardware. Then an interactive
communications interface will be established between a PC and the system software
we create and execute on computer hardware. This communications interface we
create will allow rapid software development.

The concept of writing software to drive/control hardware is often described as system
engineering. The software interface between the hardware and the user software
application(s) is the system software. A portion of this software interface to hardware
is often described as a driver, and the initial attempt to execute system software or
drivers on new hardware is often described as a bring up or ‘power on’ experience.
System software is the collection of all the drivers needed for a particular hardware
and application. This software needs to be reliable and optimized for the CPU and
specific hardware peripherals, or the end application and/or user experience will
suffer.

Chapter 1: Binary Computers 2

All software created in this book, as well as the companion laboratory book, are
available to the public at the authors GitHub page, https://github.com/sean-lawless/-
computersystems. This repository holds the latest source code, chapter by chapter,
which can and should be used to follow along with the chapters of this book.

1.2 Binary Numbers

The first step to think like a computer is to understand binary numbers. At its core,
a computer can only understand off and on, or zero (0) and (1) respectfully. This zero
or one number system is known as binary, and a single zero or one digit is called a
bit. Modern computers can operate on many bits at a time and in fact are defined
by how many bits they can operate upon per instruction. Older computers are 8 or
16 bit, while today’s computers (PCs, laptops, tablets, phones, etc.) are either 32 or 64
bit. When a computer is executing, it is performing a single operation every clock
cycle.

The power of a computer is in its ability to quickly operate on multiple bits at a time,
but what does this mean? Binary numbers, when combined, represent an integer
number as a series of bits that each represent a binary digits represented as escalating
power of twos. Mathematically binary can be explained as a sequence of (2ⁿ) additions
that represent the 0-n bits. A mathematical series is a sequence of additions, so whole
integer numbers are represented in binary as a sequence of power of twos. Remember
from math class that any number to the power of 0 is one, so 2 to the power of zero
is 1. Two to the power of 1 (2¹) is 2 * 1 or 2, and two to the power of two (2²) is 2 * 2
or 4. Two to the power of three (2³) is 2 * 2 * 2 or 8, two to the power of four (2⁴) is
2 * 2 * 2 * 2 or 16, is the pattern identified yet? Combinations of these binary values
can represent any whole number or integer value. Let us review more examples that
show how to use a series (addition) of power of two’s to represent any larger number.

Chapter 1: Binary Computers 3

Fig 1: Binary as power of two

Binary Integer Binary Calculation
0000 0 0
0001 1 (2⁰)
0010 2 (2¹)
0011 3 (2¹) + (2⁰)
0100 4 (2²)
0101 5 (2²) + (2⁰)
0110 6 (2²) + (2¹)
0111 7 (2²) + (2¹) + (2⁰)
… … …
1111 15 (2³) + (2²) + (2¹) + (2⁰)

It may help to compare binary numbers to the commonly used base 10 number system
everyone uses. The common base 10 number system is of the same design except each
base 10 digit has ten possibilities so each digit represents the power of 10. Each digit
in the common integer is representing in the value 0 through 9 multiplied by the
digit value. Binary digits can hold only two values vs the base 10 number holding
10 values. But we can describe those digits with a similar equation as with binary
above. The difference being that for binary numbers the digit value multiplier is one
so the equation is reduced. The elimination of the digit multiplier and reduction of
this equation for binary numbers has led to efficiencies within hardware that allow
calculations to be performed very quickly.

Fig 1: Base 10 as power of ten

Base 10 Integer Base 10 digit Calculation
0000 0 0
0001 1 (10⁰) * 1
0001 2 (10⁰) * 2
0010 10 (10¹) * 1
0020 20 (10¹) * 2
0100 100 (10²) * 1
0200 200 (10²) * 2
1000 1000 (10³) * 1
2000 2000 (10³) * 2
… … …
1111 1111 (10³)1 + (10²)1 + (10¹)1 + (10⁰)1

Chapter 1: Binary Computers 4

Fig 1: Base 10 as power of ten

Base 10 Integer Base 10 digit Calculation
2222 2222 (10³)2 + (10²)2 + (10¹)2 + (10⁰)2

Oneway to better understand binary numbers is to count in binarywith your fingers.
Each hand has five fingers to represent 5 bits, integer value 0 through 31, so both
hands can represent a total of 10 bits, which can represent the integer numbers
0 through 1023. This is a bit different than traditional finger counting. This hand
representation of binary can be helpful in later sections to help understand binary
operations. With your right hand and palm facing toward yourself, start the counting
by first extending your thumb (least significant bit) and ending with the pinkie finger
(most significant bit) to represent bits 0 through 5 respectfully. So to represent the
number two is the index finger (bit 1, or 2¹). Thumb and index finger represent the
number 3 (bits 0 and 1). To represent the number 4 is the middle finger. Notice in
the table below that the binary calculation correlates to the finger representation in
that thumb = 2⁰, index = 2¹, middle = 2², ring = 2³ and pinkie = 2⁴. To calculate the
total number of the hand sign, add up all the bits as represented in all of the extended
fingers.

Fig 2: Binary finger counting

Binary Integer Finger Representation

00000 0 fist, no fingers

Chapter 1: Binary Computers 5

Fig 2: Binary finger counting

Binary Integer Finger Representation

00001 1 thumb

00010 2 index

00011 3 index and thumb

00100 4 middle

Chapter 1: Binary Computers 6

Fig 2: Binary finger counting

Binary Integer Finger Representation

00101 5 middle and thumb

00110 6 middle and index

00111 7 middle, index, and
thumb

01000 8 ring
… … … …

Chapter 1: Binary Computers 7

Fig 2: Binary finger counting

Binary Integer Finger Representation

01010 10 ring and index
… … … …

01100 12 ring and middle
… … … …

10000 16 pinkie
… … … …

If using both hands, this convention defines to use your right hand for bits 0 through 4,
while the left hand faces away from yourself (palms out) to represents bits 5 through
9 using the same finger representation as above. The thumb always represents the
lowest power of two for each hand so the right hand thumb is 2⁰, while the left thumb
is 2⁵. This orientation may appear arbitrary or confusing but it proves beneficial later
when performing binary operations with our hands.

Chapter 1: Binary Computers 8

1.3 Large Binary Numbers

The bit size that a computer can compute upon is commonly 32 bits. A 32 bit binary
number takes 32 digits to represent in human readable form. To more compactly
visualize binary numbers, the base 16 hexadecimal numbering system was created
and is commonly used. To represent a binary number (base 2) in hexadecimal
(base 16), combine each 4 binary bits into a nibble which is then represented in
hexadecimal as a value of 0 through 15. A nibble is used in the human readable form
of a hexadecimal digit. To represent a nibble are the numbers 0-9 plus the characters
A-F, or 0 through F. For example, 9 is 9, A is 10, B is 11, C is 12, D is 13, E is 14 and F is 15.
Hexadecimal is a natural numbering system to use to represent binary because base
16 is a power of base 2. Hexadecimal numbers in print or display are encouraged to
begin with the 0x syntax, identifying the number that follows as hexadecimal. This 0x
has no value, it is just an indicator to the reader (and some software) that the number
is hexadecimal instead of an integer.

Two 4 bit nibbles combined is an 8 bit number, commonly referred to as a byte. A byte
is represented as two hexadecimal digits, or nibbles, for a value of 0 through 0xFF
(255). Larger hexadecimal numbers are represented as multiple bytes, for example, a
32 bit number is represented as 4 bytes in hexadecimal, for a value range of 0x0 to
0xFFFFFFFF (8 nibbles or hexadecimal digits). Some examples follow.

Fig 3: Binary as hexadecimal

Binary Integer Hexadecimal
0000 0 0x0
0001 1 0x1
0010 2 0x2
0011 3 0x3
… … …
00001000 8 0x8
00001001 9 0x9
00001010 10 0xA
00001011 11 0xB
00001100 12 0xC
00001101 13 0xD
00001110 14 0xE
00001111 15 0xF

Chapter 1: Binary Computers 9

Fig 3: Binary as hexadecimal

Binary Integer Hexadecimal
00010000 16 0x10
00010001 17 0x11
00010010 18 0x12
00010011 19 0x13
00010100 20 0x14
… … …
00011111 31 0x1F
00100000 32 0x20
00100001 33 0x21
… … …
11111000 248 0xF8
11111001 249 0xF9
11111010 250 0xFA
11111011 251 0xFB
11111100 252 0xFC
11111101 253 0xFD
11111110 254 0xFE
11111111 255 0xFF

A 32 bit binary number can be used to represent an unsigned integer value from 0
to 4,294,967,295, or 0 to 2³² - 1. An integer is a whole number (no decimal or fraction)
represented internally as a binary number. Common integer sizes CPU’s understand
are 8, 16, 32 or 64 bits in length. Software can represent these binary numbers as signed
or unsigned integers. A 32 bit signed integer uses one bit for the sign and thus has
a value range from -2³⁰ to 2³⁰, which represents the whole numbers -2,147,483,648 to
2,147,483,648.

Adding and subtracting hexadecimal numbers is the same as with the common 10
based number system, except each digit increments up or down in value from zero (0)
to fifteen (15 or 0xF), instead of zero (0) to nine (9). It is often very helpful to understand
hexadecimal numbers by adding and subtracting numbers as in the example below.

Chapter 1: Binary Computers 10

Fig 4: Hexadecimal arithmetic examples

Binary Integer Hexadecimal
0001 + 0001 = 00010 1 + 1 = 2 0x1 + 0x1 = 0x2
0011 + 0111 = 01010 3 + 7 = 10 0x3 + 0x7 = 0xA
0111 + 0111 = 01110 7 + 7 = 14 0x7 + 0x7 = 0xE
1110 + 1110 = 11100 14 + 14 = 28 0xE + 0xE = 0x1C

To perform addition, subtraction and other operations on large hexadecimal num-
bers with your fingers, it can be helpful to use only four bits, or a nibble, for each
hand. This allows for more easily performing operations and frees up the thumb(s)
for any carry bit(s). With each hand representing a single hexadecimal digit, this
nibble based arithmetic can be exercised on large hexadecimal numbers using hands
and a carry bit. To be comfortable comparing the binary digits of each nibble with
ones hands, the reverse orientation is helpful so that each index finger, for example,
is the first bit in that hand.

Binary and hexadecimal math can be performed similar to standard base 10 math
calculations. The operation can be calculated from right to left a nibble at a time
with out hands, adding each column being operated on together with any overflow
resulting in a carry over to the next column on the left. If a carry over, the thumb
should be used going into the next calculation to remind the counter that there is a
carry over for the first bit in the nextnibble. Let us end this sectionwith three identical
examples showing how to add the same number in binary, integer and hexadecimal.

Fig 5: Hexadecimal large integer addition first example

Binary Integer Hexadecimal
0000 0001 0000 0110 0100 04196 0x00001064
0000 0010 0000 1001 0110 08342 0x00002096
0000 0011 0000 1111 1010 12538 0x000030FA

In the example the binary digits are stacked on top of each other and compared digit
by digit from right to left. If both bits are one (1), then the result is binary zero (1) but a
bit is carried over to the addition of next digit on the left. If next digits to add are also
both one (1) and a bit has been carried to it, the result is 1 and another bit is carried
to the left. Just like adding digits in base 10 numbers results in carrying over digits
to the next digit. This shifting carry or shifting of bits is exactly how the computer
operates internally to the user.

Chapter 1: Binary Computers 11

The hexadecimal digits/nibbles for the addition operation look similar to the
standard 10 based number system andmay be familiar. Hexadecimal is base 16, binary
is base 2 and standard base 10 should all be recognized by the reader as familiar
mathematical systems that can be used to accomplish the same mathematical goals.
The only difference between the three are in their perspective of the numbers.

Fig 6: Hexadecimal large integer second addition example

Binary Integer Hexadecimal
0000 1111 1111 1011 0100 65460 0x0000FFB4
0000 0100 1101 1100 0101 19909 0x00004DC5
0001 0100 1101 0111 1001 85369 0x00014D79

To summarize the sections, large binary numbers (represented as hexadecimal) can
represent any ten (10) based number and that the mathematics is unchanged as long
as the numbers do not exceed the CPU bit size. The only change in the perspective
is to the data that enters the mathematical equation; the human number (base 10),
and the computer (binary or base 2). Computers and hardware peripherals compute,
calculate, act, and perform upon binary data. To communicate with binary hardware
requires a number system to represent binary, and hexadecimal and nibbles do this.

1.4 Binary Computers

Computers execute a series of CPU instructions and computations upon binary
numbers stored in registers to perform a program or computation. Every CPU has
hardware registers that are the same bit size as the CPU. For example, a 32 bit
CPU will have 32 bit registers. This allows a single CPU operation to perform
a computation on all 32 bits of the register in a single clock cycle. There are a
limited number of registers within the CPU to hold the data to be calculated upon
during aCPU operation. Computer systems consist of aCPU, RAM and peripherals.
Many CPU’s cannot perform calculations on RAM directly, only hardware registers.
Calculations that are to be performed on data in RAM may first require CPU
operations to move the value from RAM into a register before the calculation
(another operation) can be performed by the CPU. Then another operation may
be required to move the result back into RAM after the calculation. Every CPU has
only a limited number of hardware registers so executables must move data back
and forth between RAM and hardware registers often.

Chapter 1: Binary Computers 12

While each operation can operate on data in registers, some operations require
one register be designated the destination register that will contain the result of the
operation or calculation. A computer computes when it is provided an operation and
the registers to use for the operator inputs and outputs. For example, if one number
is added to another, one operation and at least two registers are used. Both are added
together but only one will contain the result of the operation after completion at the
end of the clock cycle. The exact behavior of operations areCPU specific. A sequence
of operations or instructions that performs a meaningful goal or computation is
called a program, or software.

The reader is now prepared with enough vocabulary to precisely describe how a
modern computer works. A computer is amotherboardwith RAM, input and output
peripherals and a CPU with a limited number of hardware registers. The CPU
instruction set is all the available CPU operations that can be used by programs
to perform a calculation or sequence of calculations for thatCPU. The computer CPU
can begin executing an operation every clock cycle. How many operations that
can be performed per second is often referred to as the CPU frequency. The higher
the frequency of the CPU clock, the more operations or instructions that can be
performed per second. Modern computer CPU’s have frequencies in the GHz range,
or billions of times a second. For this simplified discussion, let us assume operations
are executed one before the other or sequentially, and each operation completes in
a single clock cycle.

The CPU executes software, or runs a program, by reading a sequence of binary
operations from RAM. The Program Counter, or PC, is the location in RAM that
is considered by the CPU as the current location to execute the next operation.
Essentially, the CPU moves the PC through the program in RAM, executing the
operations one at a time. At the end of each clock cycle, the CPU moves the PC to
the next operation in the binary executable stored in RAM, which is then executed
during the next clock cycle. Oftentimes the next operation in RAM is moved to a
special hardware register at the end of a clock cycle so that it can be executed next
cycle, but this depends on the CPU and is conceptually the same.

It is not possible to complete our knowledge without quickly discussing why com-
puters can only compute with binary numbers. This has to do with the physical
nature in which computers are built, namely the transistor. The first computers used
vacuum tubes to maintain bits and hardware state machine circuits to perform binary
operations. Vacuum tubes can maintain the state of on or off, that is one (1) or

Chapter 1: Binary Computers 13

zero (0) or a binary digit. Racks of vacuum tubes were used for RAM in the first
computers, while the walls had the variable routing circuitry of state machines to
compute or execute a limited number of operations or instructions. Vacuum tubes
were expensive and prone to failure, and in fact the term ‘bug’ in software engineering
came from a physical bug whose body had shorted a switch which led to intermittent
bouts of unexplained behavior. The size, expense and fragility of vacuum tubes led
to the invention of the practical transistor, and later to further miniaturization and
eventually the spawn of the computer age. The simplicity and scalability of the
transistor to large binary numbers ensures that as long as humanity pushes electrons
around to compute, the fastest computers will use binary.

1.5 Bit Manipulation

SinceCPU operations are all performed on binary numbers, a few bit operators have
evolved and are essential to systems engineering. A common bit operation is the shift
operator. The shift operator moves, or shifts, every bit of a larger binary number in
one direction or the other. Shift right and shift left move the existing bit pattern of a
larger binary number one or more bits in the right or left direction respectfully. This
is helpful as it is simple to perform shift operations with hardware and this shifting
serves a mathematical purpose. A right shift of one divides a large binary number by
2, while a left shift multiplies a large binary number by 2. Another simple operation
involving a single binary number is the one’s complement, which flips every bit
in a large binary number. For example, each one (1) becomes zero (0), and zeros (0)
become ones (1), for every corresponding bit in the number.

Other bit operations involve operating upon two large binary numbers to create a
result dependent upon the operation and the two binary numbers. The operations
And, Or, and Xor (exclusive Or) are all easy to compute bit by bit for two large
binary numbers with a CPU. The first two operators mentioned are somewhat easy
to explain in that for And, if both bits are one (1), then the result is one (1), otherwise
the result is zero (0). For example A And B equals C, where C has only bits set to one
(1) if the corresponding bit in both A And B are set to one (1). Or is the same thing
but the result is set to one (1) if either the corresponding bit in A Or B is set to one
(1). For Xor, or exclusive Or, the result is set to one (1) for every corresponding bit
where the corresponding bit in A is different from that in B.

So how does a computer use these binary operations to perform calculations? Besides

Chapter 1: Binary Computers 14

multiplying by two and divide by two, the And and Xor bit operations can be used
together for addition. Let’s end this chapter with an example of how a computer adds
two binary bytes together.

Fig 6: Binary addition using And and Xor

Binary Add And Xor
1011 0100 1011 0100 1011 0100
1100 0101 1100 0101 1100 0101
1 0111 1001 1000 0100 0111 0001

See the pattern and how this can be used for addition? Not many do at first. Let’s take
the results from the table above one step further and shift the And result one bit to
the left, so 1000 0100 in the table above becomes 1 0000 1000. Now Or this result with
the Xor result above so 1 0000 1000 Or 0111 0001 becomes 1 0111 1001, or the result of
the addition above. To complete our knowledge let us write this as a binary equation.
A + B = ((A And B) Shift left 1 bit) Or (A Xor B). If you did not understand this no
worries, just remember that a computer performs mathematical computations using
combinations of binary operations.

Chapter 1 Glossary

And - a binary operation supported by CPU’s to compare each bit of two numbers
and output a one (1) for each corresponding bit if both bits are one (1).

Bare Metal - a computer software execution environment that requires software to
initialize all hardware required by the program that is to execute.

Binary - a numerical system used by computers where each digit is either zero or one.

Bit - a single binary digit holding the value of zero or one.

Bring Up - A phrase used to mean creating a software driver for a peripheral. Board
bring up refers to creating software for all the peripherals of a system. Oftentimes the
software drivers already exist and the act of bring up is modifying the old driver for
the new hardware.

Byte - eight (8) bits of binary data, typically represented as two hexadecimal digits,
or nibbles.

Chapter 1: Binary Computers 15

Circuit - an electrical connection between two points. For example, circuits on a
motherboard connect the CPU to the peripherals. Circuits can contain resistors,
capacitors, gates and other electronic components to manipulate the electrical signal
through them.

CPU - Central Processing Unit, the core of a computer that performs operations or
instructions.

Clock cycle - a complete interval of a clock where the rate of clock cycles is the
frequency. The CPU execution clock performs a single CPU operation every clock
cycle. Systems can have more than one clock in which case each may have their own
clock cycle frequency.

Execute - when a CPU performs the operations of a program until it ends. The
Program Counter (PC) maintains the location within the program that is currently
executing.

Hardware - a general term used to describe any physical computer component, such
as a CPU, motherboard or peripherals.

Hexadecimal - a base 16 (or 24) numbering system used to visually represent large
binary numbers. Hexadecimal digits are represented as 0 through 9, and the letters
A, B, C, D, E and F. These letters represent the integer values 10, 11, 12, 13, 14 and 15
respectfully.

Instruction - see Operation. Besides calculations, instructions can compare, branch
or perform other available CPU operations.

Instruction Set - the complete set of available operations that a CPU can perform.

Integer - any whole number represented as a binary number.

Motherboard - usually a thin fiberglass type material of a green or brown color
where the CPU, peripherals and other physical pieces that make up the computer
are located. The motherboard contains all the circuits and electrical components
necessary to connect the CPU to the peripherals.

Nibble - four (4) bits of binary data, typically represented as a single hexadecimal
digit.

Operation - a single calculation or other instruction performed by the CPU during
a clock cycle.

Chapter 1: Binary Computers 16

Operators or Operands - data in RAM or hardware registers that are calculated
upon during a CPU operation or calculation.

Or - a binary operation supported by CPU’s to compare each bit of two numbers
and output a one (1) for each corresponding bit if either of the bits being compared
are one (1).

Peripheral - a portion of computer hardware separate from the CPU, but connected
to the CPU through circuits on the computer motherboard.

Program - a series of computer operations/instructions that performs a specific
computation.

Program Counter (PC) - The memory address or location of the binary operation
that the CPU is currently executing. This is often the current location within RAM
of a program or software previously copied into RAM.

RAM - Random Access Memory, the computer memory, is often located outside of
the CPU and connected with circuits on the motherboard to the CPU. Commonly
referred to simply as memory.

Register - A limited number of high speed data storage resources within theCPU and
physically near the computational circuitry of a CPU. Data to be computed is often
required to be in a register for it to be used in operations that compute or compare.
Data to be computed must often first be moved from RAMmemory to registers before
the computation or comparison instruction is executed.

Software - executable binary or machine code that performs a solution to a task or
user request. A generic term that can refer to multiple programs or a portion of a
single program.

Xor - a binary operation supported by CPU’s that compares each bit of two numbers
and output a one (1) for each corresponding bit only if the bits being compared do
not equal each other (one bit is zero and other one, or vice versa).

Chapter 1 Exercises

1. Using your fingers to represent each binary number, count to ten (10) on one
hand.

Chapter 1: Binary Computers 17

2. What is the hexadecimal representation of the binary number 10110011? Hint,
split into nibbles 1011, and 0011 and do not forget to start the hexadecimal result
with ‘0x’.

3. Using your fingers to represent each binary number, count to fifty (50).
4. What is the binary representation of the hexadecimal value 0xF63? Hint, split
into nibbles and then binary.

5. What are the integer, hexadecimal and binary representations of the individual
decimal numbers 24, 28, 213, and 216? Please compute the sum of these numbers,
24 + 28 + 213 + 216, and present in integer, hexadecimal and binary form.

6. A 32 bit system has 1,000,000 bytes of RAM filled with a binary executable. On
startup the Program Counter (PC) begins execution of these instructions at
the start of the RAM so that all the RAM may be utilized during executing the
operations. Assume the entire RAM is filled with valid operations that execute
in order from beginning to end. Also assume all operations are the same size
and move the Program Counter (PC) ahead 32 bits every clock cycle, from the
beginning of RAM to the end. What is the number of operations that can be
executed before the end of the RAM is reached?

7. If the above system runs at 1 Megahertz (MHz), or 1,000,000 clock cycles per
second, how long will it take to execute all instructions in RAM?

8. Describe your understanding of the differences and similarities between a pro-
gram and software.

Chapter 2: Machine Language
2.1 Algorithms and Machine Language

The previous chapter discussed how computers operate on binary numbers. Now we
can begin to discuss how computer operations can be combined to perform complex
calculations using algorithms. An algorithm is a sequence of computations that
performs a solution to a problem. A program typically utilizes one or more algorithms
which may need to communicate with one or more hardware components to arrive
at a solution. A CPU executes operations in sequential order until a branch operator
is executed, which modifies the execution location register or Program Counter (PC).
Once a branch operator changes the PC, the CPU immediately continues execution
from the new location in the program until it ends, or the next branch operation.
Binary computer operations are referred to as machine language. This machine
language is directly executable by the computer and is not human readable. It can
be created by hand with a binary/hexadecimal editor but is usually generated from
assembly language with an assembler.

Below is an example of the assembly language flow to continually loop on a sequence
of four operations and not continue to the fifth operation until a comparison becomes
equal.

loop: operation1

operation2

operation3

operation4

compare

if not equal branch to loop:

operation5

Chapter 2: Machine Language 19

2.2 Bit Endianess

An important concept to understand when writing system software is endianness.
CPU’s represent large binary numbers in registers and memory in two different
ways. Least significant bit (LSB) first is little endian, while most significant bit (MSB)
first is big endian. For example, ARM and x86 CPU’s are both little endian while
PowerPC CPU’s are big endian. Peripherals and software may also have interfaces
which require a specific bit size and endianness, which may or may not match the
CPU.

To better understand endianness see the pictures of a reverse hand method (right
hand on right side, palm facing you, left hand on left side, palm facing out) below.
Represent the binary number 00110 00010, or hexadecimal 0xC2, or integer (decimal)
value 194. The right hand thumb is the least significant bit in binary format, the left
hand pinkie finger is the most significant bit. This is called little endian format as
the smallest bit is on the far right (end of the bits). See the pictures below to see this
visually.

Fig 7: Little endian representation of 0xC2 with fingers

Most Significant Bits Least Significant Bits

To convert this number to most significant bit format, rotate and swap your hands.
In the new orientation the thumb of each hand is still the least significant bit, but the
thumb moves from the right side to the left of each hand and the right hand moves
to the left side palm facing out, and the left hand moves to the right side palm facing
toward you. The last ending bit is the pinkie of the left hand, the most significant bit.

Chapter 2: Machine Language 20

This swapping and rotating results in the same hexadecimal number 0xC2, but it now
becomes 01000 01100 when represented as most significant bit, or big endian, binary
format.

Fig 8: Big endian representation of 0xC2 with fingers

Least Significant Bits Most Significant Bits

The endianess does not affect the concept of the various binary operations, but does
affect the resulting machine language and how those operations are performed by the
CPU. For the most part the endianess of a CPU or peripheral is hidden from the user,
until it is required that a peripheral of one endianess communicate with a CPU of a
different endianess, in which case a translation must be done in software between the
two.

2.3 Assembly Language

This section discusses assembly language, the readable form of machine language.
Machine language is in binary form and is very difficult for most people to
understand in hexadecimal form, but is ready for immediate execution by computers.
There are tools called disassemblers which can readmachine language and convert
it back into readable assembly language. Disassemblers are one of many tools used
on the journey to understand creating software for computer systems. Assembly
language is a primitive assembled language because it provides a human readable
representation of the machine language, which may differ by CPU type and model.
With a few exceptions, one operation in assembly source code assembles into one
machine language operation.

Chapter 2: Machine Language 21

Assembly instructions represent the CPU hardware operations, or instructions, and
can be categorized intomove, compare, branch or compute operations. Operations are
combined and ordered to form algorithms. Most common operations can be classified
into similar categories for all CPU’s. For this discussion we will use a make believe
instruction set that is very similar to modern instruction sets. Every instruction is
represented as 4 bytes (32 bits) and contains an operation type (ADD, MOVE, etc.)
and up to two registers or values as operands. Let us view an assembly language
example that adds two numbers.

Fig 9: Assembly to Machine Language

Assembly Machine Language
ADD R4, R4, #1 0xE2844001

The above assembly language ADDs the absolute value (#) of one (1) to register four
(R4), putting the result in the destination register (R4). The CPU machine language
binary on the right is an example of what an assembler might create from the
instruction on the left. This resulting machine language binary number is all that
the computer understands. While this binary is all that computers understand, for
humans this machine language is very difficult to read and understand.

Thankfully it is not required to understand exactly how to convert assembly instruc-
tions into machine language as this is what the assembler is for. If the reader is
interested there are many good online and print resources that describe assembly and
machine language in detail. What is important for the system engineer to understand
is the concept of assembly language and machine language and how an assembler
can be used to convert assembly to machine language, and a disassembler can
be used to convert machine language back into assembly so it can be read and
understood again by people.

2.4 Create a Program in Assembly Language

Using the MOVE instruction with the ADD instruction it is possible to create some-
thing useful in assembly language. Since variables are stored in memory (RAM),
operations on those variables must therefore perform computations on locations in
memory. However, many CPU operations require their operands, or values used in
an operation, to be in registers, notmemory. A hardware register is a specialmemory

Chapter 2: Machine Language 22

location within the CPU very near to the hardware circuitry that performs operations
or calculations. To accommodate the need for calculations to be performed only on
hardware registers, aMOVE instruction is often needed to copy a value from a variable
in memory to a register, before a computational operation can be performed on that
value. Then after the CPU performs the calculation on the register, another MOVE
instruction copies the value of the result from a register back into the variable in
memory. The following assembly language example does exactly this, increasing
value in variable ‘Var1’ by one (1).

MOVE R1, =Var1

MOVE R4, [R1]

ADD R4, R4, #1

MOVE [R1], R4

The above assembly language firstmoves the address inmemory of variable ‘Var1’
into the first register R1. The second line moves the value at memory location R1
to another register R4. The brackets around R1 indicate to the compiler to move the
value at this memory location, not the memory location itself which is stored in R1.
In the third statement, the value one is added (ADD) to the value in R4 and the result
saved back to R4. The final statementmoves the new value of R4 back to thememory
location of ‘Var1’, which is still stored in R1. These instructionsmove the variable to
a register, add one to the register, and move the resulting value back to the variable
inmemory. Together, these statements increase the 32 bit value of variable ‘Var1’ by
one.

The above assembly language is generic and will not execute on any CPU, but is
very similar to real assembly. Assembly language is the direct representation of the
CPU machine language and is therefore different for every CPU. Oftentimes CPU
families such as ARM and x86 have core assembly language instructions that exist
on all CPU versions. If it is desired for the same assembly to assemble* and execute
on as many CPU’s as possible, these core instructions should be preferred.

2.5 Variable sizes and roll over

Variables, such as the ‘Var1’ used above, must first be defined in the assembly
language source (.s) file. A common method to do this is to create a data section

Chapter 2: Machine Language 23

at the top of the .s file. Then any number of variables can be declared below this
data section. A common syntax to declare this data section, which may differ between
assemblers, is the ‘.section .data’ phrase. On the next line after this phrase it is possible
to declare the variable name followed by a colon ‘:’. After the colon it is required have
a space character ‘ ‘ and then the keyword of the variable type (‘.int’, ‘.long’, etc.)
followed by the initial value.

.section .data

Var1: .int 0 ;@ declare Var1 as an integer of value zero

A CPU uses integers in assembly of the size that the CPU can process. The assembler
accommodates this by creating 32 bit sized .int’s if the CPU is 32 bit. To create a
larger value such as a 64 bit variable often requires defining the variable as type
.long. However, some CPU types define and use .int and .long the same, others assign
.int variables to be 16 bit and .long variables as 32 bit. These differences between
CPU’s is one of the many reason why assembly language does not move well from
one computer system to the other. In assembly it is required to pay attention to the
CPU bit size and to use .int and .long appropriately. If in doubt, just use .int and the
assembler will optimize the resulting binary code for the particular CPU.

After all variables are declared it is required to tell the assembler that we are moving
out of the data or declaration section. This is done by assigning a new section, for
example the text section is reserved for the assembly code which usually follows the
data section. Similarly this text section is entered with the ‘.section .text’ phrase. Here
is the completion of the previous example but with the variable ‘Var1’ declared at the
top. Note that a common syntax to define a comment in assembly is the ‘;@’ keyword.
As is good practice, we use a comment below to help clarify what the code is doing.

.section .data

Var1: .int 0 ;@ declare Var1 as an integer of value zero

.section .text

MOVE R1, =Var1

MOVE R4, [R1]

ADD R4, R4, #1

MOVE [R1], R4

Chapter 2: Machine Language 24

When a binary integer value increases beyond the maximum for the size of the
variable, it rolls back to zero. For example, if an .int of size 32 bits and of value
0xFFFFFFFF is increased by one, the value becomes 0x00000000. A similar affect
occurs when decreasing a value below zero (0). If a variable of size 32 bits and value 0
is decreased by one (subtracted by one), the resulting variable value is 0xFFFFFFFF.
The behavior is often described as a ‘roll over’ or more completely as an ‘integer roll
over’.

2.6 Branching and Loops in Assembly Language

Assembly language instructions for branch and compare operations are different
between CPU families. However, most have operations for comparing integer values
and branching if the comparison was equal, less or greater than. Some CPU’s have
a single compare operation that must be followed by one or more of the branching
operations. Other systems have instructions that combine the compare with a branch
all in the same operation or instruction. The concept is the same either way.

It is now time to define more generic instructions to compare and branch in assembly
language. For this make believe instruction set we define a single compare operation
CMP, and four branch instructions; unconditional branch B, branch if equal BEQ,
branch if less than BLT and branch if greater than BGT. The instruction CMP
compares two registers and saves the result internally.Branch instructions change the
next execution location (program counter or PC) to a new location identified with a
label. Labels in the source code are required so the assembler knows where to branch
the execution. These branch instructions in the pseudo code examples below do not
compare but instead use the result of the last comparison. Comparison branches
(BEQ, BLT and BGT) require a previous compare instruction (CMP) or are considered
an invalid instruction. The following is the last example of this chapter, an endless loop
that declares a variable in RAM, increments the variable by one each time through
the loop, storing the result back into RAM every ten times.

Chapter 2: Machine Language 25

.section .data

Count: .int 0 ;@ declare Count as an integer of value zero

.section .text

MOVE r1,=Count ;@ load register 1 with address in RAM of Count

MOVE r3, [r1] ;@ load R3 with Count by referencing R1 address

_save:

MOVE [r1], r3 ;@ store the total count to Count in RAM

MOVE r2, #1 ;@ initialize the loop count to one

_loop:

ADD r3, r3, #1 ;@ add one to the total count value

ADD r2, r2, #1 ;@ add one to the loop count

CMP r2, #10 ;@ compare the loop count to 10

BGT _save ;@ branch to _save if greater than 10

B _loop ;@ branch to _loop

Chapter 2 Glossary:

Algorithm - a series of calculations that perform a larger computation or decision
making process. Typically used to describe a computer program or portion thereof.

Assembler - a software program that can read and parse assembly language files and
create machine language output.

Assembly Language - a human readable text representing the CPU instructions
but conforming to the syntax defined by the assembler. When assembled with an
assembler, an assembly language file will generate a machine language binary for
the CPU. Oftentimes referred to simply as assembly.

Branch - An operation that jumps execution to a new location so as to continue
executing the program from there.Branch operations allow programs tomove around
and loop within the executable code in RAM, performing groups of operations
repeatedly and/or out of sequence.

Disassembler - a software program that can read machine language binary and

Chapter 2: Machine Language 26

create human readable assembly language output. This is the opposite process as an
assembler.

Endian - the order of binary significance when using large binary numbers. CPU’s
are classified as either big endian or little endian. The term refers to whether a 32
bit integer uses bit 31 to represent the most significant digit (big endian), or the least
significant digit (little endian). In other words, endianness is the bit ordering CPU’s
use to represent large binary numbers.

Executable - a file of machine language operations resulting after linking software
or a program. An executable contains the operations to be performed by the CPU in
order, one after the other, until the program ends. Only a branch operation can move
the Program Counter (PC) out of sequence and is used for looping or to skip a group
of operations.

Machine Language - any software or program in binary format, ready for execution
on hardware. Machine language is most often created with an assembler.

Memory - a location in hardware to store date. Typically this is RAM but could be any
hardware where data can be stored and accessed later by software, such as memory
onboard a CPU, GPU or peripheral.

Move - general term for an assembly operation that copies a value from a register or
RAM to another location, such as a register or RAM.

Source Code - any program or software that is human readable. Source code must be
parsed and converted tomachine language before it can be executed on a computer.

Variable - a named location in software that holds data so that programs or algorithms
can access and change that data.

Chapter 2 Exercises:

1. What is more readable by a computer, assembly or machine language? Which
is more readable for people?

2. Using the MOVE instruction, write a program in assembly language that will
assign the value one (1) to ‘Var1’.

3. Using the MOVE and ADD operations, write a program in assembly language
using the ADD instruction to increase the variable ‘Val1’ by the variable ‘Val2’.
Include the declaration and initialization of the variables in assembly.

Chapter 2: Machine Language 27

4. Using the MOVE, ADD, COMPARE and BRANCH operations, write a program
in assembly language that will loop, copying 200 bytes of data beginning at
memory location 0x4000 to the memory location 0x200000. Hint: Access the
value at amemory location directly with the absolute value (#) operator, instead
of using a register to hold the address, for example [#0x4000] and [#0x200000].

Chapter 3: Compiled Systems
3.1 Origin of the C Language

Computers do not understand math equations, only binary operations within their
CPU instruction set. With each processor using a different instruction set, assembly
language programs are difficult to move to new computer systems. The C language
was created so a common language, independent of any CPU, could be used to write
software for communicating with hardware.

The C language has become the most common language used for system software
because it is independent from the hardware, yet low level and flexible enough
to interface with any hardware. The C compiler reads a source file (with the .c
extension), parses the words and numbers into tokens, converts expressions and
then assignments, conditionals, and loops into operations and then creates a
corresponding assembly language file (with the .s extension). AC compiler is specific
to a particular CPU type and converts C source code into assembly language. Then
the assembler is used to convert the .s file to binary machine language.

The output depends upon the specific C compiler used as each is specific to the CPU
type. The assembler assembles the assembly language, created by theC compiler, into
a machine language or binary output (.o) file. These .o files are referred to as object
code and are specific to the hardware the compiler created it for. The idea of the
C language was to allow the reuse of systems software (written in the C language)
across different CPU systems with only a recompile of the source code required. A
small change to the base address of the peripheral address space, and a CPU specific
compiler are usually all that is required to move a well designed peripheral software
driver to a different CPU.

If there are errors in the C source file, the compiler reports the errors and does
not attempt to create assembly code. If there are warnings during compilation the
warnings are reported and assembly code is created based on compiler assumptions
for those warnings. TheC linker is used as the last step after assembling and combines
all assembled output files (.o files) created by the assembler into a single binary file,

Chapter 3: Compiled Systems 29

ready for execution by the computer. The combination of the compiler, assembler
and the linker allow great flexibility when creating software.

Compiled languages, and C in particular, are responsible for the emergence of the
computer age. Hardware and software change, but the C language allows hardware
and software to change simultaneouslywithout interferingwith each other. Somemay
argue this point, but time will show that it was the C language, and very little else,
that emboldened the Internet age. The C language allowed portability, so engineers
can write software that can be compiled for multiple hardware platforms. System
engineers could then develop and reuse system software optimized for a variety of
hardware, allowing the creation of all of the underlying technologies that accelerated
the PC age.

With a few exceptions where assembly language is used, the remainder of this book
will focus on using the C language to create system software. Unless the goal is to
understand a specific CPU instruction set, assembly language should be avoided when
writing system software, the disadvantages otherwise are enormous. Every different
computer uses a different instruction set, which may require a complete rewrite of the
assembly language for the software to run on different hardware. Also assembly is
very low level and thus has poor readability with more complex algorithms. The last
and most important reason to not use assembly is that it is lengthy/tedious, complex
and prone to human error. This said, it is impossible for the system engineer to
avoid assembly completely and understanding how the computer computes is vital
to creating system software that optimizes use of the hardware. In general, assembly
is best used for specific operations related to hardware initialization or optimization
(to speed it up). The C language is best for general system software development as
well those software applications that require or desire speed of execution.

3.2 C Language Basics

It is essential to understand the language, or syntax, of C in order to create a program
that can change computer hardware. The structure and words of a language are
known as the syntax, and describe the rules of the language. We previously discussed
how assembly language instructions are categorized into compare, branch and com-
putational. Similar categories exist for the C language. With C, the corresponding
terminology used is conditional, loop and assignment.

The following is not a comprehensive introduction to the C language. Only the

Chapter 3: Compiled Systems 30

minimal amount of C language rules and syntax needed for each chapter is presented.
This introduction to C is from the perspective of controlling hardware with software,
and this is not the only use of the C language. The C language is organized as
statements that are compiled to execute left to right and top down, like reading
a book. Each statement consists of a series of words, or tokens, separated by any
amount of white space and concluded with a semicolon. Brackets, ‘{‘‘}’, are used to
enclose groups or blocks of code as a single statement. Parenthesis, ‘(‘‘)’, are used to
order the variables and constants when evaluating or calculating an expression.

This order of evaluation/compute is known as precedence to software professionals.
Every expression in parenthesis is evaluated inside out so the inner most expression
in parenthesis is calculated first. For example, (1 + 3 * 2) equals 7 as multiplication
(*) has a higher precedence than addition (+). To understand and use parenthesis to
control the precedence is required if the above expression wishes to evaluate the
addition first, for example ((1 + 3) * 2) = (4 * 2) = 8. It is important to remember that
calculations in expressions are performed inside out with regard to parenthesis and
that parenthesis can be used to control the order of evaluation or precedence.

A conditional statement in C is defined with the syntax ‘if (expression) statement;
else statement;’. An ‘if’ statement evaluates, or calculates, the expression and if the
expression is not zero, the statement below the ‘if’ , or code block if in brackets,
is executed next. If the expression is zero, the code below the ‘else’ statement (if
present) is executed.

This ‘if’ syntax is more readable if split up onto different lines in the source code
file. The example below demonstrates how ‘if’ statements can be stacked to check
multiple expressions with the else phrase. The ‘else’ is always optional and you can
also use ‘else if’ statements below the original ‘if’. This allows the stacking of many
‘else if’ statements between the original ‘if’ and the final ‘else’. Here is an example
of pseudo code showing usage of the ‘if’ statement.

if (expression1)

statement1;

else if (expression2)

statement2;

else

statement3;

A loop in C is defined with ‘for (assignment; expression; assignment) statement;’.

Chapter 3: Compiled Systems 31

This ‘for’ loop continues looping forever until the expression equals false or zero.
The first assignment is executed only once, before the loop is entered and is often
used to initialize a variable. The second assignment is executed every loop, before
evaluating the expression. In a ‘for’ loop, any of the assignment or expressions can
be omitted if not needed, but the semicolon’s are required.

for (assign_once; expression; assign_every_loop)

statement;

Using comments to describe C source code is very important to creating readable and
reusable source code. The C language allows you to define comments in two ways.
One way is with the double slash ‘//’ and this keyword tells the compiler that the
remainder of the line is a comment. The second type of comment is the comment
block which can encompass multiple lines. The comment block is begun with the
slash star characters and all text between this keyword and the ending comment
block keyword of star slash. Let us review the generic example above with multiple
statementswithin brackets and a comment added to the for loop indicating that since
it has no expression it will loop forever.

if (expression1)

{

/* The good. */

statement1;

statement2;

}

else if (expression2)

{

/* The bad. */

statement3;

}

/* The ugly. */

else

statement4;

/* Loop forever. */

Chapter 3: Compiled Systems 32

for (;;)

{

statement1;

statement2;

}

The syntax for an assignment statement is ‘variable = expression;‘. Variables must
be declaredwith a data type before use and the variable types used in an expression
must match. Common integer data variable type keywords in C are ‘long’, ‘int’,
‘short’ and ‘char’. Each of these keywords can be preceded with ‘unsigned’ if an
unsigned version of this integer type is desired, for example, ‘unsigned short’, and
‘unsigned char’. This ‘unsigned’ modifier does not change the number of bits used to
represent the integer variable, only the interpretation of those bits by the compiler
when creating assembly language.

3.3 C Language Data Types and Sizes

Depending on the register and CPU bit size (8, 16, 32, or 64 bit), the C compiler
may use different sizes for ‘int’, ‘short’ and ‘char’. Since the size of the data type
is commonly of interest to the system engineer, it is prudent to create types that
allow better software control of a variables size. For this text a signed 8 bit integer
value will be defined to be ‘i8’, or (i)nteger with (8) eight bits, while an unsigned 8 bit
integer value will be defined as ‘u8’, the same for 16 and 32 bit numbers. This naming
convention makes it very easy to know the sign and size of the integer it represents.
The C language allows the creation of new types with the type define command, or
‘typedef’.

Below are an example of type definitions for signed and unsigned integers of
common sizes on a 32 bit processor. The semicolon on the end indicates the end of
each type definition statement.

Chapter 3: Compiled Systems 33

typedef long long i64;

typedef unsigned long long u64;

typedef int i32;

typedef unsigned int u32;

typedef short i16;

typedef unsigned short u16;

typedef char i8;

typedef unsigned char u8;

Each ‘typedef’ could also be expressed with what is know as a pound define, or
‘#define’. A ‘#define’ defines a keyword that will be replaced by the compiler with
another keyword or words. When compiling, the C compilermakes many ‘passes’ of
the source code, morphing the code at each pass closer to assembly language. Typically
the first pass for a compiler finds all keywords that have been ‘#defined’ and replaces
them with the definition. For example all ‘u32’ keywords found in the source code
will be replaced with ‘unsigned int’. Below are the equivalent type definitions above,
but ‘#defined’ instead.

#define i64 long long

#define u64 unsigned long long

#define i32 int

#define u32 unsigned int

#define i16 short

#define u16 unsigned short

#define i8 char

#define u8 unsigned char

Congratulations, we just wrote our first C statements! If compiled these definitions
or type definitions would create no executable binary code, but it would compile.

But why do we need to do this, why not use the standard C types ‘int’ and ‘char’
and ‘short’? The standard types can have different sizes when compiled on different
systems. For example, a 16 bit CPU might use a 16 bit ‘int’, while compilers for 32 bit
CPU’s would would need to declare ‘short’ (instead of ‘int’) to get a 16 bit number.
Using universal type definitions (or #defines) allows the C software to compile
correctly on 8, 16, 32 and 64 bit CPU’s by simply ensuring these size based type
definitions match the C compiler documentation for a particular CPU.

Chapter 3: Compiled Systems 34

To understand better, remember that the C compiler creates assembly language so it
must decide ahead of time whether ‘int’, ‘short’ and ‘char’ in C will represent 32, 16
and 8 bit numbers within the assembly language. TheC compiler for a particular CPU
may translate theC integer types into the registers andmemory locations of whatever
bit size the CPU desires. The system software creator must check the documentation
for the CPU and change the ‘typedef’ or ‘#define’ of the sized C types so that they
match. For most CPU’s of 32 and 64 bit, the examples shown will hold true.

Below is an example of C type definitions for the same sized signed and unsigned
integers as above but for a 16 bit processor. Note that all is the same except ‘int’ which
is now 16 bit as it is common for optimization that the ‘int’ size match the CPU bit
size.

typedef long long i64;

typedef unsigned long long u64;

typedef long i32;

typedef unsigned long u32;

typedef int i16;

typedef unsigned int u16;

typedef char i8;

typedef unsigned char u8;

The understanding and thoughtful use of known sized variables is a core requirement
for system software to work across CPU’s of different bit sizes. The debate on whether
it is best to use ‘#defines’ or type definitions boils down to personal preference
usually. There should be no difference introduced into the compiled binary, but some
compilers and existing source code bases are easier to work with one style or the
other. If the project involving the systems software effort may require supporting
multiple compilers as well as hardware systems, ‘#define’s are often easier to work
with. To check that the compiler is doing the right thing, build two versions of the
software (one with ‘#define’ and the other ‘typedef’) and compare the binaries. Most
if not all current C compilers will generate identical code.

3.4 C Language Math and Bit Manipulation

Before we can operate hardware with software it is necessary to learn how to modify
the individual bits of an integer data type inC. To create a series of binary expressions

Chapter 3: Compiled Systems 35

using integer numbers requires adding individual bits together using an unsigned
integer expression in C. This is the mathematical series representation of the binary
number. To create this expression we need to understand how to represent the value
of an individual bit of a binary integer. The C language allows you to this this easily
with a concept called shifting.

Each bit can be represented in C by shifting left (<<) a one (1) by the number of the bit
offset. Shifting a bit left represents multiplying by a power of two. For example, the
expression (1 << 0) is a binary one shifted zero bits to the left, which is equal to 2⁰ or
1. The expression (1 << 5) is a binary one shifted five bits to the left, which is equal
to 2⁵, 100000 binary, 32 integer, and 0x20 hexadecimal. To summarize, zero is the first
binary digit and if set it equals one, meaning (1 << 0) is 1, (1 << 1) is 2, (1 << 2) is 4, etc.,
each increment a power of two. System software creators use this shifting method to
access and modify single bits when communicating with hardware registers. Shifting
can also be performed to the right with the (>>) expression, which divides an integer
by a power of two.

Fig 10: Binary represented as C series expression

Binary Integer C Expression
0000 0 0
0001 1 (1 << 0)
0010 2 (1 << 1)
0011 3 (1 << 1) + (1 << 0)
0100 4 (1 << 2)
0101 5 (1 << 2) + (1 << 0)
0110 6 (1 << 2) + (1 << 1)
0111 7 (1 << 2) + (1 << 1) + (1 << 0)
… …
1111 15 (1 << 3) + (1 << 2) + (1 << 1) + (1 << 0)

Another binary operation involving a single binary number is the ones complement,
which “flips” every bit in a large binary number. For example, all ones (1) become
zeros (0) and zeros (0) becomes ones (1) for every bit in the large binary number. The
ones complement is represented in the C language with the tilde ‘∼’ character.

The remaining bit operations involve performing bit operations upon two large binary
numbers, creating a result dependent upon the operator. The operators ‘And’, ‘Or’,
and ‘Xor’ (exclusive Or) are represented in C with ampersand (&), bar (|) and caret

Chapter 3: Compiled Systems 36

(^) characters respectfully within an expression. To recap from chapter one, these
operations compare two large binary numbers bit by bit. The first two operators
mentioned are somewhat easy to explain. For ‘And’ (&), if both corresponding bits
of the two large binary numbers are one (1), then the result is one (1) for that bit,
otherwise the result is zero (0) for that bit. For example A ‘And’ (&) B equals C, where
C has only bits set to one (1) if the corresponding bit in both A and B are set to one (1).
‘Or’ (|) is the same thing but the result is set to one (1) if either the corresponding bit
in A ‘Or’ (|) B is set to one (1). For Xor, or exclusive Or (^), the result is set to one (1)
for every corresponding bit whenever the bit in A is different from that in B. Below is
the same example from above but using or (|) instead of addition (+). Or (|) can also be
used in place of addition when all the bits are independent between the two values.

Fig 11: Binary represented as C Or expression

Binary Integer C Expression
0000 0 0
0001 1 (1 << 0)
0010 2 (1 << 1)
0011 3 (1 << 1) | (1 << 0)
0100 4 (1 << 2)
0101 5 (1 << 2) | (1 << 0)
0110 6 (1 << 2) | (1 << 1)
0111 7 (1 << 2) | (1 << 1) | (1 << 0)
… … …
1111 15 (1 << 3) | (1 << 2) | (1 << 1) | (1 << 0)

At the end of Chapter 1 we described how a computer does addition using binary
operations. Let use rewrite that equation using C syntax as ‘a + b = ((a & b) << 1) |
(a ^ b)’. Remember again that an assignment statement in C uses the equal sign (=)
to assign a variable to a value. First it is required to declare a variable and then that
variable can be assigned a value. Let us look at a simpler example.

u8 data;

data = (1 << 0);

This example declares an 8 bit unsigned integer named ‘data’ and then sets the first
bit, bit 0, to 1. If later in the program other bits need to be set while keeping the

Chapter 3: Compiled Systems 37

original bits unchanged, the C “or equal” (|=) assignment statement can and is often
used. The “or equal” performs a binary ‘Or’ between both sides of the assignment,
turning on, or enabling, new bits of a variable, without turning off any bits already
set. It is equivalent to using the equal sign and including the variable name on the
right, for example ‘data |= (1 << 0)’ is equivalent to ‘data = data | (1 << 0)’. Here is the
next example that will set bit 3 in ‘data, without changing any other bits.

data |= (1 << 3);

Oftentimes it is required to set a bit to zero that was previously one, or whose value
is unknown. This can be done using the ‘and equal’ (&=) assignment statement. The
‘and equal’ assignment sets each bit only if the bit is currently set and also included in
the new value, otherwise the bit is cleared, or set to zero. In other words, the variable
is bit wise ANDed with the assigned value (expression right of &=). To turn off
specific bits in a variable, this ‘and equal’ assignment is used in conjunction with
the ones complement operation (∼). The ones complement operator (∼) flips every bit
of the expression, so 0x00 becomes, 0xFF, etc. Let us show an example of identical
expressions that will turn off bit 3 in ‘data’ above.

data &= ~(1 << 3);

data = data & (~8)

data = data & 0xFFFFFFF7

The ones complement sets all bits to one (1) except bit 3 (1 << 3) that we wish to
remove. Then this value is ANDed with the existing ‘data’ value, to effectively turn
off bit 3 while leaving the other bits unchanged. Let us review this binary operation
above with a table, assuming that data has an original value of 00001001 or 9, meaning
bit 3 is set as well as bit zero.

Fig 12: C expression represented as binary in little endian format

Variable or Expression Binary Value
(1 << 3) 00001000
∼(1 << 3) 11110111
(data) 00001001
(data & ∼(1 << 3)) 00000001

Chapter 3: Compiled Systems 38

After the assignment, the variable ‘data’ has a value of 1 (binary 00000001), so this
expression only cleared the single bit 3, leaving all other bits of the variable ‘data’
unchanged.

3.5 C Language Functions

As code grows it can benefit from thoughtful organization. C programs are organized
into functions. Functions, sometimes referred to as procedures, are declared with
a name and consist of a group of statements that performs a specific task or
computation. All code in C must exist within a function and the first function to
be executed in a program or software is often named main(). Functions can be passed
variables, at which point these variables are described as parameters to that function.
To reiterate, functions are passed an optional list of operands, or parameters, and
then the statements within the function perform a specific task or computation on
or with those parameters, thereafter optionally returning a value. Functions can be
called from other functions and can return a value. Let us put together the code to
turn on bits 0 and 3 into a function.

u32 set_bits(u32 data)

{

data |= (1 << 0);

data |= (1 << 3);

return data;

}

The first u32, before the function name set_bits(), is the return value type, and the
declaration in parenthesis is the parameter to the function. This function sets bit 0
and 3 of the value in the parameter ‘data’, and then returns the new value. The C
language allows many ways to do the same thing. For example, the function below
computes the identical result to the one above.

Chapter 3: Compiled Systems 39

u32 set_bits(u32 data)

{

data |= (1 << 0) | (1 << 3);

return data;

}

Which computes and returns the identical result to the function below.

u32 set_bits(u32 data)

{

return data | (1 << 0) | (1 << 3);

}

To use this function to add these bits to a value would look like this.

data = set_bits(data);

3.6 C Language Organization

This is a good time to pause and conclude on the organizational structure of the C
source code we will create, starting with file naming and usage.C source code consists
of header and source files. Header files in C are identified with the ‘.h’ file extension,
while source files inC are identifiedwith the ‘.c’ extension. Source code is not typically
defined within header (.h) files, only declarations and #defines. Anything defined
or declared in a header file can also be done so privately at the top of a source file (.c).
Therefore header files (.h) should only be used for definitions and declarations that
must be shared across different source files (.c). To summarize, all variable and type
declarations should go at the top of the source (.c) file. Only when there is a clear
need to share a definition and/or declaration with multiple source (.c) files should a
header (.h) file be used.

One consistent challenge with creating software with C is organization, as the
software developer is responsible for everything. However, if some simple rules are
followed, most common organization problems can be avoided. First, any functions

Chapter 3: Compiled Systems 40

that are only needed within a single source file (private functions) should be located
at the top of the C file before their usage and declared with the ‘static’ keyword.

If a function requires calling a private static function in another source file, first
consider moving this function to the other source file so the function can access the
private static function. If this is not possible or creates other problems, the function
declaration must have a prototype of the function declared in a C language header
file, or .h file. Functions declared in a header file are called global functions. Only
create global functions when necessary, since header file management becomes an
issue as the system grows. Only functions required by multiple source files should be
made global and the function declared in a header file.

It is always best practice to minimizing the number of required header files so it is
easier to migrate the system source code to other systems. Group functionality into
header files that can be shared by any number of underlying C source files. With this
in mind, let us create our first header file that includes the type definitions declared
in section 3.3. These common types can then be used by all source files we create, so
let’s name this header file ‘system.h’.

3.7 The C main() function

The C main() function is a special function that is the entry point into a software
program. To clarify, the main() function is the first function that is executed by a
program when it starts running. Let us create a simple main() program, one that
loops forever, adding one to a variable every loop. OnWindows development systems,
Notepad can be used to open, edit and create source files. On Linux, use the editor for
your windowing system, such as gedit for Gnome, or kedit for KDE. If the user is in a
command line only environment, ‘pico’ is the simplest editor to use, for example ‘pico
main.c’.

Chapter 3: Compiled Systems 41

/*...*/

/* main: Application Entry Point */

/* */

/* Returns: Exit error */

/*...*/

int main(void)

{

int loop_count = 0;

/* Loop forever. */

for (;;)

loop_count = loop_count + 1;

}

Please create this main.c file, copy the above source code to the file and save it.

3.8 C Language Variable Scope and Volatility

The last concept for this chapter is variable scope. There are important differences in
the locations where variables and functions are declared that determine the scope or
persistence of a variable, or function.Variable scope can also be described aswhere in
a program a variable exists. Where a variable is declared in a source file determines its
scope, or accessibility by other portions of the program. Global variables are variables
declared outside of any function and can be accessible by any function or other
portion of theC file that follows the declaration. Variables declaredwithin functions
are only accessible within that function, meaning variables needed by many different
functions must be global, or passed as parameters to the functions that need access
to their values. It is considered best practice to minimize the use of global variables
and use function parameters instead.

So compiled systems use functions for organization, manipulate variables by as-
signing them to expressions, and use loops and conditional statements to modify
the flow of execution of the program. This is a big step from assembly language,
but still close enough to the way a computer operates to be used to directly control
hardware resources. One missing piece is how to represent a location in the hardware
memory map of a hardware register with a C variable? For example, how can we

Chapter 3: Compiled Systems 42

tell the compiler that a memory location contains a value that can simultaneously be
changed by physical hardware?

Well the C language has the ‘volatile’ keyword which should be used for declaring
variable that can be changed by hardware. Volatile means the variable can be changed
outside of the immediate program or software under execution, for example, by the
hardware. Volatile variables are required when a peripheral in hardware is accessed
directly by the software interface. The volatile keyword lets the compiler know that
hardware can change the variable without software knowing. This keyword ensures
that the value inmemory is not cached in software (in a hardware register for example)
in between usage, as is common during compiler optimizations. Here is an example
of the declaration of a pointer to a volatile variable of type ‘unsigned integer’.

volatile u32 data;

Chapter 3 Glossary:

Assignment – A source code statement that assigns the value of a variable to an
expression.

Build – the act of creating software using compiler tools such as a compiler,
assembler and linker.

C –A human readable source code language used for software development. Designed
for developing software to control hardware, as is common in system engineering.

Compiler - A software program that can parse C source code files and convert them
into assembly language. Compiling is the act of executing a compiler with a source
code (.c) file as input and assembly (or binary) being the output.

Conditional – a type of statement that performs a comparison of values, branching
the execution order depending on the comparison result.

Declare – to define a variable with a specific type. Variables must be declared before
than can be used in C statements.

Definition – a #define, whether for a type or function. Function #defines are also
called macros.

Chapter 3: Compiled Systems 43

Expression – a portion of a statement that defines the mathematical equation to
use for assignment or comparison purposes. Used to assign a new value or within a
conditional statement to determine whether to branch or not.

Function – a group of statements that performs a specific computation or task. A
function can be passed variables, known as parameters and can also return a value
to the caller. Declared with a name, return type and parameter list, functions can be
used within conditional and assignment statements.

Linker - a software program that converts one or more machine language output files
into a single executable binary file.

Loop – a series of statements that are repeated until a conditional statement breaks
execution out of the loop.

Parameter – a variable that is passed to a function. Functions define the required
parameters which the caller must provide.

Return Value – a value returned by a function after execution is complete. The return
value is passed back to the caller of the function.

Run - to execute a program or software in binary machine language format.

Statement – a complete line of source code, whether assignment, conditional or
loop. C statements end with a semicolon (;) or an end bracket (}). Statements are
similar to CPU operations in that they are ordered, but a single statement can be
much more complex, compiling into many CPU operations.

Type – A particular representation of a variable, such as an integer. All variables are
binary data, but the type signifies to the compiler the size and how the binary data
is interpreted.

Type Definition – A language dependent definition of a new type of variable. A
new type must first be defined before it can be used in a declaration statement.
Represented in the C language with the keyword ‘typedef’, or as a #define to a
previously defined type.

Variable Scope – the position within a source file or function that a variable was
declared. Variables exist only in the scope they are declared, so variables declared in a
function exist only for that function and are called local variables. Variables declared
outside of functions are global variables and can be accessed in any function.

Chapter 3: Compiled Systems 44

Chapter 3 Exercises:

1. In your own words, what is the difference between a variable and a parameter?
2. In your own words, what is the difference between an expression and a
declaration?

3. Write a C expression that assigns the binary value 0101 to the variable “var”.
4. Write a C function that takes one parameter and returns zero or one. The
function must check if bit 0 of the parameter is set, returning one (1) if set,
or zero (0) if the bit is not set. Hint: this will require use of the C conditional
statement ’if’. Name your function and variables whatever you please.

5. Write a C function that takes no parameters and returns zero or one. The
function loops 10000 times, or until bit 0 of a volatile global variable is set. The
functionmust return one (1) if the bit is set, or zero (0) if the bit was not set once
after 10000 tries. Hint: this will require use of the C conditional statement ’if’
and the C loop statement ‘for’. Name your function and variables whatever you
please.

Chapter 4: System Architecture
4.1 Address Space and Software Memory Map

Computer systems have an address space, which is a range of accessible memory
addresses. Within this address space exists the system memory map. There are
generally two types of memory maps per system, sharing the same address space.
These are the software memory map and the hardware memory map. The software
memory map defines how the compiled software is structured internally as a binary
executable. The hardware memory map defines how peripheral address spaces can
be accessed with software. Let us take a look at an example linker script that defines
a software memory map. Note that both the ORIGIN field identifies the start of the
software executable and LENGTH is the length of available RAM. Both depend on the
specific hardware the software will execute on.

MEMORY

{

ram : ORIGIN = 0x0, LENGTH = 0x1000000

}

SECTIONS

{

.text : { *(.text*) } > ram

.bss : { *(.bss*) } > ram

.rodata : { *(.rodata*) } > ram

.data : { *(.data*) } > ram

}

This linker script defines a softwarememorymap entirely within RAM, including the
origin, or beginning, as well as the length of available RAM for the software program.
Additionally, the linker script allows the program to define the order in the software
memory map for the executable code (.text), uninitialized global variables (.bss), read

Chapter 4: System Architecture 46

only variables (.rodata) as well as initialized global variables (.data). In this example,
the .text, .bss, .rodata and .data are all placed in the defined RAM region starting at
0x0000, one section after another as defined in the order of SECTIONS.

In other words, the .text is placed in RAM beginning at location 0x0000 and the other
software portions (.bss, .rodata and .data) are located immediately following, in the
respective order defined in the linker script. The highest valid address of RAM is
defined as LENGTH + ORIGIN. If there is not enough available RAM defined in the
memory map for the compiled executable, there should be a link error. Let us save
the software memory map linker script above to a file named ‘memory.map’ for use
when linking the compiled code of our first software program in the next laboratory
assignment.

4.2 Memory Address and Pointers

Computers have a CPU that can perform operations upon data in registers or RAM.
Registers are limited, the exact number dependent upon the CPU. RAM exists as a
consecutive region of memory addresses within thememory map. Most peripherals
have registers for status and control that are mapped in hardware to a different
location within the address space. These locations are defined in the hardware
memory map.

The C language is ideal for communicating with the status and control registers of
peripherals within the hardware memory map because of C’s ability to reference
any memory location using a pointer. A pointer is assigned the address in memory
of a particular data type. This allows a pointer to be assigned to the address of a
hardware register and then the register can be changedwith a C assignment statement.
Pointers are very powerful and dangerous as the entire address space is available to
the C programmer, but only addresses in the memory map are valid.

This is too important not to repeat in a different way to ensure the reader understands.
A pointer is a C language variable declaration that contains the address of a variable
of that type located in RAM, not the variable itself. C requires pointers to be declared
with a particular type so the compiler knows how to reference the underlying value
being pointed too. A pointer to an integer is the location in the address space that
holds an integer value. A pointer represents a location in the address space, so
referencing the pointer is required to access the value stored at this memory location.

Chapter 4: System Architecture 47

To reference a variable, C uses the asterisk ‘*’ symbol. Add this symbol before a
pointer variable and the value of that type stored at that memory location is the
result of the expression. Otherwise the address of the location in memory is the
normal result when using a pointer in an expression. Also, the symbol ‘&’ can be
used to get the address of a variable, allowing any normal variable to be converted to
a pointer. Pointers need to be used with caution as it is easy to make a mistake when
using them and do something unintended. However, pointers are absolutely essential
to controlling peripherals from software, as the registers for status and control of
hardware are typically referenced from somewhere within thememory map. From a
historical perspective, this necessity to reference peripheral registers/memorywas the
primary reason for the pointer data type. Let us review a quick example function that
uses pointers, with comments. Remember that comments are important to creating
readable code and start with /* and end with */.

int doubled(int value)

{

int *ptr_value;

/* assign ptr_value to address of "value" */

ptr_value = &value;

/* double the value */

value = *ptr_value + value;

/* return the value doubled */

return value;

}

4.3 Using C Pointers with Peripheral Registers

The address of the peripheral registers defined in the hardware memory map can
be assigned to pointers in C and directly accessed (referenced) from C programs.
There are some precautions needed when accessing hardware with software, the most
important is to be sure to use the volatile keyword. Volatile is needed because these are
hardware registers and can be changed by the hardware at any time without software

Chapter 4: System Architecture 48

knowing. The volatile keyword ensures that the compiled C program references the
address location of the pointer every time, and never caches the value in a register,
as the compiler will often try to do when optimizing operations with a nonvolatile
variable.

The below picture is an example hardwarememory map to help visualize the concept
of both hardware and software memory.

Fig 13: The hardware memory map

Some hardware registers in thememory map can only be accessed (read only), while
other registers can only be assigned (written), while others allow both read and write
access. It is required to consult documentation for the motherboard and peripherals
to determine the overall memory map as well as the detailed registers for each
peripheral. Combining information from multiple documents to correctly operate the
hardware through the use the registers in thememory map is the first step to writing
system software for a hardware platform. The hardware and peripherals must first
be documented, and the documentation understood, before system software can be
written.

As described above, it will be required for system software to access a hardware
register in the memory map. There are many ways to accomplish this but it is best
that the system software provide a consistent way to do this. Creating a #define
function, commonly referred to as a macro definition, will aid readability and avoid
mistakes accessing and assigning these hardware pointers. Using #define functions,
ormacro’s, will also allow the system source code to be easily ported from one system
to another.

Chapter 4: System Architecture 49

/*

* Register manipulation macros

*/

#define REG8(address) (*(volatile u8 *)(address))

#define REG16(address) (*(volatile u16 *)(address))

#define REG32(address) (*(volatile u32 *)(address))

The REG32() macro is defined to access 32 bit hardware registers, which are by
definition volatile as they are controlled by hardware. This macro can also be used
to assign a 32 bit hardware register in the memory map to a new value. However,
thismacro should never be used in a hybrid assignment such as ‘|=’, ‘&=’, etc. This is
because the compiler can often get sloppy in how it performs these operations and has
been know to change bits temporarily before arriving at the final result, which can be
catastrophic when these temporary bit changes control the hardware in unforeseen
ways.

Defining the REG32() and similar macros helps the systems engineer to remember
this volatile requirement, but not the assignment requirement of no hybrid assign-
ments. To mitigate this issue many OS software packages include functions such as
iowrite32() that enforce two parameters and thus do not allow hybrid assignments.
Compiler optimizations have continuously caused problems for system engineers,
leading to the development of the high level functions/macros such as iowrite32().
However, REG32() is a primitive lower than iowrite32(), allowing more freedom and
flexibility. The goal of this book is to inform the reader, not hide the details. The
freedom of REG32() comes with the requirement that the software creator understand
that the assignment of hardware mapped registers must be precise.

4.4 Create Software with an Editor and
Compiler

The system engineer frequently uses software tools in order to create system software.
The most frequently used tool is a source code editor, while the most important tool
of the system engineer is the compiler. The linker is the command line tool needed
to create the final binary software program by combining (linking) all the output (.o)
files generated by the compiler into a single executable. Let us discuss these software
tools in more detail now.

Chapter 4: System Architecture 50

The source code editor is used to read, modify and create source code. While any text
editor can be used to create source code, many are designed for the C programming
language and have user friendly color schemes. From a command line, the simplest
editor is pico or nano. The author frequently uses Gvim, a GUI interface based on
vim, a classic command line editor. Vim allows custom color schemes for displaying
C source code and file search tools can be integrated into it. Other common editors
are Visual Studio, Eclipse, Emacs, Geany and many others. System engineers spend
the majority of their time using editors, but other tools are required behind the scenes.
It is important for readers to use a source code editor that is simple and familiar to
the user in order to ease the initial learning curve. A source code editor must save the
text in raw text (ASCII or UTF-8) format or the compiler cannot read it.

To compile a file, invoke the compiler at the command line with the file to compile as
an argument to the command. Typically ‘cc’ is the C language compiler command line
tool but this can vary by development and whether or not a cross compiler is being
used to compile a source code for hardware different than the development system.
Let us review a simple command to compile the file main.c into the output file main.o,
searching for any #include files ‘-I’ in the current ‘.’ directory.

cc -I. -o main.o main.c

4.5 Creating an Executable with the Linker

The compiler is the bedrock of systems engineering. It is vital to the success of any
project that the compiler be tested and verified for the hardware system it is to be
used for. Compilers execute from the command line or system shell, accepting a list
of options followed by the files to compile. Each source code file is compiled into
an associated binary output (.o) file. After all files are compiled they can be linked
together into a single executable binary file. The linking command provides system
options and accepts a software memory map file to use when creating the layout of
the binary software.

Every program typically has one function named main(), which the linker uses by
default as the beginning of the program execution. It is important to remember that
when main() finishes, the program will end and the hardware will halt. Programs
require loops if they are to service peripherals, provide a user interface, or otherwise
need to wait for data or an event.

Chapter 4: System Architecture 51

The commands and options for compiling and linking can vary from one tool set
to another, as well as from one system to another. Historically the C compiler
command is “cc”, while the linker command is “ld”. Compiler and linker commands
can be executed from the command line, such as a Terminal window in Linux or the
Command Prompt in Windows. Here are two commands, including options, which
compile the file “main.c” and then link “main.o” into an Executable and Linkable
Format, or .elf file.

cc -I. -o main.o main.c

ld -T memory.map -o led.elf main.o

The -I option is used to include a path to search for header files, the dot meaning to
look in the current directory. The -o option to “cc” indicates the output file, in this case,
main.o and the last parameter is the input file “main.c”. The “ld” command links output
files into Executable and Linkable Format (.elf), the -T option instructs the linker to
create an executable according to the memory map defined in file “memory.map”.

While ELF is a standard and convenient way to format executables, CPU’s cannot
execute this format directly. Software boot loaders and debuggers often parse the
.elf file and move the binary regions to RAM for execution. It is not necessary to
know the details of ELF format beyond that it is the standard linker output file and
required to be used for disassembly with ‘objdump’. A tool to convert the ELF to a
raw executable binary is often required before the application is ready for execution
on a CPU. Most tool sets that include a C compiler include the “objcopy” or similar
command to convert .elf into raw binary. The command line below shows how to
convert an .elf file into the binary output file led.bin, ready for execution.

objcopy led.elf -O binary led.bin

4.6 Configuring General Purpose Input Output
(GPIO) pins

GPIO pins are simply electrical circuits that are connected to and controlled by a
computer system. These GPIOs are typically of three different types, pull up, pull
down or floating. A pull up, or pull high, type of GPIO puts a resistor between the

Chapter 4: System Architecture 52

voltage and the GPIO pin, while the software controllable switch to set or clear the
GPIO opens or closes the ground connection. A pull down, or pull low, type of GPIO
puts a resistor between the ground source and the GPIO pin, while the software
controllable switch to set or clear the GPIO opens or closes the voltage connection.
The resistor limits the amount of current that can flow through the GPIO pin, either
too the voltage source (pull up) or ground (pull down).

Each type of GPIO has its uses, typically a pull up is used for outputs such an LED,
while pull downs are typically used for inputs. FloatingGPIOs have no resistor in the
circuit and can easily drift between high and low depending upon static discharges.
FloatingGPIOs are typically used for data transfer pins going to a peripheral data line,
where the electrical activity occurring on the GPIO is controlled by that peripheral.

Fig 14: GPIO pull up/down resistor hardware configuration

GPIO with pull up resistor GPIO with pull down resistor

From a software perspective the location of the switch in a pull up or pull downGPIO
changes the way it should use the switch within that circuit in order to set the circuit
high or low. For a pull up GPIO the switch connects to ground, so when the switch is
closed (on) the GPIO pin will be grounded and driven low (0). For a pull downGPIO,
the switch connects to the voltage source so when the switch is closed (on) the GPIO
pin will be provided voltage and driven high (1). Regardless of the details, the software
creator must understand that based on the type of GPIO, the internal circuitry and

Chapter 4: System Architecture 53

usage change. This means that to change theGPIO type requires interfacing with the
control registers for the GPIO pins in order to change this circuitry. The details are
board specific and will be covered in the laboratory companion book.

4.7 Debugging

Besides the compiler, the most important tool for software creators is the debugger.
Defects in software have been called bugs as a carry over from mechanical computers
of the past. Thomas Edison is credited as the first documented use of the term
“bug” to describe a technical malfunction in 1878. Grace Hopper is credited as
giving the term popularity with software. When operators at Harvard Computation
Laboratory repeatedly gave her the results of her software execution, the results
were incorrect. She questioned the hardware while computer operators faulted her
software. Eventually she convinced some of the operators that the software was
correct and they double checked the hardware. Sure enough they eventually found
a moth trapped in a mechanical relay, shorting it out and causing the incorrect
computation.

A bug is defined as any unknown defect in the execution of a computer system or
application. It might be a hardware bug but is most often a software bug. Once an
unknown defect becomes known, it is no longer a bug but a known defect. The term
bug should be reserved for unexpected or explained behavior.Missing features, known
defects, or incompatibilities are not bugs. A faulty cable could be a bug, and even
appear to be a software bug, at least until the problem is known. The term ‘bug’ has
risen to popularity as it is a simple way to describe the unknown or unexplained.

Most bugs in computer systems are in software. No matter how experienced, software
creators write software that often has problems or defects that cause it to not work as
expected. Sometimes observing the behavior of the software and reviewing thewritten
source code is enough to understand and fix the problem. Other times the problem
is not obvious and to understand requires more visibility into how the software is
behaving while it is running.

A debugger is a software tool that allows software creators to pause their software
creations at run time and review the value of variables and other details to see if
everything is working as expected. Debuggers typically allow a software creator to
set a breakpoint at a location in the source code and then execute until it stops, or

Chapter 4: System Architecture 54

breaks, at this point in the execution. A breakpoint is a point in the source code to
break the execution for examination with a debugger.

Debuggers do not change the source code, even when setting a breakpoint. Debug-
gers communicate with the CPU while it is executing. To use a debugger effectively
the source code is often compiled with a flag so that the resulting executable contains
symbols for the debugger. These symbols allow the debugger to know which part
of the software is executing so that when the the executable is paused, the debugger
knows what line in the source code is being executed next. This allows the debugger
to display the line of source code that is ready for execution and without symbols
compiled into the executable, the debugger can only show the disassembled assembly
language of the raw executable.

Debuggers, like compilers, are typically used to debug programs running on the same
system they are created or develop on. For the purposes of systems engineering we
need to debug a different, or remote system, than the one that runs the debugger. To
clarify, we want to execute the debugger on the development PC in order to debug
the remote system. This means that, like the compiler, we must have a special version
of the debugger that is built to run on one systemwhile debugging a different system.
This special version of a debugger is also known as a cross compiled debugger.
Like the compiler, a cross compiled debugger is one built to run and be used on the
development PC while communicating with and debugging a potentially different
remote system.

There are different types of remote debugging technologies, but one in wide use is
JTAG. JTAG (developed by the Joint Test Action Group) is a serial bus technology
that can be chained together to support any number of attached systems to a single
JTAG bus controller. This makes it ideal to debug complex hardware systems that
contain multiple CPUs, or even processors of different types. The details of JTAG are
beyond the scope of this book and the particular JTAG controller hardware that is
used to connect the development PC to the remote device to be debugged is specific
to the development PC and the remote system being debugged. Details on the JTAG
controller/adapter such as how to connect it, configure and use it, etc. are discussed
in the companion laboratory book.

To summarize, debugging is the process of pausing and resuming software execution
in order to examine the software behavior at run time. Debugging a remote system
is only possibly by using a physical connection (JTAG, etc.) to the development PC
executing the debugger with the remote system being debugged. Only once the

Chapter 4: System Architecture 55

development PC and remote system are connected through the JTAG controller
interface can the remote system be debugged.

Chapter 4 Glossary:

Address - A generic term for a location in RAM. Can also be the location within the
address space of a peripheral defined in the memory map.

Address Space - The range of valid memory locations usable by software, including
any peripherals that software can control. Usually defined in the motherboard
manufacturer data sheet.

Breakpoint - A location, or point, in the source code that a debugger will recognize
and stop execution (break) so the software creator can examine the state of the
software such as the value of variables.

Bug - Any unknown defect or problem in the execution of a computer system.

Cache - when a value of a variable in memory is moved to a register within the
CPU to speed up one or more operations. By default the compiler caches variables in
registers during compilation to speed up execution. The volatile keyword can be used
when declaring a variable so the compiler knows not to do this and is required when
C source code accesses a peripheral in the memory map.

Data Sheet - A document created by a manufacturer of a circuit board that describes
the usage of that circuit board. This is a historic term and not used by all manufactur-
ers, but the idea is the same. Without the data sheet naming the peripheral register
addresses and system memory map, system software development cannot begin.

Debug - The act of examining a running system to determine the reason for
unexpected behavior.

GPIO - General Purpose Input Output is a physical connection on a circuit board that
has a binary state, that is, on or off. GPIOs can be turned on and off with software
and are often used to enable peripherals, or for use by the system or user to control
LED’s, motors, or other hardware or peripherals.

Macro - A C #define that takes one or more parameters and evaluates an expression
using those parameters. The C compiler replacesmacros, substituting themacrowith
the defined expression during the first stage of compilation.

Chapter 4: System Architecture 56

Mapped - A hardware peripheral that is represented within the Memory Map.

Memory Map - A table of where hardware and peripherals can be accessed by
software within the address space. This layout of the address space is usually fixed,
declaring the address range for RAM as well as the address range(s) to use for
operating hardware peripherals.

Pointer - A programming language concept where a variable represents the address
location of the data. A pointer allows a variable to be accessed and assigned by
referencing the pointer. Using pointers, operational registers of peripherals that are
in the memory map can be accessed, assigned and used in expressions within a C
program.

Reference - the act of accessing or assigning a value stored at a pointer location.
Pointers must be declared with a specific type before referencing.

Remote System - a physical computer system that is electronically connected to the
development PC.

Chapter 4 Exercises:

1. What is the difference between a pointer and a reference?
2. What is the difference between a variable and a pointer?
3. What is the difference between the address space and the memory map of a
system?

4. Draw the hardware memory map of a system with the following specifications:
1GB of RAM starting at physical location 0x10000000 and a peripheral address
space of 256MB beginning at location 0x80000000. Hint, 1GB is 0x40000000 bytes
and 256MB is 0x10000000 bytes.

5. In the above system, what address ranges are not valid? That is, what address
ranges do not map into the memory map?

6. Author a linker script to describe the softwarememory map for this new system.
It should start at the beginning of RAM and utilize all 1GB of RAM. This project
also requires that the read only variables must be at the end of the software
memory map.

Chapter 5: Timer Design
5.1 Hardware Clocks

CPU’s operate at a certain frequency, or number of operations per second. One
common way for a hardware system to keep track of time is to increment a counter
every so many CPU clock ticks. If this counter value is saved, it can be compared to a
future value to measure the change in time, or time delta. The equation to calculate
this can be written as ‘delta = (time_now - saved_time)’ and is equal to the number
of clock ticks between the two time samples. If the frequency in seconds of the
clock is known, converting the time delta to seconds can be performed with the C
statement ‘seconds = delta / frequency’. Computer clocks can run at different speeds
so amicrosecond representation of time is a high level of precision that can represent
any computer system and is commonly used when creating generic system software.
Microseconds automatically allows more precision if the systems supports it, yet also
works just as well with slower clocks.

Using microseconds for a clock means that the numbers get big very quickly, as
one million is added to the clock every second. For example, a hardware register
represented as an unsigned integer counting microseconds will reach the 32 bit size
limit in 4,294 seconds, or every 71 minutes. To keep track after the 71 minute range,
a system clock may have a second overflow counter that increments every time the
main clock register overflows. This second clock register is referred to as the high
register, as it contains the high order bits for the clock. The primary clock register is
often referred to as the low register, as it contains the low order bits for the clock. If
they are present in hardware, software can use both the high and low hardware clock
registers (32 bit each) to represent any day or time. These 64 bits allowmicrosecond
precision or less, depending on what the hardware supports and/or is configured for.

Systems have a hardware memory map with peripheral registers accessible with
volatile pointers in software. System clocks may use a different speed thanmicrosec-
onds and if so this must be accounted for in system software. To convert to seconds,
divide the clock ticks by the clock frequency. Clocks with a frequency less than
microseconds are common and converting to microseconds involves dividing the

Chapter 5: Timer Design 58

time value by a fraction. Dividing by a fraction is multiplication, so converting these
clocks to the microsecond range is as simple as multiplying the number of ticks by
the difference in frequency from microseconds.

5.2 System Software for Hardware Clocks

A truemicrosecond clock requires 64 bits to represent any day in the past and future.
Some hardware supports two 32 bit clock registers, other hardware a single 64 register,
and other hardware only a single 32 bit clock register. If only a single 32 bit clock
register is available with a frequency of microseconds, software must manage the
roll over. Let us now demonstrate how to do this in software.

Any software algorithm that must handle roll over must first be able to detect an
overflow of the 32 bits register. With overflow properly supported in software, any
period of time can be maintained. Let us start with a look at a typical microsecond
clock representation within the hardware memory map. This single register interface
to the timer is accessible as an address in the memory map. This software interface
to hardware is a representation of a simple hardware clock, and the idea is the same
whether this clock uses microsecond or less precision.

#define TIMER_CLOCK (TIMER_BASE | 0x00)

The software interface to the hardware clock has only this single TIMER_CLOCK
to keep track of time changes or deltas. Since the clock is always increasing, we can
detect a roll over of the clock if a read of the clock register results in a value less than
the previously read value. If the timer algorithm compares the new value with the
previous time value and it is less, then a roll over occurred. The first step to create the
time interface is to define an expiration time.

For our timer design, what is needed is an unsigned 64 bit timeout value. For this
discussion we will use microsecond precision, but this could be a translation to
microseconds of any frequency defined by the hardware. In addition to the expiration
time in clock ticks, we need to detect how many clock roll overs are required before
the expiration time is achieved.

To avoid mistakes and make the code easier to read, let us define some additional
constants in system.h. These defines will allow us to better use the timer functions as
well as to visually use TRUE and FALSE instead of 1 and 0.

Chapter 5: Timer Design 59

/*...*/

/* Symbol Definitions */

/*...*/

/*

** Common definitions

*/

#define TRUE 1

#define FALSE 0

/*

** Time definitions

*/

#define MICROS_PER_SECOND 1000000 /* Microseconds per second */

#define MICROS_PER_MILLISECOND 1000 /* Microseconds per millisecond */

5.3 Software Interface for Clocks

As discussed, a fundamental requirement for creating software for hardware is
that the software needs to know how to accurately wait for the hardware. To
accurately wait for any amount of time in microseconds requires a 64 bit variable
as previously discussed. The goal is to create a microsecond sleep function that will
wait for the requested number of microseconds before returning. There are three key
requirements to waiting, to know what time it is now, to know how long to wait for,
and a way to keep track of time.

The timer software interface this book proposes consists of two functions. The first
is TimerRegister(), which requires as a parameter the number of microseconds in
the future to expire, and returns a ‘u64’ representing this future time, relative to the
current time. The second function to this software timer interface is TimerRemain-
ing(), which takes as a parameter the expiration time returned in a previous call to
TimerRegister(). TimerRemaining() compares the expiration time to the current time
and returns the amount of time that the timer has left until expiration, or zero if it
has already expired. To clarify, TimerRegister() takes the wait time and calculates and
returns the system time that corresponds to this time in the future, based on the wait
time.

Chapter 5: Timer Design 60

The usleep() function, pronounced micro sleep based on the Latin letter mu or \mu,
takes a parameter of the timeout value inmicroseconds and passes this value to Timer-
Register(). TimerRegister() then returns the system time of expiration which should
be saved by the caller in a variable. Then a loop can check the previously returned
expiration time with the system time with the TimerRemaining() function, until it
returns a zero value indicating the current timer has expired. The usleep() function is
a common system software function to sleep for the number of microseconds passed
as a parameter. Note how the return value from TimerRemaining() is used to exit the
loop once the remaining time is zero.

/*...*/

/* usleep: Wait or sleep for an amount of microseconds */

/* */

/* Input: microseconds to sleep */

/*...*/

void usleep(u64 microseconds)

{

struct timer tw;

/* Create a timer that expires 'microseconds' from now. */

tw = TimerRegister(microseconds);

/* Loop checking the timer until it expires. */

for (;TimerRemaining(&tw) > 0;)

; // Do nothing

}

This usleep() function depends on two timer functions, TimerRegister() and TimeRe-
maining(). The TimerRegister() calculates and returns the expiration time based on the
time right now, plus the number of microseconds defined in the timeout parameter
‘microseconds’. The TimeRemaining() function will compare the expiration time
(returned from TimerRegister()) with the current time.

Let us create these functions now. The comments should help the reader understand
the code. Please read the code top down, using the comment above each code line to
help understand the code itself. One point of potential confusion with this algorithm
should be briefly discussed ahead of reviewing the code. The hardware timer in this

Chapter 5: Timer Design 61

example is a single 32 bit register that may roll over. How roll over is detected is
with the TimerRemaining() function. TimerRemaining() must detect when the clock
register rolls over. This function takes as a parameter the last time it returned (or 1 for
the first call) and returns the current time. Using the last time the function can detect
if a roll over occurred.

/*...*/

/* TimerRegister: Register an expiration time */

/* */

/* Input: microseconds until timer expires */

/* */

/* Returns: resulting timer structure */

/*...*/

struct timer TimerRegister(u64 microseconds)

{

struct timer tw;

u64 now;

/* Retrieve the current time ticks of T1_CLOCK_SECOND frequency. */

now = REG32(TIMER_CLO); /* 32 bits of time */

/* Scale hardware time to microseconds by multiplying by the */

/* magnitude (scale) of the difference in time frequency. */

if (MICROS_PER_SECOND > T1_CLOCK_SECOND)

now *= (MICROS_PER_SECOND - T1_CLOCK_SECOND);

/* Calculate and return the expiration time of the new timer. */

tw.expire = now + microseconds;

/* Return the created timer. */

return tw;

}

/*...*/

/* TimerRemaining: Check if a registered timer has expired */

/* */

Chapter 5: Timer Design 62

/* Inputs: expire - clock time of expiration in microseconds */

/* last - the last time this function was called */

/* */

/* Returns: Zero (0) or current time if unexpired */

/*...*/

u64 TimerRemaining(struct timer *tw)

{

u64 now;

/* Retrieve the current time from the 1MHZ hardware clock. */

now = REG32(TIMER_CLO); /* 32 bits of time */

/* Scale hardware time to microseconds by multiplying by the */

/* magnitude (scale) of the difference in time frequency. */

if (MICROS_PER_SECOND > T1_CLOCK_SECOND)

now *= (MICROS_PER_SECOND - T1_CLOCK_SECOND);

/* If low order 32 bits of 'last' > 'now' a rollover occurred. */

if ((tw->last & 0xFFFFFFFF) > now)

now += ((u64)1 << 32);

/* Add saved high order bits from the last. */

now += tw->last & 0xFFFFFFFF00000000;

/* Return zero if timer expired. */

if (now > tw->expire)

return 0;

/* Return time until expiration if not expired. */

tw->last = now;

return tw->expire - now;

}

These functions will often be used by other components of the system software
and user applications, so let us declare the functions globally in system.h. Note the
additional macro definitions below that define Sleep() using the usleep() function and

Chapter 5: Timer Design 63

multiplying the parameter. Defining functions as a macro that uses another function
keeps the software small yet easy to use and read by others. The usleep() function is
defined so that we canmask the input parameter to a 64 bit value, allowing the caller
to use a smaller sized integer if desired. Another important concept introduced below
are C data structures, which combine a collection of C types into a single structure
or ‘struct’. We define the timer as a structure that holds both the expiration time as
well as the last time the timer was checked.

/*

* Timer structures

*/

struct timer

{

u64 expire;

u64 last;

};

...

/*

* Timer interface

*/

#define Sleep(a) usleep((u64)(a) * MICROS_PER_SECOND)

void usleep(u64 microseconds);

struct timer TimerRegister(u64 microseconds);

u64 TimerRemaining(struct timer *tw);

5.4 Software timer uses

In software design, it can be desired to use a naming convention to identify the
scope of a function or variable through the use of letter capitalization. The authors
preference is that global variables and functions should capitalize the words without
spaces, while local variables and functions should be lower case and separate words
with the underscore _ character. This way it is possible to know the scope of a

Chapter 5: Timer Design 64

variable or function just by the name of the variable or function, greatly increasing
the readability and understanding of the source code.

It is common in system software to have to wait for a particular hardware condition
to be true before continuing. Hardware peripherals can become unresponsive due
to internal processing and thus require a wait in the system software before further
software control can be applied. To aid the need to wait on a condition, a hardware
register or software variable, we end this discussion on timers with an example
of a conditional wait loop. The loop looks similar to usleep() except that the loop
exits as soon as a conditional statement is true or the timer expires. The variable
‘microseconds’ should contain the time out value inmicroseconds and an expression
‘condition_is_true’ that must evaluate to true before breaking out of the loop before
expiration. After this loop finishes, softwaremust check if a timeout occurred, possibly
with another TimerRemaining() call if needed.

struct timer expire = TimerRegister(microseconds);

/* Loop checking the condition and timer until true or expiration. */

for (;condition_is_true || (TimerRemaining(&expire) > 0);)

{

// Do work/check peripheral

}

To summarize, in this section we created a global software interface containing timer
and sleep functions. We examined these functions and provided examples how to use
them. Congratulations, we have created a system software library for timers that will
be the foundation of all algorithms to follow.

5.5 Building Software with Make

So far we have been using the command line to compile our software, and have
used shell scripts to automate and eliminate errors when using these commands. The
software packagemake is a common and very helpful tool that can be used to manage
the compiling, linking and cleaning needed to create and update libraries and final
binary images to be executed by hardware. As programs grow in source files, it is
cumbersome to maintain the build scripts that compile each individual C file and
then link the software.

Chapter 5: Timer Design 65

Make is historically a tool for compiling on Unix systems, but is now available on all
modern operating systems such as Windows, Mac OS and Linux. The idea behind
make is that each application or solution has its own Makefile, which defines a
specific number of source code files, and build options, that are to be used to compile
and link the software solution. In one analogy, theMakefile is the recipe whileMake
is the chef.

Ending this chapter will be an example of a Makefile for an application that has a
single source file, main.c. It is not important to understand every line of thisMakefile,
just the concept of what it is doing. For example, to add additional source code files,
include them in the OBJECTS definition. Also note that the ‘memory.map’ linker
script created earlier is used as a parameter to the linker. This is needed for the linker
to create a resulting binary that is in the proper position to execute on the system.
Organizing source code into multiple C header files and C source files is easy when
using a Makefile. This ease of management eliminates the bad practice of putting
everything into the main.c file to avoid updating the build scripts.

Presented below is an example of a Makefile configured for the default GNU C
compiler on a PC. Note that the pound symbol ‘#’ is used to indicate a comment.

#

Makefile for application

#

##

Commands:

##

CP = cp

RM = rm

C = gcc

CC = gcc

LINK= ld

PLINK= objcopy

##

Definitions:

##

APPNAME = app

Chapter 5: Timer Design 66

EXTRAS = -ffreestanding

CFLAGS = -Wall -O2 $(EXTRAS)

ASFLAGS =

INCLUDES = -I.

##

Application

##

OBJECTS = main.o \

##

Define build commands for the C and assembly source file types

##

.c.o:

$(CC) -c $(CFLAGS) $(INCLUDES) -o $@ $<

.s.o:

$(AS) $(ASFLAGS) -o $@ $<

##

Targets

##

all: object

object: $(OBJECTS)

$(LINK) -T memory.map -o $(APPNAME).elf $(OBJECTS)

$(PLINK) $(APPNAME).elf -O binary $(APPNAME).bin

clean:

rm -f $(OBJECTS)

rm -f *.bin

rm -f *.elf

This Makefile can perform two actions, to build the software or clean out the
previously created software. Let us take a look at running the above Makefile for
the main.c application, first to clean out the old output files and then to compile and

Chapter 5: Timer Design 67

link a fresh version of the software. This process of creating software is referred to as
a build of the software. Let us review the output of the above Makefile to see what it
is doing.

$ make clean

rm -f main.o

rm -f *.bin

rm -f *.elf

$ make

gcc -c -Wall -O2 -DRPI=3 -ffreestanding -I. -o main.o main.c

ld -T memory.map -o led.elf main.o

objcopy led.elf -O binary led.bin

$

5.6 Project Management

It is good project management to build software in increments and validate the
changes by compiling and testing the software often, after each change. This repeated
testing style of development is sometimes referred to as incremental, or agile. The
repetition helps isolate problems early to avoid introducing multiple problems at
once. Many system software problems tend to leave symptoms rather than an easy to
identify source of the problem. Daily and incremental backups should be performed
whenever you begin development for the day, as well as at each successful point.
The simplest from of version control is to copy yesterdays source folder(s) to a backup
folder (preferably a different hard drive or removable flash drive). Rename the backup
folder with today’s date so it is easy to find and go back to previous versions.

Backups are vital to recovering from a catastrophic bug or problem that cannot be
easily understood, fixed or otherwise root caused. The procedure when confronted
with this obstacle is to go back to an older version of the software and slowly start
adding in the changes, testing often. Oftentimes the problem has existed for some time
but was not exposed or detected until some recent change. Having an archive trail can
be very helpful and encourages risk taking during development. Want to try an off the

Chapter 5: Timer Design 68

wall idea? Archive and hack away safely. Achieve a milestone? Back up immediately
before success becomes but a fleeting moment in time.

Commercial and open source tools exists to aid the task of maintaining versions of
source code files. The details of the different version control systems will be specific to
the tool used, but the concepts are the same. To simplify the concept, version control
systems contain source files with the mechanism to add new versions of a file at
any time. Since each new version includes a comment about the change, it can aid
debugging to compare with a previous version. Version control systems also allowing
rolling back to a previous version if needed. Common version control lingo uses library
terms; to modify a file requires first a check out and then a check in once the file has
been changed and tested successfully. Keeping each small change in a version control
system allows the developer to quickly isolate a new problem and can allow rapid
recovery from newly introduced bugs.

5.7 System Software Organization

Now that we have created a system software library for the timer, let us organize
the source code into directories so we can easily expand the system software in the
future. First, in the source code tree ‘source’, create three directories, applications,
boards and include. In the applications directory create another directory named
errorcodes and copy the source code files from the previous and current chapter
to errorcodes (main.c, Makefile, memory.map). Copy the system.h file from the
previous chapter to the include directory. In the boards directory, create a directory
for the hardware and then create two files in that directory, board.h and board.c.

Open board.h and main.c, cut and pasting the definitions from the top of main.c,
added in the previous chapter of the companion laboratory book, to board.h. With
the definitions removed from main.c, the #include <system.h> line must be added to
the top of main.c before it will compile successfully. Next open board.c and cut and
paste the time functions created in the previous section to this file. System.h should
already contain the prototypes for these functions. Here is a directory map of the new
organization.

Chapter 5: Timer Design 69

Source\applications\errorcodes

main.c

Makefile

memory.map

Source\boards\<board_name>

board.c

board.h

Source\include

system.h

The last step needed is to modify the Makefile to use the new directory hierarchy
above. Open the file Source/applications/errorcodes/Makefile and replace the old
INCLUDES line with this one. Replace <board_name> with the name of the board
used in the laboratory assignments.

INCLUDES = -I. -I../../include -I../../boards/<board_name>

Next, modify the OBJECTS line to include the files and paths.

OBJECTS = main.o \

../../boards/<board_name>/board.o \

Finally, define a function prototype ‘void BoardInit(void)’ in system.h. Open board.c
and create this BoardInit() function, copying the LED GPIO initialization from
main.c to this BoardInit() function. This code is hardware dependent and will not
be reproduced here.

If the above changes were completed correctly the application should now compile
with Make. If this reorganization is not compiling, see the laboratory assignment
following this chapter for more details. This new software organization will be
the starting point for the following chapter, as well as all future chapters. This
organization allows the system software to be easily expanded in future chapters or
changed to use a different board.

Chapter 5 Glossary:

Frequency - how often an event occurs, measured in times per second. For example,
the number of CPU operations a second is the CPU frequency.

Chapter 5: Timer Design 70

Make - a command line program used to organize and automate the compilation and
linking of software source code into an executable form.

Makefile - a human readable file conforming to the Make syntax that describes the
source files that are to be compiled and linked together into an executable. By default,
the Makefile in the current directory is parsed and executed by the make command
line application.

Mask - A technique to change a variable from one declared type to another. Often
used with pointers when the raw hardware register of the hardware peripheral must
be converted to another type. Use masks, particularly pointer masks cautiously and
appropriately. Whenever possible change the variable declarations to match instead
of using a mask.

Microsecond - one millionth of a second is 1/1000000 or 10⁶ seconds.

Millisecond - one thousandth of a second is 1/1000 or 10³ seconds.

Naming Convention - a defined style for naming variables and functions of a
particular type or scope.

Structure - an ordered group of C variables that is defined as a new type of variable.
Once a structure is defined, variables can be then be declared with that type.

Ticks - the number of times a hardware or software clock has counted. To convert
ticks to seconds requires knowing the clock frequency, defined as the number of
ticks per second.

Time Delta - the change or difference between two time values. A time delta can be
represented as clock ticks or some form of seconds, such as microseconds.

Chapter 5 Exercises:

1. How many microseconds does it take to equal one millisecond? How many
microseconds equal 1.25 seconds?

2. Ensure the timer performs the roll over correctly by expanding on the source
code from previous labs to create a program that uses the TimerRegister() and
TimerRemaining() functions to turn the LED on after 75 minutes.

Chapter 6: Universal
Asynchronous Receiver
Transmitter (UART)
6.1 UART Introduction

The UniversalAsynchronous Receive Transmitter, orUART, can transfer or receive
bits of data across a physical cable connected between two computer systems. The
UART, pronounced ‘you art’, is a great way to directly connect the development PC
used to create system software with the hardware that executes this system software.
With a UART software driver, the system software can print information such as
error strings to the development PC during run time, over the UART. The system
software application could present a menu of commands or even provide a command
line interface (system shell) over the UART. This familiar interactive and debugging
interface speeds up development ofmore complex driversmaking theUART the usual
first choice of drivers to bring up on a new hardware system.

6.2 UART Hardware

The simplest UART is a two pin connection, Rx and Tx. Historically a UART Serial
Port had a 9 pin connection named DB9 and powered by 5 volts. More recently the
UART pins are exposed as Rx and Tx (and optional RTS and CTS for hardware flow
control) pins and powered at 3.3 volts. This lower voltage configuration is referred to
as a UART TTL, where TTL stands for Transistor-Transistor Logic. Both UART Serial
Ports andUART TTLs appear as COM ports to theWindows user, and as a TTY device
(/dev/ttyX) on Linux.

It is required to find and read the hardware specifications for the UART to be sure of
the voltage, pin layout and/or cable. Typically UART connections that have DB9 pin
connections are 5 volt Serial Ports, while those UARTs that connect directly to pins

Chapter 6: Universal Asynchronous Receiver Transmitter (UART) 72

on the motherboard are often 3.3 volt TTLs. But bare pins can also be 5 volt so read
the documentation. The term TTL is always 3.3 volt so look for this distinction.

Important
If there is only a USB UART interface on the board to be used for system
software development it cannot be used with this book. The USB UART
requires the system software creator first write a USB driver before creating
a UART driver.

UART interfaces must be physically connected properly between the two systems or
communications will not work. This physical connection consists of at least transmit
and receivewires, commonly referred to as Tx and Rx. The UART is designed so that
the receive (Rx) on one system is wired to the transmit (Tx) of the other system. One
hardware option with the UART is flow control, which adds wires so the transmitter
can ask if the receiver is ready before sending data. Intended to decrease data loss,
hardware flow control requires two extra UART wires, Request to Send (RTS) and
Clear to Send (CTS).

Hardware flow control can minimize data loss but adds hardware complexity as it
requires extra wires connected to a compatible UART controller on both sides of the
communication. Not all UART hardware interfaces support hardware flow control.
Flow control is generally not needed for common uses of the UART (error reports,
system shell, etc.), but is needed for uses that do not verify data integrity with
software, and cannot accept data loss during transfer. For example, when transferring
a binary image to another system to execute, a single incorrect bit can cause undefined
behavior during execution.

It is very important to find documentation and understand the UART physical
interface to the system that is be brought up with software. For example, be sure
to purchase a USB to Serial (UART) cable where the UART side will connect
properly with the board under development. Check that the USB side connected to the
development PC has a good driver for your development OS. The wrong connection
on either end will result in frustration or could even supply too much electricity (over
voltage) and destroy the hardware. If in doubt, please follow the instructions in the
laboratory assignments exactly.

Chapter 6: Universal Asynchronous Receiver Transmitter (UART) 73

6.3.1 Configure the Development PC

The most common use of UART communication in system engineering is for sending
debugging information or providing a system shell interface. It is important to provide
both interfaces to the system developer so that error information can be sent and
commands can be received. It is helpful to split this larger goal into stages, so first let
us focus on creating an application to initialize and configure the UART interface.

Start on the development PC and install an application that can be used to connect
to a serial UART port. The recommendation for Windows PCs is TeraTerm, or
ExtraPuTTY, and Minicom on Linux PCs; all are free downloads or package upgrades.
The laboratory assignments will discuss the details of how to install and use these
applications depending on hardware. This said, configuring serial UART connections
have common features which are discussed below.

6.3.2 Configure the System Software

The software configuration must by synchronized on each side of the UART com-
munications. The most important and commonly modified configuration is the baud
rate. The baud rate is the speed in bits at which theUART transfers data and common
settings are 115200 or 9600 bits per second (bps). If one side is configured for a different
baud rate than the other, no communication will occur or garbage will appear on
either end.

Other software configuration options for the UART will be mentioned but rarely
changed beyond the default. These are are data size, parity and stop bit. The data
size is the number of bits sent before the stop bit, typically 8 bits (a byte at a time).
The UART hardware sends a start bit, the data bits followed by optional parity bit
and then one or more stop bit(s). Adding a parity option and/or a second stop bit
can increase data transfer reliability, especially when used as in the past across long
distances. Most modern PC UART adapters are for short range and use 8 bit data, No
parity and one (1) stop bit, often referred to as 8N1. Use other settings only if you have
a reason and know both sides of the UART interface support and are configured for
it.

The UART software interface can be separated into two groups, initialization and
data transfer. The main thing the software must do to initialize the UART hardware

Chapter 6: Universal Asynchronous Receiver Transmitter (UART) 74

is to configure the the baud rate. Once the baud rate, and hardware GPIO pins if
necessary, are configured on the system the UART communication (Rx and Tx) can
begin. A software interface must be created to transmit (Tx) as well as receive (Rx)
data.

As previously mentioned, most modern UART software interfaces have a default of 8
bits, no parity and one stop bit (8N1) so the only setting that often changes is the baud
rate, or data bits per second or transfer speed. To configure the baud ratewith system
software is not as simple as it sounds. Systems often share a common clock with the
UART and other peripherals, while the UART requires a specific clock rate in order
to transfer data at a specific baud rate. Each system shares a different clock with a
different frequency, yet the sameUART peripheral can work across all of the different
systems using what is known as a clock divisor. Most peripherals, including UART,
have a circuit to a clock on the motherboard. This system clock then becomes the
UART clock, but this is hardly ever the correct frequency for the desired baud rate.
The UART peripheral includes a clock divisor that can be configured in software to
divide the system clock in order to achieve the correct baud rate.

The clock divisor interface is typically one or two registers, an integer divisor and
possibly a fractional remainder. Let us review the general equation now.

baud_rate = system_clock / divisor;

Systems with only an integer divisor require a compatible system clock to achieve
common UART baud rates (9600, 115200, etc.). Many UART hardware to software
interface supports an integer as well as a fractional baud rate divisor. The fractional
divisor is an integer representation of the remainder value. The hardware docu-
mentation should provide the specific equations needed to calculate the integer and
fractional baud rate divisors. If in doubt, review the hardware documentation and
pay close attention. The real life equations usually include constantdivisormultipliers
added in hardware to make the UART peripheral compatible with the clock. These
need to be reflected in software, similar to this example equation.

baud_rate = system_clock / (16 * divisor)

divisor = system_clock / (baud_rate * 16)

fractional_divisor = (fractional_remainder * 64) + .5)

In the above example equation, the divisor is an integer, but the result of the division
is typically not a whole number but has a remainder. The fractional remainder is

Chapter 6: Universal Asynchronous Receiver Transmitter (UART) 75

then multiplied by another constant, rounded up and then converted to an integer
(remainder dropped). Here is an example where we configure the integer and
fractional divisor configuration for 115200 baud where the external UART clock is
3MHz (3000000). This example is tailored to 16C650 compatible UART interfaces, but
is applicable to any UART software interface that has both an Integer Baud Rate
Divisor (UART0_IBRD) and Fractional Baud Rate Divisor (UART0_FBRD).

/*

divisor = 3000000 / (115200 * 16) = 1.627 = 1

fractional divisor = (.627 * 64) + .5) = 40

*/

REG32(UART0_IBRD) = 1; /* Integer baud rate divisor */

REG32(UART0_FBRD) = 40; /* Fractional baud rate divisor */

It is always best to do the calculation on the development PC and include the equation
and results in the comments so others can see the algorithm and are able to change the
baud rate if needed. The last configuration step that UART software should do is to
enable the UART controller. Conversely, before configuring the UART, it should first
be disabled. Here is an example UART initialization function for 16C650 compatible
UART interfaces that disables, configures and then enables the UART peripheral
number zero (UART0) to use the 115200 baud rate.

/*...*/

/* UartInit: Initialize the UART */

/* */

/*...*/

void UartInit(void)

{

/* Disable the UART before configuring. */

REG32(UART0_LINE_CTRL) = 0;

REG32(UART0_CONTROL) = 0;

/* divisor = 3000000 / (115200 * 16) = 1.627 = 1

fractional divisor = (.627 * 64) + .5) = 40 */

REG32(UART0_IBRD) = 1; /* Integer baud rate divisor */

REG32(UART0_FBRD) = 40; /* Fractional baud rate divisor */

Chapter 6: Universal Asynchronous Receiver Transmitter (UART) 76

/* Enable the UART and clear the received error count. */

REG32(UART0_LINE_CTRL) = (BYTE_WORD_LENGTH | ENABLE_FIFO);

REG32(UART0_CONTROL) = ENABLE | TX_ENABLE | RX_ENABLE

}

There are often other steps to initialize the UART, such as configuring the UART to
use the system clock and enabling the Rx and Tx GPIO pins if the hardware interface
pins out through the GPIO interface. Consult the laboratory assignment for any extra
configuration steps that are needed. Any extra software configuration steps must be
added to UartInit(), in between disabling the UART and enabling it.

6.4 Send Data with Software

The UART sends, or transmits, data at the configured baud rate. Typically 8 bits (a
byte) at a time can be sent by writing into a hardware First In First Out (FIFO) queue.
Our first thought after reading the hardware register interface might be to just write
to the output data register, like this.

void UartPutc(u8 character)

{

/* Send the character. */

REG32(UART0_DATA) = character;

}

But the software interface should check the Tx status bits to ensure the Tx FIFO is not
full before attempting to send data. If the Tx FIFO is full, the outgoing byte written
will not be sent and lost/dropped instead. Once the hardware Tx FIFO is not full,
software may assign the byte to be sent to the data register for sending. Here is an
example function to send a byte over theUART. SomeUARTswithout FIFOmay have
a general bit in the status to communicate that it can send no more at that time. A
solution for sending datawith software over a UART with FIFO support is commonly
similar to this.

Chapter 6: Universal Asynchronous Receiver Transmitter (UART) 77

/*...*/

/* UartPutc: Output one character to the UART */

/* */

/* Input: character to output */

/*...*/

void UartPutc(char character)

{

unsigned int status;

/* Read the UART status. */

status = REG32(UART0_STATUS);

/* Loop until UART transmission line has room to send. */

while (status & TX_FIFO_FULL)

status = REG32(UART0_STATUS);

/* Send the character. */

REG32(UART0_DATA) = character;

}

Some UARTsmay not have FIFO full bit and this check will be different, but software
must check some bit to be sure the UART can send more data before writing to the
data register or Tx datamay be lost. Also of note in the above code is the use of ‘char’
instead of ‘u8’. This is because ‘char’ can be different sizes depending on the language
type. Using ‘char’ instead of ‘u8’ allows the UART system software to work for any
language.

It is often helpful to print out an entire string of characters at once, such as a debug
or error statement. To do this requires using an array of characters, or a string. Let us
use UartPutc() to create a print string function now. Note that a string end is defined
by a zero byte or character \\0. This zero value is commonly referred to as NULL.
Arrays in C are declared and elements within the array are referenced with brackets
[]. In the declaration of a variable type, an array of the same type can be declared
by including brackets surrounding the size of the array. For example ‘u8 string[20]’,
defines an 8 bit unsigned integer array of length 20. When referencing an array, the
number in the brackets is the specific element within the array, starting from zero.
When using arrays as strings be sure to leave room in the array size for the NULL

Chapter 6: Universal Asynchronous Receiver Transmitter (UART) 78

character at the end of the string.

It is also possible to use string constants in C by simply enclosing the string in double
quotes (“”). Similarly, individual characters can be represented in C with single quotes
(‘’). Special characters of note are the carriage return (‘\r’), which brings the cursor
down one line, and the new line (‘\n’), which moves the cursor to the left edge of
the screen. Let us review the function that takes a string as a parameter and puts the
string (Puts) to the to UART, appending a carriage return and new line to the end of
the string so the next output to the UART appears on the left side of the next line.

/*...*/

/* UartPuts: Output a string to the UART */

/* */

/* Input: string to output */

/*...*/

void UartPuts(const char *string)

{

int i;

/* Loop until the string buffer ends. */

for (i = 0; string[i] != '\0'; ++i)

UartPutc(string[i]);

/* The puts() command must end with new line and carriage return. */

UartPutc('\n');

UartPutc('\r');

}

The above code outputs each character in the array to the UART controller, one at
a time, until the end of the string (the NULL or \\0 character). Then to complete
the line requires the carriage return (\\r) and new line (\\n) characters to move the
cursor to the beginning of the next line, so the next character will be one line down
and aligned on the far left side.

Chapter 6: Universal Asynchronous Receiver Transmitter (UART) 79

6.5 Receive data with Software

The UART receives data at the configured baud rate, usually 8 bits (a byte) at a time
into a FIFO queue in hardware. Software checks the Rx status bits to see if the Rx
FIFO holds data. If so, software should copy out the bytes in the FIFO and then clear
the Rx status bits so hardware can send more. Here is an example function to check
the UART to see if a character has been received.

/*...*/

/* UartRxCheck: Retrun true if any character is waiting in UART FIFO */

/* */

/* Returns: one '1' if UART receive has a character */

/*...*/

unsigned int UartRxCheck(void)

{

/* If RX FIFO is empty return zero, otherwise one. */

if (REG32(UART_STATUS) & RX_FIFO_EMPTY)

return 0;

else

return 1;

}

The above function reads the UART status register to check if the Rx FIFO is empty
before returning this result. Programs that do not or cannot wait should first use
UartRxCheck() to ensure a character is ready to be read.

The next function needed is to read (get) a character from the UART, waiting forever
until a character arrives. The function design is to wait until the UART has received
a character by looping on the status register (UART0_STATUS) until the Rx FIFO
is not empty. Oftentimes the UART can experience errors receiving and sometimes
these errors require acknowledgment by software for the hardware to continue. Let
us review this function that waits for a character to arrive and then acknowledges any
Rx errors before reading the character from hardware and returning it to the caller.

Chapter 6: Universal Asynchronous Receiver Transmitter (UART) 80

/*...*/

/* UartGetc: Receive one character from the UART */

/* */

/* Input: character to output */

/* */

/*...*/

char UartGetc(void)

{

u32 character, status;

/* Loop until UART Rx FIFO is no longer empty. */

while (!Uart0RxCheck()) ;

/* Read the character. */

character = REG32(UART0_DATA);

/* Read Rx status to acknowledge character and check for error. */

status = REG32(UART0_RX_STATUS);

/* Check for and clear any read status errors. */

if (status & RX_ERROR)

REG32(UART0_RX_STATUS) = status;

/* Return the character read. */

return (RX_DATA & character);

}

6.6 System Shell

A serial UART peripheral can be used by system software to provide a shell interface
to the system. This is typically a command line interface similar to the development
environment PC, but typically more limited. A command line interface must have the
following basic principles. First it must present a visible prompt to the user and then
wait at this prompt until a command is entered by the user. This can be as simple as

Chapter 6: Universal Asynchronous Receiver Transmitter (UART) 81

presenting a numbered menu (1 through 5 for example) and then waiting for a valid
number to be pressed. Here is an example of a simple menu interface.

/*...*/

/* OsMenu: present menu and execute selection */

/* */

/*...*/

void OsMenu(void)

{

u8 command;

/* Loop forever. */

for (;;)

{

/* Print menu. */

UartPuts("Welcome! Please choose a command (1-3):");

UartPuts(" 1. Exit/Goodbye");

UartPuts(" 2. Turn on LED");

UartPuts(" 3. Turn off LED");

/* Wait for the user to enter the command. */

command = UartGetc();

/* Exit command */

if (command == '1')

{

UartPuts("Until we meet again");

return;

}

/* LED on command */

else if (command == '2')

LedOn();

/* LED off command */

else if (command == '3')

Chapter 6: Universal Asynchronous Receiver Transmitter (UART) 82

LedOff();

}

Often times the menu interface is limiting for applications and a full command line
interface is desired. In order to accomplish this we will need an algorithm that will
compare character strings. This is needed to match the user input to the available
command list to find the matching command. Let us create a ‘system/shell.c’ file now,
entering the source code below into it. Afterward we will have an expandable system
shell that can be used as the foundation for future software features. In this initial
version there are three commands, ‘ledon’, ‘ledoff’ and ‘echo’.

This design uses a ShellCmd structure type that stores the command string and
the associated function pointer for this command. There is then a global array of
‘ShellCommands’ defined of this ‘ShellCmd’ type. This allows the system software
creator to quickly add new shell commands by adding an entry to the ‘ShellCom-
mands’ array. Also worth discussing is that the ‘ledon’ and ‘ledoff’ commands use
the same underlying registered shell function led(). Since this shell interface passes the
command string to the registered function, the led() function can use this command
string to determine if the command is to turn on or off the LED. Please read and digest
the code below, paying attention to the comments and the associated code below them.

/*...*/

/* Configuration */

/*...*/

#define COMMAND_LENGTH 80

/*...*/

/* Type definitions */

/*...*/

typedef struct

{

char *command;

int (*function)(const char *command);

} ShellCmd;

/*...*/

/* Function prototypes */

Chapter 6: Universal Asynchronous Receiver Transmitter (UART) 83

/*...*/

/*

** Shell Functions

*/

static int echo(const char *command);

static int led(const char *command);

/*...*/

/* Global Variables */

/*...*/

static ShellCmd ShellCommands[] =

{

{"echo", echo},

{"ledon", led},

{"ledoff", led},

{0, 0},

};

/*...*/

/* Local function definitions */

/*...*/

/*...*/

/* echo: Perform the echo command */

/* */

/* input: command = the entire command */

/*...*/

static int echo(const char *command)

{

/* Echo the command to the console. */

UartPuts(command);

return 0;

}

/*...*/

/* led: Command to turn the LED on or off */

Chapter 6: Universal Asynchronous Receiver Transmitter (UART) 84

/* */

/* input: command = the entire command */

/* */

/*...*/

static int led(const char *command)

{

/* Check the last letter of the command */

/* If ‘ledon’ then last array element 4 is ‘n’ */

if (command[4] == 'n')

LedOn();

/* Otherwise if ‘ledoff’ then array element 4 is ‘f’ */

else if (command[4] == 'f')

LedOff();

else

UartPuts("error – shell mishandled command?");

return 0;

}

/*...*/

/* shell: Run a system shell command */

/* */

/* input: command = the entire command */

/*...*/

static int shell(const char *command)

{

int i, j;

/* If question '?', print out list of available commands. */

if (command[0] == '?')

{

UartPuts("Available commands are:");

for (i = 0; ShellCommands[i].command; ++i)

UartPuts(ShellCommands[i].command);

Chapter 6: Universal Asynchronous Receiver Transmitter (UART) 85

return 0;

}

/* Search the command table and run any installed commands. */

for (i = 0; ShellCommands[i].command; ++i)

{

/* Loop through length of command, comparing each character */

/* until either string ends with the NULL character '\0'. */

for (j = 0; (command[i] != '\0') &&

(ShellCommands[i].command[j] != '\0') ; ++j)

{

/* If character does not match then command does not so break. */

if (command[j] != ShellCommands[i].command[j])

break;

}

/* If end of shell command reached then all characters match. */

if (ShellCommands[i].command[j] == '\0')

{

/* Execute and return the command result. */

return ShellCommands[i].function(command);

}

}

/* Return command not found. */

return -1;

}

/*...*/

/* Global function definitions */

/*...*/

/*...*/

/* SystemShell: system shell executs commands until 'quit' */

/* */

/*...*/

Chapter 6: Universal Asynchronous Receiver Transmitter (UART) 86

void SystemShell(void)

{

int result = 0, i;

char character, command[COMMAND_LENGTH];

/* Loop to read and perform the boot loader commands from UART. */

for (;;)

{

/* Output the shell prompt '>'. */

UartPutc('>');

/* Loop reading user input characters to build 'command' array. */

/* Break out when 'Enter' key pressed or command length reached. */

for (i = 0, character = 0; (i < COMMAND_LENGTH) &&

(character != '\r'); ++i)

{

/* Read a character and put it in the command array. */

character = UartGetc();

command[i] = character;

/* Echo the character back to the user. */

UartPutc(character);

}

/* Output new line and NULL terminate the command string. */

UartPutc('\n');

command[i] = 0;

/* If an empty command entered, loop back to give a new prompt. */

if ((i == 1) && (character == '\r'))

continue;

/* Perform the command. */

result = shell(command);

/* Report any errors. */

Chapter 6: Universal Asynchronous Receiver Transmitter (UART) 87

if (result > 0)

UartPuts("command error");

else if (result == -1)

UartPuts("command unknown\n");

}

}

Did you notice that the shell() and led() functions are declared as static? The static
function declaration means the function is only referenced from functions defined
within the same C file. Maximizing the use of static functions to avoid global clutter
is fundamental to good systems engineering. Typically a static function will not need a
function prototype if declared before use, however because the ShellCommands array
assigns the function pointers before the functions are declared, these static functions
need to be declared ahead of time in the function prototypes section.

Chapter 6 Glossary:

Array - A series of variables of the same type declared at the same time and referenced
one after another in order in memory. A common array is the human readable string,
which is defined as an array of characters.

Asynchronous Communication - A technique to send and receive data that is
not synchronized to a common clock signal. These types of communications are the
simplest way to transfer data between computer systems or peripherals, but often
suffer from data loss and corruption, especially compared to synchronous interfaces.

Baud Rate - the rate or speed of data transfer (Rx and Tx) for a peripheral. This is
measured in bits per second (bps). Both ends of a serial interface must configure the
same baud rate or communication will fail.

Clock Divisor - the value used to divide the external clock frequency in order to
achieve the desired internal clock frequency. Used by peripherals to interface with a
shared system clock.

Data - A general term used for any information stored or transferred in digital/binary
format.

Driver - A component of a software system that provides a software interface to a
hardware peripheral.

Chapter 6: Universal Asynchronous Receiver Transmitter (UART) 88

FIFO - A First In First Out buffer interface stores data in order so that the first data
in will be the first data out. Used between hardware and software interfaces to buffer
data, speeding transfers and reducing data loss.

NULL - A value most often defined as zero, the NULL value is used for pointers to
indicate no pointer is assigned.NULL is also commonly used to terminate arrays such
as strings.

Receive - The act of accepting data from a sender. Abbreviated as Rx.

Rx - An abbreviation for the receive side of a serial UART or other communications
interface.

Transmit - The act of sending data to a receiver. Abbreviated as Tx.

Tx - An abbreviation for the transmit side of a serial UART or other communications
interface.

Serial - A communication interface that is designed for simplicity by sending data one
after the other, or serially. The JTAG controller is an example of a synchronous serial
communication interface, while the UART is an asynchronous serial communication
interface.

String - A sequence or array of characters that ends in the zero byte. The zero byte
is commonly referred to as NULL and strings are commonly referred to as NULL
terminated.

UART - Universal Asynchronous Receiver Transmitter is a simple peripheral that
can be used to connect systems. Typically the first peripheral a system engineer will
bring up, a UART allows diagnostic data to be sent to the development PC, as well as
a command line shell interface to issue commands to, and receive responses from, the
remote system.

Chapter 6 Exercises:

1. Define a structure that contains two unsigned 32 bit integers containing the high
and low 32 values of an unsigned 64 bit integer. Assign high and low values to
this structure and then mask this structure to a u64 integer. Are the u64 integer
and structure the same value?

Chapter 6: Universal Asynchronous Receiver Transmitter (UART) 89

2. See Lab 6 assignments for additional exercises. The best way to understand all
the new system code is to complete the hardware-to-software interface within
the lab to create and use a powerful command line shell interface!

	Table of Contents
	Chapter 1: Binary Computers
	1.1 Introduction
	1.2 Binary Numbers
	1.3 Large Binary Numbers
	1.4 Binary Computers
	1.5 Bit Manipulation
	Chapter 1 Glossary
	Chapter 1 Exercises

	Chapter 2: Machine Language
	2.1 Algorithms and Machine Language
	2.2 Bit Endianess
	2.3 Assembly Language
	2.4 Create a Program in Assembly Language
	2.5 Variable sizes and roll over
	2.6 Branching and Loops in Assembly Language
	Chapter 2 Glossary:
	Chapter 2 Exercises:

	Chapter 3: Compiled Systems
	3.1 Origin of the C Language
	3.2 C Language Basics
	3.3 C Language Data Types and Sizes
	3.4 C Language Math and Bit Manipulation
	3.5 C Language Functions
	3.6 C Language Organization
	3.7 The C main() function
	3.8 C Language Variable Scope and Volatility
	Chapter 3 Glossary:
	Chapter 3 Exercises:

	Chapter 4: System Architecture
	4.1 Address Space and Software Memory Map
	4.2 Memory Address and Pointers
	4.3 Using C Pointers with Peripheral Registers
	4.4 Create Software with an Editor and Compiler
	4.5 Creating an Executable with the Linker
	4.6 Configuring General Purpose Input Output (GPIO) pins
	4.7 Debugging
	Chapter 4 Glossary:
	Chapter 4 Exercises:

	Chapter 5: Timer Design
	5.1 Hardware Clocks
	5.2 System Software for Hardware Clocks
	5.3 Software Interface for Clocks
	5.4 Software timer uses
	5.5 Building Software with Make
	5.6 Project Management
	5.7 System Software Organization
	Chapter 5 Glossary:
	Chapter 5 Exercises:

	Chapter 6: Universal Asynchronous Receiver Transmitter (UART)
	6.1 UART Introduction
	6.2 UART Hardware
	6.3.1 Configure the Development PC
	6.3.2 Configure the System Software
	6.4 Send Data with Software
	6.5 Receive data with Software
	6.6 System Shell
	Chapter 6 Glossary:
	Chapter 6 Exercises:

