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Abstract. We describe several improvements to Freund and Schapicei8@ost boosting algorithm, particu-
larly in a setting in which hypotheses may assign confidetwesch of their predictions. We give a simplified
analysis of AdaBoost in this setting, and we show how thidyaig can be used to find improved parameter
settings as well as a refined criterion for training weak higpses. We give a specific method for assigning
confidences to the predictions of decision trees, a methaslgl related to one used by Quinlan. This method
also suggests a technique for growing decision trees whitts tout to be identical to one proposed by Kearns
and Mansour.

We focus next on how to apply the new boosting algorithms ttiiatass classification problems, particularly
to the multi-label case in which each example may belong teertian one class. We give two boosting methods
for this problem, plus a third method based on output coddge of these leads to a new method for handling
the single-label case which is simpler but as effective elsrtigues suggested by Freund and Schapire. Finally,
we give some experimental results comparing a few of therigihges discussed in this paper.
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1. Introduction

Boosting is a method of finding a highly accurate hypothesis (clasgificaile) by com-
bining many “weak” hypotheses, each of which is only moderately accurate. Typicall
each weak hypothesis is a simple rule which can be used to generate a predicted clas
sification for any instance. In this paper, we study boosting in an egtefrdmework in
which each weak hypothesis generates not only predicted classifications, adl&isded
confidence scores which estimate the reliability of each of its predictions.

There are two essential questions which arise in studying this prabléne boosting
paradigm. First, how do we modify known boosting algorithms giesdl to handle only
simple predictions to use confidence-rated predictions in the most effestinner possi-
ble? Second, how should we design weak learners whose predictions arecoafidted
in the manner described above? In this paper, we give answers to bothefjthestions.
The result is a powerful set of boosting methods for handling mepeessive weak hy-
potheses, as well as an advanced methodology for designing weak learnersiappfopr
use with boosting algorithms.

We base our work on Freund and Schapire’s (1997) AdaBoost algorithiainwhs re-
ceived extensive empirical and theoretical study (Bauer & Kohavi, to appeaimn,
1998; Dietterich, to appear; Dietterich & Bakiri, 1995; Drucker & Corte89@; Fre-
und & Schapire, 1996; Maclin & Opitz, 1997; Margineantu & Dietterich, 19Quinlan,
1996; Schapire, 1997; Schapire, Freund, Bartlett, & Lee, 1998; Schwenk i®er998).
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To boost using confidence-rated predictions, we propose a generalizéfAdaBoost in
which the main parametetg are tuned using one of a humber of methods that we de-
scribe in detail. Intuitively, they;'s control the influence of each of the weak hypotheses.
To determine the proper tuning of these parameters, we begin by presargireamlined
version of Freund and Schapire’s analysis which provides a clean upper boutte
training error of AdaBoost when the parameteysare left unspecified. For the purposes
of minimizing training error, this analysis provides an immediate fitation of the crite-
rion that should be used in setting. As discussed below, this analysis also provides the
criterion that should be used by the weak learner in formulating its wepéthgses.

Based on this analysis, we give a number of methods for choosing/e show that the
optimal tuning (with respect to our criterion) af can be found numerically in general,
and we give exact methods of settingin special cases.

Freund and Schapire also considered the case in which the individual preslict the
weak hypotheses are allowed to carry a confidence. However, we show that tiveiy clet
ay is only an approximation of the optimal tuning which can be foundgisinr techniques.

We next discuss methods for designing weak learners with confidence-ratictions
using the criterion provided by our analysis. For weak hypotheses wiadition the
instance space into a small number of equivalent prediction regionsasutgtision trees,
we present and analyze a simple method for automatically assigning a iewslifalence
to the predictions which are made within each region. This method twin® be closely
related to a heuristic method proposed by Quinlan (1996) for bapdtnision trees. Our
analysis can be viewed as a partial theoretical justification for his expemrityesuccessful
method.

Our technique also leads to a modified criterion for selecting such donaatitigning
weak hypotheses. In other words, rather than the weak learner simply oh@ogiaak
hypothesis with low training error as has usually been done in the wasshow that,
theoretically, our methods work best when combined with a weak learner windmiznes
an alternative measure of “badness.” For growing decision trees, this ra¢ams out to
be identical to one earlier proposed by Kearns and Mansour (1996).

Although we primarily focus on minimizing training error, we alsatllme methods that
can be used to analyze generalization error as well.

Next, we show how to extend the methods described above for binarifickssn prob-
lems to the multiclass case, and, more generally, torthki-labelcase in which each ex-
ample may belong to more than one class. Such problems arise naturailhgtémce, in
text categorization problems where the same document (say, a news anaglegsily be
relevant to more than one topic (such as politics, sports, etc.).

Freund and Schapire (1997) gave two algorithms for boosting chags problems, but
neither was designed to handle the multi-label case. In this paper, we prasemew
extensions of AdaBoost for multi-label problems. In both cases, we slow to apply the
results presented in the first half of the paper to these new extensions.

In the first extension, the learned hypothesis is evaluated in terrssaffility to predict a
good approximation of the set of labels associated with a given instan@especial case,
we obtain a novel boosting algorithm for multiclass problems inrttuge conventional
single-label case. This algorithm is simpler but apparently as effectiveeaméthods
given by Freund and Schapire. In addition, we propose and analyze a maafifioht
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this method which combines these techniques with Dietterich and BaKifi%5) output-
coding method. (Another method of combining boosting and outpuhgosgas proposed
by Schapire (1997). Although superficially similar, his method igaict quite different
from what is presented here.)

In the second extension to multi-label problems, the learned hypsetinsgtad predicts,
for a given instance, a ranking of the labels, and it is evaluated basedatiliitg to place
the correct labels high in this ranking. Freund and Schapire’s AdaBo®st M special
case of this method for single-label problems.

Although the primary focus of this paper is on theoretical issues, we gpme exper-
imental results comparing a few of the new algorithms. We obtain espyedi@amatic
improvements in performance when a fairly large amount of data is awjksioth as large
text categorization problems.

2. A Generalized Analysis of Adaboost

LetS = ((z1,v1),---, (zm,ym)) be a sequence of training examples where é&asthnce
x; belongs to adomainor instance space’’, and eacHabel y; belongs to a finitdabel
space). For now, we focus on binary classification problems in wijick {—1, +1}.

We assume access tavaakor basdearning algorithm which accepts as input a sequence
of training examples$ along with a distributiorD over{1,...,m}, i.e., over the indices
of S. Given such input, the weak learner computeseak (or bas§ hypothesish. In
generalh has the formh : X — R. We interpret the sign of(z) as the predicted label
(=1 or +1) to be assigned to instanee and the magnitudg(z)| as the “confidence” in
this prediction. Thus, if.(z) is close to or far from zero, it is interpreted as a low or high
confidence prediction. Although the rangehahay generally include all real numbers, we
will sometimes restrict this range.

The idea of boosting is to use the weak learner to form a highly accuredécfion rule
by calling the weak learner repeatedly on different distributions overalirang examples.
A slightly generalized version of Freund and Schapire’s AdaBoost algoigishown in
Figure 1. The main effect of AdaBoost’'s update rule, assuming- 0, is to decrease
or increase the weight of training examples classified correctly or incorregth; (i.e.,
examples for whichy; andh,(x;) agree or disagree in sign).

Our version differs from Freund and Schapire’s in that (1) weak hypottesesave
range over all ofR rather than the restricted range1,+1] assumed by Freund and
Schapire; and (2) whereas Freund and Schapire prescribe a specific cheicevefleave
this choice unspecified and discuss various tunings below. Despitediifesences, we
continue to refer to the algorithm of Figure 1 as “AdaBoost.”

As discussed below, when the range of eagls restricted td—1, +1], we can choose
a; appropriately to obtain Freund and Schapire’s original AdaBoost afgoritgnoring
superficial differences in notation). Here, we give a simplified analydiseoélgorithm in
which « is left unspecified. This analysis yields an improved and more general method
for choosingy;.

Let
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Given: (z1,y1), -+, (Tm,ym); x; € X,y; € {-1,+1}
Initialize D, (i) = 1/m.
Fort=1,...,T:

Train weak learner using distributiap,.
Get weak hypothesig; : X — R.
Chooseay; € R.

Update:

D, (i) exp(—aryihe(z;))
Zy

Dy (i) =

whereZ; is a normalization factor (chosen so thiat,; will be a distribution).

Output the final hypothesis:

T
H(z) = sign (Z atht(x)> .

Figure 1. A generalized version of AdaBoost.

T
flz) =Y aih(x)

so thatH (z) = sign(f(z)). Also, for any predicater, let [x] bel if = holds ando
otherwise. We can prove the following bound on the training errdf of

THEOREM 1 Assuming the notation of Figure 1, the following bound holdghe training
error of H:

1 T
—|{i H(zi) #y:}| < [[ 2

t=1

Proof: By unraveling the update rule, we have that

exp (= >, aqyihe(w;))
m Ht Zt
_exp(—yif(@i))
B mll Ze

Moreover, if H(x;) # y; theny; f(x;) < 0implying thatexp(—y; f(z;)) > 1. Thus,

Dri1(i)

(1)

[H(xi) # yil < exp(—y:f(xi)). )
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Combining Egs. (1) and (2) gives the stated bound on training drrce s

= ST H@) £l < = S exp(—uif 0)

S ({1) o
1:[ Zy .

[ |

The important consequence of Theorem 1 is that, in order to minimizertga@rror,
a reasonable approach might be to greedily minimize the bound giver ih¢lorem by
minimizing Z; on each round of boosting. We can apply this idea both in the choiecg of
and as a general criterion for the choice of weak hypothigsis

Before proceeding with a discussion of how to apply this principlesdver, we digress
momentarily to give a slightly different view of AdaBoost. L¥t= {g,...,gn} be the
space of all possible weak hypotheses, which, for simplicity, we as$omtke moment
to be finite. Then AdaBoost attempts to find a linear threshold of these mgaitheses
which gives good predictions, i.e., a function of the form

N
H(z) = sign (Z ajgj(:v)) .
j=1

By the same argument used in Theorem 1, it can be seen that the number oigtraini
mistakes ofH is at most

m N
ZeXP (_yi Zajgj(-ri)) . 3)
=1 j=1

AdaBoost can be viewed as a method for minimizing the expression if3Egver the
coefficientsa; by a greedy coordinate-wise search: On each rayradcoordinatej is
chosen corresponding o, that is,h; = g;. Next, the value of the coefficient; is
modified by addingy; to it; all other coefficient are left unchanged. It can be verified that
the quantityZ; measures exactly the ratio of the new to the old value of the exponential
sum in Eq. (3) so th&f], Z; is the final value of this expression (assuming we start with
all a;’s set to zero).

See Friedman, Hastie and Tibshirani (1998) for further discussidheofationale for
minimizing Eq. (3), including a connection to logistic regressiBae also Appendix A for
further comments on how to minimize expressions of this form.

3. Choosinga;

To simplify notation, let us fix and letu; = y;h(x;), Z = Z;, D = Dy, h = hy and
a = a4. In the following discussion, we assume without loss of gengraiat D (i) # 0

for all <. Our goal is to findv which minimizes or approximately minimizésas a function
of a. We describe a number of methods for this purpose.
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3.1. Deriving Freund and Schapire’s choicecof

We begin by showing how Freund and Schapire’s (1997) version of AoistRBan be de-
rived as a special case of our new version. For weak hypotieséh range[—1, +1],
their choice o can be obtained by approximatiigas follows:

Z = Z D(i)e =

> 06 <1§“iea+ “T“) . (4)

This upper bound is valid sineg € [—1, +1], and is in fact exact if, has rangd —1, +1}
(so thatu; € {—1,+1}). (A proof of the bound follows immediately from the convexity
of e~* for any constant € R.) Next, we can analytically chooseto minimize the right
hand side of Eq. (4) giving

a = %ln (1 t:)
wherer = ). D(i)u;. Plugging into Eq. (4), this choice gives the upper bound
Z <\1-r2

We have thus proved the following corollary of Theorem 1 which is\esjant to Freund
and Schapire’s (1997) Theorem 6:

IN

COROLLARY 1 ((FREUND & SCHAPIRE, 1997)) Using the notation of Figure 1, assume
eachh, has rangg—1, +1] and that we choose

1
at:%ln<1+:t)
— It

where

re =Y Di(i)yihe(ei) = Einp, [yihe(w:)] -

Then the training error of{ is at most
T
H \/1—r2.
t=1

Thus, with this setting of, it is reasonable to try to finkl, that maximizesr;| on each
round of boosting. This quantity is a natural measure of the correlation of the predictions
of h; and the labelg; with respect to the distributiop;. It is closely related to ordinary
error since, ifh; has rangg —1, +1} then
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Prip, [huli) £ ] =~
SO maximizingr; is equivalent to minimizing error. More generally, if has range
[-1,+1] then(1—r;)/2 is equivalent to the definition of error used by Freund and Schapire
(¢ in their notation).

The approximation used in Eq. (4) is essentially a linear upper boutigecfunction
e~ ** ontherange € [—1, +1]. Clearly, other upper bounds which give a tighter approx-
imation could be used instead, such as a quadratic or piecewise-lineariapgiiox.

3.2. A numerical method for the general case

We next give a general numerical method for exactly minimizihgvith respect toa.
Recall that our goal is to find which minimizes

Z() =2 =) D(i)e ™.
The first derivative ofZ is

dz
Z'(a) = = = =Y D(iyue "
da -
= -7 Z Dt+1(i)ui
i

by definition of Dy ;. Thus, if Dy, is formed using the value @f; which minimizesZ,
(so thatZ'(«) = 0), then we will have that

ZDt+1(Z)uZ = Eith+1 [ylht(ml)] =0.
A

In words, this means that, with respect to distributidpn.,, the weak hypothesis; will
be exactly uncorrelated with the labgls

It can easily be verified th&t” (o) = d*Z/da? is strictly positive for allkv € R (ignoring
the trivial case that; = 0 for all 7). ThereforeZ'(a)) can have at most one zero. (See also
Appendix A.)

Moreover, if there exist$ such thatu; < 0 thenZ'(a) — oo asa — oo. Similarly,
Z'(a) - —oo asa — —oo if u; > 0 for somei. This means thaZ’(a) has at least one
root, except in the degenerate case that all nonzgs@re of the same sign. Furthermore,
because’(a) is strictly increasing, we can numerically find the unique minimur# @)
by a simple binary search, or more sophisticated numerical methods.

Summarizing, we have argued the following:

THEOREM 2

1. Assume the séi;hi(x;) : i = 1,...,m} includes both positive and negative values.
Then there exists a unigque choicengfwhich minimizesZ;.

2. For this choice ofy;, we have that

Eivpep [yihe(zi)] = 0.
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3.3. An analytic method for weak hypotheses that abstain

We next consider a natural special case in which the choieg cdn be computed analyt-
ically rather than numerically.

Suppose that the range of each weak hypottigsis now restricted td —1,0,+1}. In
other words, a weak hypothesis can make a definitive prediction that #lddabl or +1,
or it can “abstain” by predicting. No other levels of confidence are allowed. By allowing
the weak hypothesis to effectively say “I don’t know,” we introduce a et@thalogous to
the “specialist” model of Blum (1997), studied further by Freund etl#197).

For fixedt, let Wy, W_1, W, be defined by

W, = Y D(i)
iiu;=b

forb € {-1,0,+1}, where, as beforay; = y;h(x;), and where we continue to omit
the subscript when clear from context. Also, for readability of notation, we willeft
abbreviate subscripts1 and—1 by the symbolst and— so thatiV, is writtenWW,, and
W_y is writtenW_. We can calculat& as:

Z = ZD(i)e*““
= Z Z D(i)e=

be{—1,0,+1} i:u;=b
= Wo+W_ e +Wie ™.

It can easily be verified that is minimized when

a:%ln(%).

For this setting oy, we have

7 =Wo+ 2/ W_W,. (5)

For this case, Freund and Schapire’s original AdaBoost algorithm waostdad have
made the more conservative choice

0=1lm (M)
2 W_+%W0

giving a value ofZ which is necessarily inferior to Eq. (5), but which Freund and Schapire
(1997) are able to upper bound by

Z < 2\/(W_ + A Wo) (W + L1W0). 6)

If Wy = 0 (so thath has rangg —1, +1}), then the choices af and resulting values of
are identical.
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4. A Criterion for Finding Weak Hypotheses

So far, we have only discussed using Theorem 1 to chagsén general, however, this
theorem can be applied more broadly to guide us in the design of weak lgafgarithms
which can be combined more powerfully with boosting.

In the past, it has been assumed that the goal of the weak learning algohitiuhd s
be to find a weak hypothesis with a small number of errors with respect to the given
distribution D, over training samples. The results above suggest, however, thateediff
criterion can be used. In particular, we can attempt to greedily minimizegperiound
on training error given in Theorem 1 by minimizirif} on each round. Thus, the weak
learner should attempt to find a weak hypothégighich minimizes

Zy = Z Dy (i) exp(—apyihi(;))-

This expression can be simplified by foldinginto A, in other words, by assuming with-
out loss of generality that the weak learner can freely scale any weak hypdthssany
constant factorr € R. Then (omittingt subscripts), the weak learner’s goal now is to
minimize

Z =3 D(i)exp(~yih(x:). (7)

(3

For some algorithms, it may be possible to make appropriate modificab handle such
a “loss” function directly. For instance, gradient-based algorithnh sis backprop, can
easily be modified to minimize Eq. (7) rather than the more traditiom@msquared error.

We show how decision-tree algorithms can be modified based on the newocritor
finding good weak hypotheses.

4.1. Domain-partitioning weak hypotheses

We focus now on weak hypotheses which make their predictions based ontipiaii

of the domainX. To be more specific, each such weak hypothesis is associated with
a partition of X' into disjoint blocksX;, ..., Xy which cover all of ¥ and for which

h(z) = h(z') for all z,2" € X;. In other wordsh’s prediction depends only on which
block X; a given instance falls into. A prime example of such a hypothesis eceidn

tree whose leaves define a partition of the domain.

Suppose thaD = D, and that we have already found a partitidh, ..., Xy of the
space. What predictions should be made for each block of the partitionthénwords,
how do we find a functiorh : X — R which respects the given partition and which
minimizes Eq. (7)?

Letc; = h(z) forz € X;. Our goal is to find appropriate choices tgr For eacty and
forbe {—1,+1},let

ij = Z D(i) = Priwp [z: € Xj Ay; = ]

ir; €EXjAy;=b
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be the weighted fraction of examples which fall in blgcwith labelb. Then Eq. (7) can
be rewritten

7 = Z Z D(i) exp(—yicy)

Jj Gwi€X;

= Y (Whem +wien). (®)

J

Using standard calculus, we see that this is minimized when

Wj

Plugging into Eq. (8), this choice gives
Z =23 \/wiw’. (10)
J

Note that the sign of; is equal to the (weighted) majority class within blgckMoreover,
¢; will be close to zero (a low confidence prediction) if there is a roughlyaggplit of
positive and negative examples in blotkLikewise,c; will be far from zero if one label
strongly predominates.

A similar scheme was previously proposed by Quinlan (1996) for asgigonfidences
to the predictions made at the leaves of a decision tree. Although his edfiffered in
the details, we feel that our new theory provides some partial justditédr his method.

The criterion given by Eq. (10) can also be used as a splitting critanignowing a de-
cision tree, rather than the Gini index or an entropic function. In otleeds, the decision
tree could be built by greedily choosing the split which causes the gteatgsin the value
of the function given in Eg. (10). In fact, exactly this splittingterion was proposed by
Kearns and Mansour (1996). Furthermore, if one wants to boost maneotiie decision
tree then each tree can be built using the splitting criterion given byHY.while the
predictions at the leaves of the boosted trees are given by Eq. (9).

4.2. Smoothing the predictions

The scheme presented above requires that we predict as in Eq. (9) oy blootay well
happen thatV’ or W is very small or even zero, in which casgwill be very large or
infinite in magnitude. In practice, such large predictions may cause numgniddéms. In
addition, there may be theoretical reasons to suspect that large, overlyerapiiddictions
will increase the tendency to overfit.

To limit the magnitudes of the predictions, we suggest using ingteadsmoothed”
values

Wj
cj = %ln (Wj::__g)
= g
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for some appropriately small positive valuesofBecauséV’ andWi' are both bounded
betweer) and1, this has the effect of boundirig; | by

1
%1n< 1_€> ~ 11n(1/e).

Moreover, this smoothing only slightly weakens the valu& aiince, plugging into Eq. (8)
gives
Z wi W1.+€+WZ WJ]T-I-E
Wi+e W +e
> <\/(W1 +e)Wi + \/(Wi + s)Wi)

J

> <2\/WZW1 +yfeWi + 5W1>

N
Il

IN

IN

J

23 /W W+ V2Ne. (11)

J

IN

In the second inequality, we used the inequality +y < \/z + /y for nonnegativer
andy. In the last inequality, we used the fact that

S Wi+wi)=1,
J

which implies

;<M+m>§m

(Recall thatNV is the number of blocks in the partition.) Thus, comparing Eqs) (11
and (10), we see tha will not be greatly degraded by smoothing if we choasek
1/(2N). In our experiments, we have typically usedn the order ofl /m wherem is the
number of training examples.

5. Generalization Error

So far, we have only focused on the training error, even though amapy objective is to
achieve low generalization error.

Two methods of analyzing the generalization error of AdaBoost have be@oged.
The first, given by Freund and Schapire (1997), uses standard VC-tteebgund the
generalization error of the final hypothesis in terms of its trainingrexnal an additional
term which is a function of the VC-dimension of the final hypothesissland the number
of training examples. The VC-dimension of the final hypothesis clasdeaomputed
using the methods of Baum and Haussler (1989). Interpretting theedarpper bound as
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a qualitative prediction of behavior, this analysis suggests that dsiBs more likely to
overfit if run for too many rounds.

Schapire et al. (1998) proposed an alternative analysis to explain AdeBaogirically
observed resistance to overfitting. Following the work of Bartle?9@), this method is
based on the “margins” achieved by the final hypothesis on the trainmg@es. The
margin is a measure of the “confidence” of the prediction. Schapire et al. thiad\varger
margins imply lower generalization error — regardless of the numbeuofd®. Moreover,
they show that AdaBoost tends to increase the margins of the trainamyees.

To a large extent, their analysis can be carried over to the current contegh is the
focus of this section. As a first step in applying their theory, we asstimat each weak
hypothesis:; has bounded range. Recall that the final hypothesis has the form

H(x) = sign(f(z))

where

flz) =" ahy(a).

Since theh;’s are bounded and since we only care about the sigfi afe can rescale
the h;’s and normalize they;’s allowing us to assume without loss of generality that each
he ©+ X — [-1,+1], eacha; € [0,1] and) ", oy = 1. Let us also assume that each
belongs to a hypothesis spatie

Schapire et al. define theargin of a labeled exampléz, y) to bey f(x). The margin
then is in[—1, +1], and is positive if and only it makes a correct prediction on this
example. We further regard the magnitude of the margin as a measueeanfitfidence of
H'’s prediction.

Schapire et al.’s results can be applied directly in the present contexinothlg special
case that each € H has rangg—1,+1}. This case is not of much interest, however,
since our focus is on weak hypotheses with real-valued predictions. @ncktie margins
theory, then, let us definéto be thepseudodimensioaf H (for definitions, see, for in-
stance, Haussler (1992)). Then using the method sketched in SectionStHayfire et al.
together with Haussler and Long’s (1995) Lemma 13, we can prove tlosviol upper
bound on generalization error which holds with probability § for all § > 0 and for all
f of the form above:

9 1/2
Prs [y (x) < 6] +0 (% (2 s rog1/o)) ) .

Here,Prg denotes probability with respect to choosing an exaniplg) uniformly at
random from the training set. Thus, the first term is the fractiomadsfhiing examples with
margin at mos#. A proof outline of this bound was communicated to us by Peter Bartlett
and is provided in Appendix B.

Note that, as mentioned in Section 4.2, this margin-based analysis sifjggst may
be a bad idea to allow weak hypotheses which sometimes make predictionsthatyar
large in magnitude. Ifh:(z)| is very large for some;, then rescaling:; leads to a very
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large coefficienty; which, in turn, may overwhelm the other coefficients and so may dra-
matically reduce the margins of some of the training examples. Thistrinaccording to
our theory, can have a detrimental effect on the generalization error.

It remains to be seen if this theoretical effect will be observed in practicaitematively,
if an improved theory can be developed.

6. Multiclass, Multi-label Classification Problems

We next show how some of these methods can be extended to the muttadass which
there may be more than two possible labels or classes. Moreover, we nslideo the
more generamulti-label case in which a single example may belong to any nhumber of
classes.

Formally, we let)’ be a finite set of labels or classes, andklet |)|. In the traditional
classification setting, each examples X is assigned a single clagss Y (possibly via a
stochastic process) so that labeled examples are (paig$. The goal then, typically, is to
find a hypothesigf : X — Y which minimizes the probability that # H(z) on a newly
observed exampler, ).

In the multi-label case, each instances X’ may belong to multiple labels i. Thus,

a labeled example is a pdit, Y') whereY C ) is the set of labels assignedto The
single-label case is clearly a special case in which= 1 for all observations.

It is unclear in this setting precisely how to formalize the goal of a legraigorithm,
and, in general, the “right” formalization may well depend on the problenaatihOne
possibility is to seek a hypothesis which attempts to predict jusobtiee labels assigned
to an example. In other words, the goal is to fiHd: X — Y which minimizes the
probability thatH (z) ¢ Y on a new observatio,Y"). We call this measure thene-
error of hypothesisH since it measures the probability of not getting even one of the
labels correct. We denote the one-error of a hypothesigth respect to a distributiofy
over observationée, Y') by one-ery,(H). That s,

one-erp(H) = Pr(, y)wp [H(z) € Y].

Note that, for single-label classification problems, the one-erroeistidal to ordinary er-
ror. In the following sections, we will introduce other loss measthat can be used in the
multi-label setting, namely, Hamming loss and ranking loss. We atsxuds modifications
to AdaBoost appropriate to each case.

7. Using Hamming Loss for Multiclass Problems

Suppose now that the goal is to predict all and only all of the correct labal®ther
words, the learning algorithm generates a hypothesis which predictsfsiatsels, and
the loss depends on how this predicted set differs from the one thathsasved. Thus,
H : X — 2Y and, with respect to a distributidn, the loss is

1

- Eeyyen [[(z) AY] ]
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Given: (z1,Y1),...,(zm, V) Wherez; e X, Y; C Y
Initialize Dy (¢,¢) = 1/(mk).
Fort=1,...,T:

Train weak learner using distributiap,.
Get weak hypothesig; : X x Y — R.
Chooseay; € R.

Update:

D (i, £) exp(— Vil h (i, £))
Zy

D11 (i, 0) =

whereZ; is a normalization factor (chosen so thiat,; will be a distribution).

Output the final hypothesis:

T
H(z,t) = sign (Z atht(x,€)> .

t=1

Figure 2. AdaBoost.MH: A multiclass, multi-label version of AdaBadmsed on Hamming loss.

whereA denotes symmetric difference. (The leadirg is meant merely to ensure a value
in [0,1].) We call this measure thtéamming los®f H, and we denote it by hlogg H ).

To minimize Hamming loss, we can, in a natural way, decompose the prabterh
orthogonal binary classification problems. That is, we can thinkads specifyingk
binary labels (depending on whether a lapés or is not included it”). Similarly, h(z)
can be viewed ag binary predictions. The Hamming loss then can be regarded as an
average of the error rate afon theset binary problems.

ForY C Y, letus defin@’[¢] for ¢ € ) to be

C[+littey
W]—{—1 itegy.

To simplify notation, we also identify any functio : X — 2% with a corresponding
two-argument functiodd : X x Y — {—1,+1} defined byH (z, () = H(x)[/].

With the above reduction to binary classification in mind, it is ratheaightforward
to see how to use boosting to minimize Hamming loss. The main idé@eafeduction
is simply to replace each training examglg, Y;) by k& exampleq(x;, ¢), Y;[¢]) for £ €
Y. The result is a boosting algorithm called AdaBoost.MH (shown gufé 2) which
maintains a distribution over exampleand labeld. On roundt, the weak learner accepts
such a distributiorD, (as well as the training set), and generates a weak hypothesis
X xY — R. This reduction also leads to the choice of final hypothesis shown figtine.

The reduction used to derive this algorithm combined with Theorem Jleidmeely im-
plies a bound on the Hamming loss of the final hypothesis:
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THEOREM 3 Assuming the notation of Figure 2, the following bound hdtdghe Ham-
ming loss ofd on the training data:

T
hlosgH) < [] -

t=1

We now can apply the ideas in the preceding sections to this binary classifipatib-
lem. As before, our goal is to minimize

Zy = Z Dy (i, £) exp(—a Yi[€] he(z4,€)) (12)
i0
on each round. (Here, it is understood that the sum is over all exampkeseimdby; and

all labels? € Y.)
As in Section 3.1, if we require that eathhave rangg —1, +1} then we should choose

147
at:%1n<1_rz) (13)
where
re =Y Dy(i, ) Yi[l] hy(z;, 0). (14)
N4
This gives

Zt:\/l—r%

and the goal of the weak learner becomes maximizatigr pf
Note that(1 — r;)/2 is equal to

Pri; oy~ [he(wi,€) # Yi[{]]
which can be thought of as a weighted Hamming loss with respdef.to

Example As an example of how to maximize;|, suppose our goal is to find ablivious
weak hypothesig,; which ignores the instance and predicts only on the basis of the
label¢. Thus we can omit the argument and writé;(z, ¢) = hi(¢). Let us also omit
subscripts. By symmetry, minimizingr is equivalent to maximizing. So, we only need
to find h which maximizes

ro= Y D(i,€)Yi[] h(£)
il

¥ 10 ot
4 i

Clearly, this is maximized by setting

h(€) = sign (Z D(i,?) m[f]) .
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7.1. Domain-partitioning weak hypotheses

We also can combine these ideas with those in Section 4.1 on domainepartitweak
hypotheses. As in Section 4.1, suppose thi associated with a partitiof, ..., Xy

of the spacet'. It is natural then to create partitions of the foAthx )’ consisting of all
setsX; x {{}forj = 1,...,N and?¢ € Y. An appropriate hypothesis can then be
formed which predicté(z, £) = ¢;¢ for x € X;. According to the results of Section 4.1,
we should choose

wit
Cjg = %ln (W—+> (15)

it
whereW;/* = 3. D(i, £)[x; € X; AYi[(] = b]. This gives

7=23 3wl (16)
J l

7.2. Relation to one-error and single-label classification

We can use these algorithms even when the goal is to minimize one-dreomdst natural
way to do this is to set

H' (w) = argmax }  ache(a,y), (a7)
t

i.e., to predict the label most predicted by the weak hypotheses. The next simple theorem
relates the one-error df' and the Hamming loss df .

THEOREM4 With respect to any distributio over observationér, Y') whereY” # 0,

one-erp(H') < khloss,(H).

Proof: AssumeY” # () and supposél*(x) ¢ Y. We argue that this implieH (z) # Y. If
the maximum in Eq. (17) is positive, théf' (z) € H(x)—Y . Otherwise, if the maximum
is nonpositive, therH (z) = ) # Y. In either caseH (z) # Y, i.e.,|H(z)AY| > 1.
Thus,

[H'(z) ¢ Y] < |H(z)AY]

which, taking expectations, implies the theorenm

In particular, this means that AdaBoost.MH can be applied to single-labkictass
classification problems. The resulting bound on the training errtmefinal hypothesis
H!is at most

k][ 2 (18)
t



IMPROVED BOOSTING ALGORITHMS 17

whereZ, is as in Eq. (12). In fact, the results of Section 8 will imply a bettarimbof
k
5 11 2. (19)
t

Moreover, the leading constaht2 can be improved somewhat by assuming without loss
of generality that, prior to examining any of the data)th weak hypothesis is chosen,
namelyhy = —1. For this weak hypothesis, = (k — 2)/k and Z, is minimized by
settingay = éln(k — 1) which givesZ, = 2v/k — 1/k. Plugging into the bound of
Eq. (19), we therefore get an improved bound of

k T T
EHZt:\/k—].HZt.
t=0 t=1

This hack is equivalent to modifying the algorithm of Figure 2 onlytie manner in which
D, is initialized. Specifically,D; should be chosen so thax, (i,y;) = 1/(2m) (where
y; is the correct label fox;) and D, (i,£) = 1/(2m(k—1)) for £ # y;. Note thatH! is

unaffected.

8. Using Output Coding for Multiclass Problems

The method above maps a single-label problem into a multi-label prabléme simplest
and most obvious way, namely, by mapping each single-label obseryatignto a multi-
label observatiofiz, {y}). However, it may be more effective to use a more sophisticated
mapping. In general, we can define a one-to-one mappingj — 2% which we can use

to map each observatidr, y) to (z, A(y)). Note that\ maps to subsets of an unspecified
label sety’ which need not be the same}sLetk’ = |)|.

It is desirable to chooskto be a function which maps different labels to sets which are
far from one another, say, in terms of their symmetric difference. Thessentially the
approach advocated by Dietterich and Bakiri (1995) in a somewhat differg¢imgs€hey
suggested using error correcting codes which are designed to have exactyofterty.
Alternatively, wherk' is not too small, we can expect to get a similar effect by chooking
entirely at random (so that, for € Y and¢ € ), we include or do not includéin A(y)
with equal probability). Once a functiokhas been chosen we can apply AdaBoost.MH
directly on the transformed training ddta;, A(v;)).

How then do we classify a new instanc® The most direct use of Dietterich and Bakiri's
approach is to evalua# onz to obtain a seH (z) C )'. We then choose the labgle Y
for which the mapped output codéy) has the shortest Hamming distance®¢r). That
is, we choose

in |A(y) A H(x)|.

arg min |A(y) A H(z)|
A weakness of this approach is that it ignores the confidence with which eacwabel

included or not included i# (z). An alternative approach is to predict that lapethich,

if it had been paired with: in the training set, would have causgd y) to be given the
smallest weight under the final distribution. In other words, wegssgpredicting the label
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Given:(z1,v1), ..., (Tm,ym) Wherez; € X, y; € Y
amapping\ : Y — 2V

Run AdaBoost.MH on relabeled data:;, A(y1)), - - -, (€, AMym))
Get back final hypothesi& of form H(z,y') = sign(f(z,y"))
wheref(z,y') = > arhu(w,y')

t
e Output modified final hypothesis:
(Variant1) Hy(x) = arg m€1§}1 [A(y) A H(z)]
Yy

(Variant2) H(z) :argglehyly;, exp (=AWW' f(z,9))

Figure 3. AdaBoost.MO: A multiclass version of AdaBoost based on ougodes.
argmin >, exp(~=A()ly'] f(=,y)
y! ey!

where, as beforef,(z,y') = Y, arhe(z,y').

We call this version of boosting using output codes AdaBoost.M@uéscode is given
in Figure 3. The next theorem formalizes the intuitions above, gigitbound on training
error in terms of the quality of the code as measured by the minimumndistbetween
any pair of “code words.”

THEOREM5 Assuming the notation of Figure 3 and Figure 2 (viewed as a sitlme), let

P e £t IN(£1) AX(£)].

When run with this choice of, the training error of AdaBoost.MO is upper bounded by
2k 1
_k H Z
P t=1

for Variant 1, and by

for Variant 2.

Proof: We start with Variant 1. Suppose the modified output hypothésifor Variant 1
makes a mistake on some examftey). This means that for some#£ y,

|H (x) AXML)| < [H(z) AMy)|
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which implies that

2[H(z) AXy)| = [H(z) AXy)| + [H(z) AL
> |(H(2)AX(y)) A (H(z)AX))|
= |A(y) A A0
> p

where the second inequality uses the fact tHath B| < |A| + |B| for any sets4 andB.
Thus, in case of an errdd (z) A A(y)| > p/2. On the other hand, the Hamming error of
AdaBoost.MH on the training set is, by definition,

— Z |H (i) A Mys)|

which is at mos{ [, Z; by Theorem 3. Thus, i/ is the number of training mistakes, then

i H(zi) AAyi)| < mk! HZt

which implies the stated bound.
For Variant 2, suppose thaf, makes an error on some examfiley). Then for some

t#y
> exp (=MO[] fz,y) < D exp (=AW)Y] f(z,y))- (20)

yley/ yrey/

Mlb

Fixing z, y and, let us definav(y’) = exp (—=A(y)[y'] f(x,y’)). Note that

exp (N o) = { 240 NI = O

1/w(y") otherwise.
Thus, Eq. (20) implies that
Do wly) =Y 1wy
y'es y'es
whereS = A(y)AA(¢). This implies that
Do)z Y w) 25 ) () + 1w 2152 p.
y' ey’ y'EeS y'es
The third inequality uses the fact that+ 1/ > 2 for all z > 0. Thus, we have shown
that if a mistake occurs ofx, y) then
> ep (AW f(a,y) > p.
yleyl

If M is the number of training errors under Variant 2, this means that
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pM <D > exp (M) '] f(wi,y) = mk' [[ %

i=1y'ey’

where the equality uses the main argument of the proof of Theorem 1 cedwith the
reduction to binary classification described just prior to Theorem 3. ifisediately
implies the stated bound.m

If the code) is chosen at random (uniformly among all possible codes), then, fa larg
k', we expechp to approach(1/2 — o(1))k’. In this case, the leading coefficients in the
bounds of Theorem 5 approach 4 for Variant 1 and 2 for Variant 2, indepentiém o
number of classek in the original label se}.

We can use Theorem 5 to improve the bound in Eq. (18) for AdaBoostdviiHat in
Eqg. (19). We apply Theorem 5 to the code defined\by) = {y} forall y € ). Clearly,
p = 2 in this case. Moreover, we claim that' as defined in Eq. (17) produces identical
predictions to those generated by Variant 2 in AdaBoost.MO since

> exp (=AY f(a,y) = e [ — el ) 4 N7 el e, (21)
y' ey y'ey

Clearly, the minimum of Eq. (21) overis attained wherf(z, y) is maximized. Applying
Theorem 5 now gives the bound in Eq. (19).

9. Using Ranking Loss for Multiclass Problems

In Section 7, we looked at the problem of finding a hypothesis that gxaethtifies the
labels associated with an instance. In this section, we consider a differ&itoraof this
problem in which the goal is to find a hypothesis whiahksthe labels with the hope that
the correct labels will receive the highest ranks. The approach describedslutosdly
related to one used by Freund et al. (1998) for using boosting for gemeral ranking
problems.

To be formal, we now seek a hypothesis of the fgfmX” x ) — R with the interpre-
tation that, for a given instance the labels iny should be ordered according fdz, -).
That is, a label; is considered to be ranked higher thanf f(z,¢,) > f(x,{2). With
respect to an observatidae, Y'), we only care about the relative ordering of #recial
pairs ¢y, ¢, for which?y, ¢ Y and/; € Y. We say thalf misordersa crucial paitfy, ¢ if
flz, b)) < f(z,4o) SO thatf fails to rank¢; abovel,;. Our goal is to find a functiogi with
a small number of misorderings so that the label¥ iare ranked above the labels not in
Y.

Our goal then is to minimize the expected fraction of crucial pairs which &eraered.
This quantity is called theanking loss and, with respect to a distributidd over observa-
tions, it is defined to be

. {(to ) € (V= Y) x Y : f2,0) < f(a, )}
e YTy —v] |

We denote this measure rlggs). Note that we assume thatis never empty nor equal
to all of ) for any observation since there is no ranking problem to be solvedsicaise.
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Given: (z1,Y1),...,(zm, V) Wherez; e X, Y; C Y
Initialize Dy (i, by, 6,) = { é/(m- Vil - |V = Y3]) if £y ¢ Vi andt; € Y;

else.
Fort=1,...,T:
e Train weak learner using distributiab,.
e Getweak hypothesis;, : X' x YV — R.
e Choosey; € R.
e Update:

Dt(l-,[(),gl) exp (%O&t(ht(d]z’,go) — ht(wz,ﬁl)))

Dyy1(i,lo, £1) = 7
t

whereZ, is a normalization factor (chosen so tliat,; will be a distribution).

Output the final hypothesis:

T
Fa,0) =" athy(z,0).

Figure 4. AdaBoost.MR: A multiclass, multi-label version of AdaBodssed on ranking loss.

A version of AdaBoost for ranking loss called AdaBoost.MR is showRigure 4. We
now maintain a distributio®, over{1,...,m}xY xY . This distribution is zero, however,
except on the relevant triplgs, ¢y, ¢1) for which /¢y, ¢, is a crucial pair relative t¢z;,Y;).

Weak hypotheses have the form : & x )V — R. We think of these as providing a
ranking of labels as described above. The update rule is a bit new légetbe a crucial
pair relative to(z;, Y;) (recall thatD; is zero in all other cases). Assuming momentar-
ily that oy > 0, this rule decreases the weighi (i, ¢y, ¢, ) if h; gives a correct ranking
(he(zi, €1) > h(zi, Lo)), and increases this weight otherwise.

We can prove a theorem analogous to Theorem 1 for ranking loss:

THEOREM 6 Assuming the notation of Figure 4, the following bound héddshe ranking
loss off on the training data:

T
rloss(f) < HZt'
t=1

Proof: The proofis very similar to that of Theorem 1.
Unraveling the update rule, we have that

D (i, by, t) exp (5(f(wi,0o) — f(2i,01)))
Ht Z .

Dri1(i, 0o, 4y) =
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The ranking loss on the training set is

Z Dy (i, Lo, 01)[f (ws,Lo) > f(i,€1)]

i,00,01
< D Dilibo, 1) exp (3(F(xi bo) = flxi, 1))
i,00,01
= S Dralito, ) [[ 2 =[] 2
i,00,01 ¢ ¢

(Here, each of the sums is over all example indicasd all pairs of labels iy x ).) This
completes the theorem.m
So, as before, our goal on each round is to try to minimize

Z =Y D(ilo,tr)exp (3a(h(wi, lo) — h(zi, (1))
i7€07€1

where, as usual, we omitsubscripts. We can apply all of the methods described in pre-
vious sections. Starting with the exact methods for findinguppose we are given a hy-
pothesish. Then we can make the appropriate modifications to the method of Secion 3.
to find a numerically.

Alternatively, in the special case thatas rangg —1, +1}, we have that
L (h(.’L‘i,go) — h(l‘i,gl)) € {—1,0,+1} .

2

Therefore, we can use the method of Section 3.3 to che@sectly:

a= %ln (%) (22)
where
Wy = > D(i,lo, 1) [, bo) — h(w;, £1) = 2b]. (23)
i,[o,ll
As before,
Z =Wy +2/W_W, (24)
in this case.

How can we find a weak hypothesis to minimize this expression? A sitfplecase is
to try to find the best oblivious weak hypothesis. An interesting gehlem then is, given
a distributionD, to find an oblivious hypothesfs : } — {—1,+1} which minimizesZ
when defined as in Egs. (23) and (24). We suspect that this problem may-beniete
when the size o} is not fixed.

We also do not know how to analytically find the best oblivious hypsih when we
do not restrict the range @f, although numerical methods may be reasonable. Note that
finding the best oblivious hypothesis is the simplest case of thealaxtension of the
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technique of Section 4.1 to ranking loss. Foldwg? into k as in Section 4, the problem
istofindh : Y — R to minimize

z7=73" [(ZD(@JO,&)) exp(h(fo) — Wl))] :

£o,t1

This can be rewritten as

Z =" [w(to, &) exp(h(to) — h(t1))] (25)
Lo,l1

wherew({y, (1) = ), D(i, 4o, ¢1). In Appendix A we show that expressions of the form
given by Eq. (25) are convex, and we discuss how to minimize such esxpnas (To see
that the expression in Eg. (25) has the general form of Eq. (A.1)tifgehe w(£y, ¢1)’s
with thew;’s in Eq. (A.1), and théy(¢)'s with thea;’s.)

Since exact analytic solutions seem hard to come by for ranking lossexteonsider
approximations such as those in Section 3.1. Assuming weak hypothasgsrange in
[-1, +1], we can use the same approximation of Eq. (4) which yields

1—r 1+7r
Z < o —a 26
<(5) e+ (57) @)
where
r=3% Y D(ilo, (1) (h(zi, 1) — h(zi, by)). (27)
i,00,01

As before, the right hand side of Eq. (26) is minimized when
o= (1) @9

1—r

which gives

Z <\1-r2

Thus, a reasonable and more tractable goal for the weak learner is to try imizex |.

Example To find the oblivious weak hypothesis: ) — {—1, +1} which maximizes-,
note that by rearranging sums,

ﬂ—([) = % Z (D(nglag) - D(ngvzl)) .

i

Clearly,r is maximized if we seb(¢) = sign(n(¢)). |

Note that, although we use this approximation to find the weak hgsathonce the weak
hypothesis has been computed by the weak learner, we can use other methodséa.cho
such as those outlined above.
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Given: (z1,Y1),...,(zm, Yn) Wherez; € X,Y; C Y
Initialize v, (i,£) = (m - [Y;] - |V — Y3|) /2
Fort=1,...,T:

e Train weak learner using distributiadp, (as defined by Eq. (29))
o Getweak hypothesis;, : X' x YV — R.
e Choosey; € R.
e Update:
) v (i, £) exp (—%atYi[Z]ht(mi,Z))
l) =
Vt+1 (Za ) \/Z
where
Zy = Z [(Z ve(i, ) exp (%Oétht(l'i,g))> (Z ve (i, £) exp (—%atht(wi,é))>]
i £gy; tey;

Output the final hypothesis:

T
Fla,0) = aghy(x,0).
t=1

Figure 5. A more efficient version of AdaBoost.MR (Figure 4).

9.1. A more efficientimplementation

The method described above may be time and space inefficient when there araledsy |
In particular, we naively need to maintdiri| - |V — Y;| weights for each training example
(z4,Y;), and each weight must be updated on each round. Thus, the space complexity and
time-per-round complexity can be as badlask?).

In fact, the same algorithm can be implemented using @ily:k) space and time per
round. By the nature of the updates, we will show that we only needtotain weights,

over{l,...,m} x Y. We will maintain the condition that ify, ¢, is a crucial pair relative
to (z;,Y;), then
Dt(z’,éo,él) :Ut(l.,go) -vt(z’,él) (29)

at all times. (Recall thab, is zero for all other triplesi, ¢o, £1).)

The pseudocode for this implementation is shown in Figure 5. E{.d@n be proved by
induction. It clearly holds initially. Using our inductive hype@tis, it is straightforward to
expand the computation d&f; in Figure 5 to see that it is equivalent to the computation of
Zy in Figure 4. To show that Eq. (29) holds on round 1, we have, for crucial paify, /1 :

Dt(i,éo,él) exXp (%Ozt(ht(l‘i,go) — ht(xi,él)))

Dyy1(i,lo, b1) = Z,
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’Ut(i,go) exp (%Oétht(l'i,go)) ) ’Ut(i,gl) exp (—%O&tht(ﬂfi,gl))
V7 V7

V41 (4, bo) » w41 (3, 41) -

Finally, note that all space requirements and all per-round computatier@(atk),
with the possible exception of the call to the weak learner. Howeve ifvant the weak
learner to maximizér| as in Eq. (27), then we also only need to pagsweights to the
weak learner, all of which can be computedimk) time. Omittingt subscripts, we can
rewriter as

ro= %> D(i,lo, b)(h(xi, ) — h(z;, o))
i,00,01

= % Z Z ’U(i,[o)’l)(i,gl) (h(ﬂfz,gl)ifl[[l] + h(ﬂ?z,go)Y;[Zo])
i LogYi Y]

= %Z [Z (’U(i,go) Z ’U(Z-,Zl)> Y;[Zo] h(l’z,go) +

i |togy; INS?

> (v(z',m 3 v(i,m) wl]h@:i,el)]

l1EY; oY
= > d(i, ) V[0 h(zs, 0) (30)
il
where
(i, 0) = Lo(i,0) > w(i,l).
Y0 #£Yi[0)

All of the weightsd(i, ¢) can be computed i®(mk) time by first computing the sums
which appear in this equation for the two possible casesXhéftis —1 or +1. Thus,

we only need to pas®(mk) weights to the weak learner in this case rather than the full
distribution D, of sizeO(mk?). Moreover, note that Eq. (30) has exactly the same form
as Eq. (14) which means that, in this setting, the same weak learner can bemusitaefr
Hamming loss or ranking loss.

9.2. Relation to one-error

As in Section 7.2, we can use the ranking loss method for minimiziegasror, and there-
fore also for single-label problems. Indeed, Freund and Schapire’s \1j885udoloss”-
based algorithm AdaBoost.M2 is a special case of the use of rankinghleggdh all data
are single-labeled, the weak learner attempts to maximjtes in Eq. (27), and is set
asin Eq. (28).

As before, the natural prediction rule is

H (@) = argmax Y f(@,y),
t
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in other words, to choose the highest ranked label for instantée can show:

THEOREM 7 With respect to any distributio® over observationse, Y') whereY” is nei-
ther empty nor equal ty,

one-erp(H') < (k — 1) rlossp(f).

Proof: Supposéi!(z) ¢ Y. Then, with respect t¢ and observatiofi, Y'), misorderings
occur for all pairg/; € Y and{y, = H'(z). Thus,

H(lo,01) € (Y —=Y)xY : f(x,l1) < flx, )} > 1 s !
YT -7l > vl 2 k=1

Taking expectations gives

1

mE(z,Y)ND [ [H'(z) ¢ Y] ] < rlossp(f)

which proves the theorem.m

10. Experiments

In this section, we describe a few experiments that we ran on some bbt®ting algo-
rithms described in this paper. The first set of experiments comparegjbréttains on a
set of learning benchmark problems from the UCI repository. The secqratinent does
a comparison on a large text categorization task. More details of ocaggorization
experiments appear in a companion paper (Schapire & Singer, to appeatr).

For multiclass problems, we compared three of the boosting algaithm

Discrete AdaBoost.MH: In this version of AdaBoost.MH, we require that weak hypothe-
ses have rangg-1, +1}. As described in Section 7, we ggtas in Eq. (13). The goal
of the weak learner in this case is to maximjize as defined in Eq. (14).

Real AdaBoost.MH: In this version of AdaBoost.MH, we do not restrict the range of
the weak hypotheses. Since all our experiments involve domain-paititj weak
hypotheses, we can set the confidence-ratings as in Section 7.1 (therebwtitignin
the need to choose,;). The goal of the weak learner in this case is to minimize
as defined in Eqg. (16). We also smoothed the predictions as in Sec. 4¢cusin
1/(2mk).

Discrete AdaBoost.MR: In this version of AdaBoost.MR, we require that weak hypothe-
ses have rangé—1,+1}. We use the approximation df; given in Eq. (26) and
therefore sety; as in Eq. (28) with a corresponding goal for the weak learner of maxi-
mizing |r¢| as defined in Eq. (27). Note that, in the single-label case, this algoisthm
identical to Freund and Schapire’s (1997) AdaBoost.M2 algorithm.
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Figure 6. Comparison of discrete AdaBoost.MH and discrete AdaBbti3ton 11 multiclass benchmark prob-
lems from the UCI repository. Each point in each scattergthoivs the error rate of the two competing algorithms
on a single benchmark. Top and bottom rows give training astidrrors, respectively, for 10, 100 and 1000
rounds of boosting. (However, on one benchmark datasegrtbe rates fell outside the given range when only
10 rounds of boosting were used.)
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the UCI repository. (See caption for Figure 6.)
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We used these algorithms for two-class and multiclass problems alikie, Nowever,
that discrete AdaBoost.MR and discrete AdaBoost.MH are equivalent @édgarior two-
class problems.

We compared the three algorithms on a collection of benchmark problentesdediom
the repository at University of California at Irvine (Merz & Murpghy998). We used
the same experimental set-up as Freund and Schapire (1996). Namely,tiattess
already provided, experiments were run 20 times and the results averagsds@me of
the learning algorithms may be randomized). If no test set was provitad10-fold cross
validation was used and rerun 10 times for a total of 100 runs of each algoie tested
on the same set of benchmarks, except that we dropped the “vowel” dataset.eEsioh v
of AdaBoost was run for 1000 rounds.

We used the simplest of the weak learners tested by Freund and Schapirk (ILI®86
weak learner finds a weak hypothesis which makes its prediction based on thefesu
single test comparing one of the attributes to one of its possidlesg. For discrete at-
tributes, equality is tested; for continuous attributes, a threskallee is compared. Such
a hypothesis can be viewed as a one-level decision tree (sometimes called @fdecis
stump”). The best hypothesis of this form which optimizes the appatgplearning crite-
rion (as listed above) can always be found by a direct and efficient search usimgthods
described in this paper.

Figure 6 compares the relative performance of Freund and Schapire’s AddBdas
gorithm (here called “discrete AdaBoost.MR”) to the new algorithngeite AdaBoost.MH.
Each point in each scatterplot gives the (averaged) error rates of the twodsébha sin-
gle benchmark problem; that is, tlrecoordinate of a point gives the error rate for discrete
AdaBoost.MR, and thg-coordinate gives the error rate for discrete AdaBoost.MH. (Since
the two methods are equivalent for two-class problems, we only giuisder the multi-
class benchmarks.) We have provided scatterplots for 10, 100 and 10@6srof boosting,
and for test and train error rates. It seems rather clear from these figuresthab ttneth-
ods are generally quite evenly matched with a possible slight advaatagiaBoost. MH.
Thus, for these problems, the Hamming loss methodology gives caivipaesults to Fre-
und and Schapire’s method, but has the advantage of being conceptualkgrsimpl

Next, we assess the value of using weak hypotheses which give confidesd gt
dictions. Figure 7 shows similar scatterplots comparing real AdaBdbkand discrete
AdaBoost.MH. These scatterplots show that the real version (with ardes) is overall
more effective at driving down the training error, and also has an advaotatjee test
error rate, especially for a relatively small number of rounds. By 100A@dsuhowever,
these differences largely disappear.

In Figures 8 and 9, we give more details on the behavior of the diffesrsions of Ada-
Boost. In Figure 8, we compare discrete and real AdaBoost.Mitsatifferent problems
from the UCI repository. For each problem we plot for each method itsitrgiand test
error as a function of the number of rounds of boosting. Similanlfigure 8 we com-
pare discrete AdaBoost.MR, discrete AdaBoost.MH, and real AdaBoostiMHulticlass
problems.

After examining the behavior of the various error curves, the patkiati improvement
of AdaBoost with real-valued predictions seems to be greatest on largdemsabThe
most noticeable case is the “letter-recognition” task, the largest U®Igamoin our suite.
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Figure 10.Comparison of the training (left) and test (right) erromgsthree boosting methods on a six-class text
classification problem from the TREC-AP collection.

This is a 26-class problem witls, 000 training examples ard] 000 test examples. For this
problem, the training error aftdi00 rounds is32.2% for discrete AdaBoost.MR28.0%

for discrete AdaBoost.MH, ant9.5% for real AdaBoost.MH. The test error rates after
100 rounds are 34.1%, 30.4% and 22.3%, respectively. By 1,000 rouridgydp in test
error has narrowed somewhat to 19.7%, 17.6% and 16.4%.

Finally, we give results for a large text-categorization problem. révidetails of our
text-categorization experiments are described in a companion paper (8ckapinger,
to appear). In this problem, there are six classeSMBSTIC, ENTERTAINMENT, FINAN -
CIAL, INTERNATIONAL, POLITICAL, WASHINGTON. The goal is to assign a document to
one, and only one, of the above classes. We use the same weak learner as abopd; appr
ately modified for text; specifically, the weak hypotheses make their prexdickhased on
tests that check for the presence or absence of a phrase in a document. Thé&z2é 1
training documents and 66,973 test documents.

In Figure 10, we compare the performance of discrete AdaBoost.MRretis Ada-
Boost.MH and real AdaBoost.MH. The figure shows the training an@testas a function
of number of rounds. The-axis shows the number of rounds (using a logarithmic scale),
and they-axis the training and test error. Real AdaBoost.MH dramatically outpesithe
other two methods, a behavior that seems to be typical on large texboatdgn tasks.
For example, to reach a test error of 40%, discrete AdaBoost.MH takes31i®,93ds, and
discrete AdaBoost.MR takes 33,347 rounds. In comparison, real AdaBibbsakes only
268 rounds, more than a sixty-fold speed-up over the best of tlee tvtbh methods!

As happened in this example, discrete AdaBoost.MH seems to consistatgirimrm
discrete AdaBoost.MR on similar problems. However, this might étigdly due to the
inferior choice ofa; using the approximation leading to Eq. (28) rather than the exact
method which gives the choice of in Eq. (22).

11. Concluding Remarks

In this paper, we have described several improvements to Freund and 8shagaBoost
algorithm. In the new framework, weak hypotheses may assign confideresstiof their
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predictions. We described several generalizations for multiclass probl&res experi-
mental results with the improved boosting algorithms show that dtiaimprovements in
training error are possible when a fairly large amount of data is availdtowever, on
small and noisy datasets, the rapid decrease of training error is often acéecthpdth
overfitting which sometimes results in rather poor generalization erraenjimportant
research goal is thus to control, either directly or indirectly, the coxitylef the strong
hypotheses constructed by boosting.

Several applications can make use of the improved boosting algorithensave imple-
mented a system called BoosTexter for multiclass multi-label text and spagsgoriza-
tion and performed an extensive set of experiments with this systena§Bel& Singer,
to appear). We have also used the new boosting framework for dgwfinient ranking
algorithms (Freund et al., 1998).

There are other domains that may make use of the new framework forirmpostor
instance, it might be possible to train non-linear classifiers, such aalmatworks using
Z as the objective function. We have also mentioned several open prohlemasfinding
an oblivious hypothesis intp—1, +1} which minimizesZ in AdaBoost.MR.

Finally, there seem to be interesting connections between boosting ardraitiels and
their learning algorithms such as generalized additive models (Friedman¥2e8) and
maximum entropy methods (Csiszar & Tusnady, 1984) which formvaared exciting
research arena.
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Appendix A
Properties of Z

In this appendix, we show that the function defined by Eq. (3) is a cofurection in the

parameters, .. .,ayx and describe a numerical procedure based on Newton’s method to
find the parameters which minimize it.
To simplify notation, letu;; = —y;g;(x;). We will analyze the following slightly more

general form of Eq. (3)

m N
Zw,' exp (Z aju,'j) , (w; > O,sz‘ =1). (A.2)
i=1 j=1 i

Note that in all cases discussed in this pafeis of the form given by Eq. (A.1). We
therefore refer for brevity to the function given by Eq. (A.1)4s The first and second
order derivatives of with respectta,...,ay are

07 & T
V2 = a_ = Z’wi exp Zajuij Uik (AZ)
k i=1 j=1

) B 82Z B m N 3
VMZ = @ = Zwi exp Zajuij Uik Usl - (A )
i=1 j=1

Denoting bya! = (u;1, ..., u;n) We can rewritev?Z as
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m N
ViZ = E w; exp E a;jU;j uu”
=1 j=1

Now, for any vectox € R" we have that,

m
xI'v2zZx = x¥ E w; exp E a;jug; u?ui X
m N
= E w; exp E AjUgj xTuiulTx
i=1 j=1

m N
= Zwiexp Zajuij (x-ui)2 > 0.
i=1 j=1

Hence V2 Z is positive semidefinite which implies thatis convex with respecttay, . .., ay
and has a unique minimum (with the exception of pathological cases).
To find the values ofi1, ..., ay that minimizeZ we can use iterative methods such as

Newton’s method. In short, for Newton’s method the new set of patam is updated
from the current set as follows

a+a—(V22) " vzl (A.4)

wherea® = (ay,...,an).
Let

1
v = Zwi exp E A5 Usj y
=1

and denote by

Eivv [ug] Z v; u; and EZNU u Z v; u u; .

i=1

Then, substituting the values f&§Z andV2Z from Egs. (A.2) and (A.3) in Eq. (A.4), we
get that the Newton parameter update is

a<+a-— (Eiwv [u?uz]) - Eivy [ui].

Typically, the above update would result in a new set of parameters thatsatt smaller
value ofZ than the current set. However, such a decrease @slwatysguaranteed. Hence,
the above iteration should be augmented with a test on the valdeaofl a line search in

the direction of(V2Z)_1 vzT in case of an increase in the value &f (For further
details, see for instance Fletcher (1987)).
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Appendix B

Bounding the Generalization Error

In this appendix, we prove a bound on the generalization error of théio@hhypothesis
produced by AdaBoost in terms of the margins of the training examptesutline of the
proof that we present here was communicated to us by Peter Bartlett. It useistrsh
developed by Bartlett (1998) and Schapire et al. (1998).

Let H be a set of real-valued functions on domain We letco(?) denote theconvex
hull of H, namely,

co(H) = {f:mHZahh(a:Hah ZO,Zahzl}
h h

where it is understood that each of the sums above are over the finitt sfibypotheses

in 4 for whichay, > 0. We assume here that the weights on the hypotheses are nonneg-
ative. The result can be generalized to handle negative weights simply mgadd{ all
hypotheses-h for h € H.

The main result of this appendix is the theorem below. This theoremeisti@hl to
Schapire et al.’s (1998) Theorem 2 except that we allow the weak hypothelseseal-
valued rather than binary.

We usePr(, ,)~p [4] to denote the probability of the everAtwhen the examplér, y)
is chosen according t®, andPr, ,)~s [A] to denote probability with respect to choos-
ing an example uniformly at random from the training set. When clear frontext, we
abbreviate these byrp [4] andPrg [A]. We useEp [A] andEg [4] to denote expected
value in a similar manner.

To prove the theorem, we will first need to define the notion of a glamyer. For a
classF of real-valued functions, a training s&tof sizem, and real numberg > 0 and
e > 0, we say that a function class is ane-sloppyé-cover of F with respect taS if, for

all f in F, there exists’ in Z with Pr,.s [| fla) - fla)] > 9] < e. LetN'(F,8,¢,m)
denote the maximum, over all training sétef sizem, of the size of the smallestsloppy
#-cover of F with respect tcS.

THEOREMS8 LetD be a distribution overt x {—1,+1}, and letS be a sample ofn
examples chosen independently at random accordifig. t&uppose the weak-hypothesis
spacel of [-1, +1]-valued functions has pseudodimensipand leté > 0. Assume that
m > d > 1. Then with probability at least — ¢ over the random choice of the training set
S, every weighted average functigre co(#) satisfies the following generalization-error
bound for all§ > 0:

9 1/2
Pro [y f(2) < 0] < Prs [y (x) < 6] +.0 (% (2 s rog1/o)) ) |
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Proof: Using techniques from Bartlett (1998), Schapire et al. (1998, Theorayivd)a
theorem which states that, fer> 0 andf > 0, the probability over the random choice of
training setS that there exists any functiohe co(H) for which

Prp [yf(z) < 0] > Prs[yf(z) < 6]+
is at most

2N (co(H),0/2, /8, 2m)e < ™/32, (B.1)
We prove Theorem 8 by applying this result. To do so, we need to cahstoppy covers

for co(H).
Haussler and Long (1995, Lemma 13) prove that

wooom <3 (7) 3] < (GR)"

Fix any setS C X of sizem. Then this result means trlat there existsC H of
cardinality(em/(0d))¢ such that for alh € H there exists: € H such that

Vo € S :|h(z) — hz)| < 6. (B.2)

Now let
. 1 & .
CNZ{fzwl—)N;hi(aZHhiEH}

be the set of unweighted averages\dklements ir#{. We will show thatC is a sloppy
cover ofco(H).
Let f € co(H). Then we can write

flw) =Y ajhj(x)
J
wherea; > 0and}’; a; = 1. Let
fla) =) ajhj(z)
J
Whereﬁj € H is chosen so that; andﬁj satisfy Eq. (B.2). Then for alt € S,

|f(z) — f(z)|

Zaj(hj(x) — hj())

IN
Q
~.
>
~
&
|
>
~
—
B

IN
<

(B.3)
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Next, let us define a distributio over functions inC, in which a functiong € Cy is
selected by choosin@l, by independently at random according to the distribution
over# defined by they; coefficients, and then settigg= (1/N) Zf;l h;. Note that, for
fixed z, f(yc) = E,~¢ [¢9(z)]. We therefore can use Chernoff bounds to show that

Prgo [|f($) —g(z)| > 9] < 2e~NO/2,
Thus,
Ey~o [Pr(z,y)~s [|f($) —g(z)| > 9]]
= By)~s [PngQ [|f(w) —g(z)] > 9“ < 2e~NV/2
Therefore, there exisige Cx such that
Priz y)~s [|f($) —g(z)| > 9] < 26~ NO/2,

Combined with Eq. (B.3), this means thy is a2e=V*/2-sloppy26-cover of co(H).
Since|Cn| < |H|N, we have thus shown that

—N§?/2 em\ N
N(co(H), 26, 2¢ ,m) < (Od) )

SettingV = (32/6?) In(16/¢), this implies that Eq. (B.1) is at most

(32d/6%) In(16/¢)
8em 2
—— —em/s2, B.4
(%) e (8.4)
Let
g (L) 2 (semy  gemy) 9
€= 8m mé? d d ' ’

Then the logarithm of Eq. (B.4) is
16d 8em In(2/6)  2d 8em em
In2 02 111<0d>1n< S —l—m92ln< 7 >1n(d)>
16d 8em em
_ 2/8) — —— o= -
In(2/9) B In ( 7 > In ( 7 )

16d 8em em 8em mo?
Ind — o <1n <T> In (7) —In (W) In (2—d>>

< In}é.

IN

For the first inequality, we used the fact that8em /d) > In(em/d) > 1. For the second
inequality, note that

1 8em 1 mo?
"\Toa ) M\ 24
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is increasing as a function éf Therefore, sincé < 1, itis upper bounded by

8em m 8em em
m<irynbﬁﬁm<ir>m05)
Thus, for the choice of given in Eqg. (B.5), the bound in Eq. (B.4) is at mést
We have thus proved the bound of the theorem for a single given chbite- 0 with
high probability. We next prove that with high probability, theund holds simultane-

ously for alld > 0. Lete(d,9) be the choice o€ given in Eq. (B.5), regarding the other
parameters as fixed. We have shown that, fof all 0, the probability that

Prp [yf(x) < 0] > Prs [yf(z) < 6] + (6,) (B.6)

is at mosty. Let® = {1,1/2,1/4,...}. By the union bound, this implies that, with
probability at least — 4,

Prp [yf(2) < 0] < Prs[yf(z) < 6] + €(6,6/2) (B.7)

forall # € ©. This is because, for fixel€ ©, Eq. (B.7) holds with probability — §6/2.
Therefore, the probability that it fails to hold fanyf € © is at mosty _, o d6/2 = 6.

Assume we are in the high probability case that Eq. (B.7) holds fat @ ©. Then
given anyd > 0, choosd’ € © such that/2 < §' < 4. We have

Prp [yf(z) <0] < Prslyf(z) <0 +e(0,50'/2)
Prs[yf(z) < 6] +¢€(6/2,00/4).

IA

Since
9 1/2
€(6/2,60/4) = O (L (dbgoigm/d) + 1og(1/6)> > ;

this completes the proof. m
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