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Abstract. In the multiarmed bandit problem, a gambler must decide which arm of K non-
identical slot machines to play in a sequence of trials so as to maximize his reward. This classical
problem has received much attention because of the simple model it provides of the trade-off between
exploration (trying out each arm to find the best one) and exploitation (playing the arm believed to
give the best payoff). Past solutions for the bandit problem have almost always relied on assumptions
about the statistics of the slot machines.

In this work, we make no statistical assumptions whatsoever about the nature of the process
generating the payoffs of the slot machines. We give a solution to the bandit problem in which an
adversary, rather than a well-behaved stochastic process, has complete control over the payoffs. In
a sequence of T plays, we prove that the per-round payoff of our algorithm approaches that of the
best arm at the rate O(T−1/2). We show by a matching lower bound that this is the best possible.

We also prove that our algorithm approaches the per-round payoff of any set of strategies at a
similar rate: if the best strategy is chosen from a pool of N strategies, then our algorithm approaches
the per-round payoff of the strategy at the rate O((logN)1/2T−1/2). Finally, we apply our results to
the problem of playing an unknown repeated matrix game. We show that our algorithm approaches
the minimax payoff of the unknown game at the rate O(T−1/2).
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1. Introduction. In the multiarmed bandit problem, originally proposed by
Robbins [17], a gambler must choose which of K slot machines to play. At each time
step, he pulls the arm of one of the machines and receives a reward or payoff (possibly
zero or negative). The gambler’s purpose is to maximize his return, i.e., the sum of
the rewards he receives over a sequence of pulls. In this model, each arm is assumed to
deliver rewards that are independently drawn from a fixed and unknown distribution.
As reward distributions differ from arm to arm, the goal is to find the arm with the
highest expected payoff as early as possible and then to keep gambling using that best
arm.

The problem is a paradigmatic example of the trade-off between exploration and
exploitation. On the one hand, if the gambler plays exclusively on the machine that
he thinks is best (“exploitation”), he may fail to discover that one of the other arms
actually has a higher expected payoff. On the other hand, if he spends too much time
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trying out all the machines and gathering statistics (“exploration”), he may fail to
play the best arm often enough to get a high return.

The gambler’s performance is typically measured in terms of “regret.” This is the
difference between the expected return of the optimal strategy (pulling consistently
the best arm) and the gambler’s expected return. Lai and Robbins proved that
the gambler’s regret over T pulls can be made, for T → ∞, as small as O(lnT ).
Furthermore, they prove that this bound is optimal in the following sense: there is
no strategy for the gambler with a better asymptotic performance.

Though this formulation of the bandit problem allows an elegant statistical treat-
ment of the exploration-exploitation trade-off, it may not be adequate to model certain
environments. As a motivating example, consider the task of repeatedly choosing a
route for transmitting packets between two points in a communication network. To
cast this scenario within the bandit problem, suppose there is a only a fixed number
of possible routes and the transmission cost is reported back to the sender. Now, it
is likely that the costs associated with each route cannot be modeled by a stationary
distribution, so a more sophisticated set of statistical assumptions would be required.
In general, it may be difficult or impossible to determine the right statistical assump-
tions for a given domain, and some domains may exhibit dependencies to an extent
that no such assumptions are appropriate.

To provide a framework where one could model scenarios like the one sketched
above, we present the adversarial bandit problem, a variant of the bandit problem
in which no statistical assumptions are made about the generation of rewards. We
assume only that each slot machine is initially assigned an arbitrary and unknown
sequence of rewards, one for each time step, chosen from a bounded real interval.
Each time the gambler pulls the arm of a slot machine, he receives the corresponding
reward from the sequence assigned to that slot machine. To measure the gambler’s
performance in this setting we replace the notion of (statistical) regret with that
of worst-case regret. Given any sequence (j1, . . . , jT ) of pulls, where T > 0 is an
arbitrary time horizon and each jt is the index of an arm, the worst-case regret of
a gambler for this sequence of pulls is the difference between the return the gambler
would have had by pulling arms j1, . . . , jT and the actual gambler’s return, where
both returns are determined by the initial assignment of rewards. It is easy to see
that, in this model, the gambler cannot keep his regret small (say, sublinear in T )
for all sequences of pulls and with respect to the worst-case assignment of rewards to
the arms. Thus, to make the problem feasible, we allow the regret to depend on the
“hardness” of the sequence of pulls for which it is measured, where the hardness of a
sequence is roughly the number of times one has to change the slot machine currently
being played in order to pull the arms in the order given by the sequence. This trick
allows us to effectively control the worst-case regret simultaneously for all sequences
of pulls, even though (as one should expect) our regret bounds become trivial when
the hardness of the sequence (j1, . . . , jT ) we compete against gets too close to T .

As a remark, note that a deterministic bandit problem was also considered by
Gittins [9] and Ishikida and Varaiya [13]. However, their version of the bandit problem
is very different from ours: they assume that the player can compute ahead of time
exactly what payoffs will be received from each arm, and their problem is thus one of
optimization, rather than exploration and exploitation.

Our most general result is a very efficient, randomized player algorithm whose ex-
pected regret for any sequence of pulls is1 O(S

√

KT ln(KT )), where S is the hardness

1Though in this introduction we use the compact asymptotic notation, our bounds are proven
for each finite T and almost always with explicit constants.
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of the sequence (see Theorem 8.1 and Corollaries 8.2, 8.4). Note that this bound holds
simultaneously for all sequences of pulls, for any assignments of rewards to the arms,
and uniformly over the time horizon T . If the gambler is willing to impose an upper
bound S on the hardness of the sequences of pulls for which he wants to measure
his regret, an improved bound O(

√

SKT ln(KT )) on the expected regret for these
sequences can be proven (see Corollaries 8.3 and 8.5).

With the purpose of establishing connections with certain results in game theory,
we also look at a special case of the worst-case regret, which we call “weak regret.”
Given a time horizon T , call “best arm” the arm that has the highest return (sum of
assigned rewards) up to time T with respect to the initial assignment of rewards. The
gambler’s weak regret is the difference between the return of this best arm and the
actual gambler’s return. In the paper we introduce a randomized player algorithm,
tailored to this notion of regret, whose expected weak regret is O(

√
KGmax lnK),

where Gmax is the return of the best arm—see Theorem 4.1 in section 4. As before,
this bound holds for any assignments of rewards to the arms and uniformly over the
choice of the time horizon T . Using a more complex player algorithm, we also prove
that the weak regret is O(

√

KT ln(KT/δ)) with probability at least 1 − δ over the
algorithm’s randomization, for any fixed δ > 0; see Theorems 6.3 and 6.4 in section 6.
This also implies that, asymptotically for T → ∞ and K constant, the weak regret is
O(
√

T (lnT )1+ε) with probability 1 for any fixed ε > 0; see Corollary 6.5.
Our worst-case bounds may appear weaker than the bounds proved using statis-

tical assumptions, such as those shown by Lai and Robbins [14] of the form O(lnT ).
However, when comparing our results to those in the statistics literature, it is im-
portant to point out an important difference in the asymptotic quantification. In the
work of Lai and Robbins, the assumption is that the distribution of rewards that is
associated with each arm is fixed as the total number of iterations T increases to
infinity. In contrast, our bounds hold for any finite T , and, by the generality of our
model, these bounds are applicable when the payoffs are randomly (or adversarially)
chosen in a manner that does depend on T . It is this quantification order, and not
the adversarial nature of our framework, which is the cause for the apparent gap. We
prove this point in Theorem 5.1, where we show that, for any player algorithm for the
K-armed bandit problem and for any T , there exists a set of K reward distributions
such that the expected weak regret of the algorithm when playing on these arms for
T time steps is Ω(

√
KT ).

So far we have considered notions of regret that compare the return of the gambler
to the return of a sequence of pulls or to the return of the best arm. A further
notion of regret which we explore is the regret for the best strategy in a given set
of strategies that are available to the gambler. The notion of “strategy” generalizes
that of “sequence of pulls”: at each time step a strategy gives a recommendation, in
the form of a probability distribution over the K arms, as to which arm to play next.
Given an assignment of rewards to the arms and a set of N strategies for the gambler,
call “best strategy” the strategy that yields the highest return with respect to this
assignment. Then the regret for the best strategy is the difference between the return
of this best strategy and the actual gambler’s return. Using a randomized player
that combines the choices of the N strategies (in the same vein as the algorithms for
“prediction with expert advice” from [3]), we show that the expected regret for the
best strategy is O(

√
KT lnN)—see Theorem 7.1. Note that the dependence on the

number of strategies is only logarithmic, and therefore the bound is quite reasonable
even when the player is combining a very large number of strategies.

The adversarial bandit problem is closely related to the problem of learning to
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play an unknown N -person finite game, where the same game is played repeatedly by
N players. A desirable property for a player is Hannan-consistency, which is similar
to saying (in our bandit framework) that the weak regret per time step of the player
converges to 0 with probability 1. Examples of Hannan-consistent player strategies
have been provided by several authors in the past (see [5] for a survey of these results).
By applying (slight extensions of) Theorems 6.3 and 6.4, we can provide an example of
a simple Hannan-consistent player whose convergence rate is optimal up to logarithmic
factors.

Our player algorithms are based in part on an algorithm presented by Freund and
Schapire [6, 7], which in turn is a variant of Littlestone and Warmuth’s [15] weighted
majority algorithm and Vovk’s [18] aggregating strategies. In the setting analyzed by
Freund and Schapire, the player scores on each pull the reward of the chosen arm but
gains access to the rewards associated with all of the arms (not just the one that was
chosen).

2. Notation and terminology. An adversarial bandit problem is specified by
the number K of possible actions, where each action is denoted by an integer 1 ≤
i ≤ K, and by an assignment of rewards, i.e., an infinite sequence x(1),x(2), . . . of
vectors x(t) = (x1(t), . . . , xK(t)), where xi(t) ∈ [0, 1] denotes the reward obtained if
action i is chosen at time step (also called “trial”) t. (Even though throughout the
paper we will assume that all rewards belong to the [0, 1] interval, the generalization
of our results to rewards in [a, b] for arbitrary a < b is straightforward.) We assume
that the player knows the number K of actions. Furthermore, after each trial t, we
assume the player knows only the rewards xi1(1), . . . , xit(t) of the previously chosen
actions i1, . . . , it. In this respect, we can view the player algorithm as a sequence
I1, I2, . . . , where each It is a mapping from the set ({1, . . . ,K} × [0, 1])t−1 of action
indices and previous rewards to the set of action indices.

For any reward assignment and for any T > 0, let

GA(T )
def
=

T
∑

t=1

xit(t)

be the return at time horizon T of algorithm A choosing actions i1, i2, . . . . In what
follows, we will write GA instead of GA(T ) whenever the value of T is clear from the
context.

Our measure of performance for a player algorithm is the worst-case regret, and in
this paper we explore variants of the notion of regret. Given any time horizon T > 0
and any sequence of actions (j1, . . . , jT ), the (worst-case) regret of algorithm A for
(j1, . . . , jT ) is the difference

G(j1,...,jT ) −GA(T ),(1)

where

G(j1,...,jT )
def
=

T
∑

t=1

xjt(t)

is the return, at time horizon T , obtained by choosing actions j1, . . . , jT . Hence, the
regret (1) measures how much the player lost (or gained, depending on the sign of the
difference) by following strategy A instead of choosing actions j1, . . . , jT . A special
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case of this is the regret of A for the best single action (which we will call weak regret
for short), defined by

Gmax(T ) −GA(T ),

where

Gmax(T )
def
= max

j

T
∑

t=1

xj(t)

is the return of the single globally best action at time horizon T . As before, we will
write Gmax instead of Gmax(T ) whenever the value of T is clear from the context.

As our player algorithms will be randomized, fixing a player algorithm defines
a probability distribution over the set of all sequences of actions. All the probabili-
ties P{·} and expectations E[·] considered in this paper will be taken with respect to
this distribution.

In what follows, we will prove two kinds of bounds on the performance of a
(randomized) player A. The first is a bound on the expected regret

G(j1,...,jT ) − E [GA(T )]

of A for an arbitrary sequence (j1, . . . , jT ) of actions. The second is a confidence
bound on the weak regret. This has the form

P {Gmax(T ) > GA(T ) + ε} ≤ δ

and states that, with high probability, the return of A up to time T is not much
smaller than that of the globally best action.

Finally, we remark that all of our bounds hold for any sequence x(1),x(2), . . . of
reward assignments, and most of them hold uniformly over the time horizon T (i.e.,
they hold for all T without requiring T as input parameter).

3. Upper bounds on the weak regret. In this section we present and analyze
our simplest player algorithm, Exp3 (which stands for “exponential-weight algorithm
for exploration and exploitation”). We will show a bound on the expected regret of
Exp3 with respect to the single best action. In the next sections, we will greatly
strengthen this result.

The algorithm Exp3, described in Figure 1, is a variant of the algorithm Hedge

introduced by Freund and Schapire [6] for solving a different worst-case sequential
allocation problem. On each time step t, Exp3 draws an action it according to the
distribution p1(t), . . . , pK(t). This distribution is a mixture of the uniform distribution
and a distribution which assigns to each action a probability mass exponential in
the estimated cumulative reward for that action. Intuitively, mixing in the uniform
distribution is done to make sure that the algorithm tries out all K actions and gets
good estimates of the rewards for each. Otherwise, the algorithm might miss a good
action because the initial rewards it observes for this action are low and large rewards
that occur later are not observed because the action is not selected.

For the drawn action it, Exp3 sets the estimated reward x̂it(t) to xit(t)/pit(t).
Dividing the actual gain by the probability that the action was chosen compensates
the reward of actions that are unlikely to be chosen. This choice of estimated rewards
guarantees that their expectations are equal to the actual rewards for each action;
that is, E[x̂j(t) | i1, . . . , it−1] = xj(t), where the expectation is taken with respect to



THE NONSTOCHASTIC MULTIARMED BANDIT PROBLEM 53

Algorithm Exp3

Parameters: Real γ ∈ (0, 1].
Initialization: wi(1) = 1 for i = 1, . . . ,K.

For each t = 1, 2, . . .
1. Set

pi(t) = (1 − γ)
wi(t)

∑K
j=1 wj(t)

+
γ

K
i = 1, . . . ,K.

2. Draw it randomly accordingly to the probabilities p1(t), . . . , pK(t).
3. Receive reward xit(t) ∈ [0, 1].
4. For j = 1, . . . ,K set

x̂j(t) =

{

xj(t)/pj(t) if j = it,
0 otherwise,

wj(t + 1) = wj(t) exp (γx̂j(t)/K) .

Fig. 1. Pseudocode of algorithm Exp3 for the weak regret.

the random choice of it at trial t given the choices i1, . . . , it−1 in the previous t − 1
trials.

We now give the first main theorem of this paper, which bounds the expected
weak regret of algorithm Exp3.

Theorem 3.1. For any K > 0 and for any γ ∈ (0, 1],

Gmax − E[GExp3] ≤ (e− 1)γGmax +
K lnK

γ

holds for any assignment of rewards and for any T > 0.
To understand this theorem, it is helpful to consider a simpler bound which can

be obtained by an appropriate choice of the parameter γ.
Corollary 3.2. For any T > 0, assume that g ≥ Gmax and that algorithm Exp3

is run with input parameter

γ = min

{

1,

√

K lnK

(e− 1)g

}

.

Then

Gmax − E[GExp3] ≤ 2
√
e− 1

√

gK lnK ≤ 2.63
√

gK lnK

holds for any assignment of rewards.
Proof. If g ≤ (K lnK)/(e− 1), then the bound is trivial since the expected regret

cannot be more than g. Otherwise, by Theorem 3.1, the expected regret is at most

(e− 1)γGmax +
K lnK

γ
≤ 2

√
e− 1

√

gK lnK,
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as desired.
To apply Corollary 3.2, it is necessary that an upper bound g on Gmax(T ) be

available for tuning γ. For example, if the time horizon T is known, then, since no
action can have payoff greater than 1 on any trial, we can use g = T as an upper
bound. In section 4, we give a technique that does not require prior knowledge of
such an upper bound, yielding a result which uniformly holds over T .

If the rewards xi(t) are in the range [a, b], a < b, then Exp3 can be used after the
rewards have been translated and rescaled to the range [0, 1]. Applying Corollary 3.2
with g = T gives the bound (b−a)2

√
e− 1

√
TK lnK on the regret. For instance, this

is applicable to a standard loss model where the “rewards” fall in the range [−1, 0].
Proof of Theorem 3.1. The theorem is clearly true for γ = 1, so assume 0 < γ < 1.

Here (and also throughout the paper without explicit mention) we use the following
simple facts, which are immediately derived from the definitions:

x̂i(t) ≤ 1/pi(t) ≤ K/γ,(2)
K
∑

i=1

pi(t)x̂i(t) = pit(t)
xit(t)

pit(t)
= xit(t),(3)

K
∑

i=1

pi(t)x̂i(t)
2 = pit(t)

xit(t)

pit(t)
x̂it(t) ≤ x̂it(t) =

K
∑

i=1

x̂i(t).(4)

Let Wt = w1(t)+ · · ·+wK(t). For all sequences i1, . . . , iT of actions drawn by Exp3,

Wt+1

Wt
=

K
∑

i=1

wi(t + 1)

Wt

=

K
∑

i=1

wi(t)

Wt
exp

( γ

K
x̂i(t)

)

=

K
∑

i=1

pi(t) − γ
K

1 − γ
exp

( γ

K
x̂i(t)

)

(5)

≤
K
∑

i=1

pi(t) − γ
K

1 − γ

[

1 +
γ

K
x̂i(t) + (e− 2)

( γ

K
x̂i(t)

)2
]

(6)

≤ 1 +
γ
K

1 − γ

K
∑

i=1

pi(t)x̂i(t) +
(e− 2)( γ

K )2

1 − γ

K
∑

i=1

pi(t)x̂i(t)
2(7)

≤ 1 +
γ
K

1 − γ
xit(t) +

(e− 2)( γ
K )2

1 − γ

K
∑

i=1

x̂i(t).(8)

Equation (5) uses the definition of pi(t) in Figure 1. Equation (6) uses the fact that
ex ≤ 1 + x + (e − 2)x2 for x ≤ 1; the expression in the preceding line is at most 1
by (2). Equation (8) uses (3) and (4). Taking logarithms and using 1 + x ≤ ex gives

ln
Wt+1

Wt
≤

γ
K

1 − γ
xit(t) +

(e− 2)( γ
K )2

1 − γ

K
∑

i=1

x̂i(t).

Summing over t we then get

ln
WT+1

W1
≤

γ
K

1 − γ
GExp3 +

(e− 2)( γ
K )2

1 − γ

T
∑

t=1

K
∑

i=1

x̂i(t) .(9)
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For any action j,

ln
WT+1

W1
≥ ln

wj(T + 1)

W1
=

γ

K

T
∑

t=1

x̂j(t) − lnK.

Combining this with (9), we get

GExp3 ≥ (1 − γ)

T
∑

t=1

x̂j(t) −
K lnK

γ
− (e− 2)

γ

K

T
∑

t=1

K
∑

i=1

x̂i(t) .(10)

We next take the expectation of both sides of (10) with respect to the distribution of
〈i1, . . . , iT 〉. For the expected value of each x̂i(t), we have

E[x̂i(t) | i1, . . . , it−1] = E

[

pi(t) ·
xi(t)

pi(t)
+ (1 − pi(t)) · 0

]

= xi(t) .(11)

Combining (10) and (11), we find that

E[GExp3] ≥ (1 − γ)

T
∑

t=1

xj(t) −
K lnK

γ
− (e− 2)

γ

K

T
∑

t=1

K
∑

i=1

xi(t) .

Since j was chosen arbitrarily and

T
∑

t=1

K
∑

i=1

xi(t) ≤ K Gmax,

we obtain the inequality in the statement of the theorem.
Additional notation. As our other player algorithms will be variants of Exp3,

we find it convenient to define some further notation based on the quantities used in
the analysis of Exp3.

For each 1 ≤ i ≤ K and for each t ≥ 1, define

Gi(t + 1)
def
=

t
∑

s=1

xi(s),

Ĝi(t + 1)
def
=

t
∑

s=1

x̂i(s),

Ĝmax(t + 1)
def
= max

1≤i≤K
Ĝi(t + 1).

4. Bounds on the weak regret that uniformly hold over time. In sec-
tion 3, we showed that Exp3 yields an expected regret of O(

√
Kg lnK) whenever an

upper bound g on the return Gmax of the best action is known in advance. A bound of
O(

√
KT lnK), which holds uniformly over T , could be easily proven via the “guess-

ing techniques” which will be used to prove Corollaries 8.4 and 8.5 in section 8. In
this section, instead, we describe an algorithm, called Exp3.1, whose expected weak
regret is O(

√
KGmax lnK) uniformly over T . As Gmax = Gmax(T ) ≤ T , this bound

is never worse than O(
√
KT lnK) and is substantially better whenever the return of

the best arm is small compared to T .
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Algorithm Exp3.1
Initialization: Let t = 1, and Ĝi(1) = 0 for i = 1, . . . ,K.

Repeat for r = 0, 1, 2, . . .
1. Let gr = (K lnK)/(e− 1) 4r.

2. Restart Exp3 choosing γr = min

{

1,

√

K lnK

(e− 1)gr

}

.

3. While maxi Ĝi(t) ≤ gr −K/γr do:
(a) Let it be the random action chosen by Exp3 and xit(t) the corre-

sponding reward.
(b) Ĝi(t + 1) = Ĝi(t) + x̂i(t) for i = 1, . . . ,K.
(c) t := t + 1.

Fig. 2. Pseudocode of algorithm Exp3.1 to control the weak regret uniformly over time.

Our algorithm Exp3.1, described in Figure 2, proceeds in epochs, where each
epoch consists of a sequence of trials. We use r = 0, 1, 2, . . . to index the epochs. On
epoch r, the algorithm “guesses” a bound gr for the return of the best action. It then
uses this guess to tune the parameter γ of Exp3, restarting Exp3 at the beginning of
each epoch. As usual, we use t to denote the current time step.2 Exp3.1 maintains an
estimate Ĝi(t+ 1) of the return of each action i. Since E[x̂i(t)] = xi(t), this estimate
will be unbiased in the sense that E[Ĝi(t + 1)] = Gi(t + 1) for all i and t. Using
these estimates, the algorithm detects (approximately) when the actual gain of some
action has advanced beyond gr. When this happens, the algorithm goes on to the
next epoch, restarting Exp3 with a larger bound on the maximal gain.

The performance of the algorithm is characterized by the following theorem which
is the main result of this section.

Theorem 4.1. For any K > 0,

Gmax − E[GExp3.1] ≤ 8
√
e− 1

√

GmaxK lnK + 8(e− 1)K + 2K lnK

≤ 10.5
√

GmaxK lnK + 13.8 K + 2K lnK

holds for any assignment of rewards and for any T > 0.
The proof of the theorem is divided into two lemmas. The first bounds the regret

suffered on each epoch, and the second bounds the total number of epochs.
Fix T arbitrarily and define the following random variables: Let R be the total

number of epochs (i.e., the final value of r). Let Sr and Tr be the first and last
time steps completed on epoch r (where, for convenience, we define TR = T ). Thus,
epoch r consists of trials Sr, Sr + 1, . . . , Tr. Note that, in degenerate cases, some
epochs may be empty in which case Sr = Tr + 1. Let Ĝmax = Ĝmax(T + 1).

Lemma 4.2. For any action j and for every epoch r,

Tr
∑

t=Sr

xit(t) ≥
Tr
∑

t=Sr

x̂j(t) − 2
√
e− 1

√

grK lnK .

2Note that, in general, this t may differ from the “local variable” t used by Exp3 which we now
regard as a subroutine. Throughout this section, we will only use t to refer to the total number of
trials as in Figure 2.
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Proof. If Sr > Tr (so that no trials occur on epoch r), then the lemma holds
trivially since both summations will be equal to zero. Assume then that Sr ≤ Tr. Let
g = gr and γ = γr. We use (10) from the proof of Theorem 3.1:

Tr
∑

t=Sr

xit(t) ≥
Tr
∑

t=Sr

x̂j(t) − γ

Tr
∑

t=1

x̂j(t) −
K lnK

γ
− (e− 2)

γ

K

Tr
∑

t=Sr

K
∑

i=1

x̂i(t) .

From the definition of the termination condition we know that Ĝi(Tr) ≤ g − K/γ.
Using (2), we get x̂i(t) ≤ K/γ. This implies that Ĝi(Tr + 1) ≤ g for all i. Thus,

Tr
∑

t=Sr

xit(t) ≥
Tr
∑

t=Sr

x̂j(t) − g (γ + γ(e− 2)) − K lnK

γ
.

By our choice for γ, we get the statement of the lemma.
The next lemma gives an implicit upper bound on the number of epochs R. Let

c = (K lnK)/(e− 1).
Lemma 4.3. The number of epochs R satisfies

2R−1 ≤ K

c
+

√

Ĝmax

c
+

1

2
.

Proof. If R = 0, then the bound holds trivially. So assume R ≥ 1. Let z = 2R−1.
Because epoch R− 1 was completed, by the termination condition,

Ĝmax ≥ Ĝmax(TR−1 + 1) > gR−1 −
K

γR−1
= c 4R−1 −K 2R−1 = cz2 −Kz .(12)

Suppose the claim of the lemma is false. Then z > K/c +

√

Ĝmax/c. Since the

function cx2 −Kx is increasing for x > K/(2c), this implies that

cz2 −Kz > c





K

c
+

√

Ĝmax

c





2

−K





K

c
+

√

Ĝmax

c



 = K

√

Ĝmax

c
+ Ĝmax ,

contradicting (12).
Proof of Theorem 4.1. Using the lemmas, we have that

GExp3.1 =

T
∑

t=1

xit(t) =

R
∑

r=0

Tr
∑

t=Sr

xit(t)

≥ max
j

R
∑

r=0

(

Tr
∑

t=Sr

x̂j(t) − 2
√
e− 1

√

grK lnK

)

= max
j

Ĝj(T + 1) − 2K lnK

R
∑

r=0

2r

= Ĝmax − 2K lnK(2R+1 − 1)

≥ Ĝmax + 2K lnK − 8K lnK





K

c
+

√

Ĝmax

c
+

1

2





= Ĝmax − 2K lnK − 8(e− 1)K − 8
√
e− 1

√

ĜmaxK lnK .(13)
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Here, we used Lemma 4.2 for the first inequality and Lemma 4.3 for the second
inequality. The other steps follow from definitions and simple algebra.

Let f(x) = x−a
√
x− b for x ≥ 0, where a = 8

√
e− 1

√
K lnK and b = 2K lnK+

8(e− 1)K. Taking expectations of both sides of (13) gives

E[GExp3.1] ≥ E[f(Ĝmax)] .(14)

Since the second derivative of f is positive for x > 0, f is convex so that, by Jensen’s
inequality,

E[f(Ĝmax)] ≥ f(E[Ĝmax]) .(15)

Note that

E[Ĝmax] = E

[

max
j

Ĝj(T + 1)

]

≥ max
j

E[Ĝj(T + 1)] = max
j

T
∑

t=1

xj(t) = Gmax .

The function f is increasing if and only if x > a2/4. Therefore, if Gmax > a2/4, then
f(E[Ĝmax]) ≥ f(Gmax). Combined with (14) and (15), this gives that E[GExp3.1] ≥
f(Gmax), which is equivalent to the statement of the theorem. On the other hand, if
Gmax ≤ a2/4, then, because f is nonincreasing on [0, a2/4],

f(Gmax) ≤ f(0) = −b ≤ 0 ≤ E[GExp3.1],

so the theorem trivially follows in this case as well.

5. Lower bounds on the weak regret. In this section, we state a lower bound
on the expected weak regret of any player. More precisely, for any choice of the time
horizon T we show that there exists a strategy for assigning the rewards to the actions
such that the expected weak regret of any player algorithm is Ω(

√
KT ). Observe that

this does not match the upper bound for our algorithms Exp3 and Exp3.1 (see
Corollary 3.2 and Theorem 4.1); it is an open problem to close this gap.

Our lower bound is proven using the classical (statistical) bandit model with a
crucial difference: the reward distribution depends on the number K of actions and
on the time horizon T . This dependence is the reason why our lower bound does not
contradict the upper bounds of the form O(lnT ) for the classical bandit model [14].
There, the distribution over the rewards is fixed as T → ∞.

Note that our lower bound has a considerably stronger dependence on the num-
ber K of action than the lower bound Θ(

√
T lnK), which could have been directly

proven from the results in [3, 6]. Specifically, our lower bound implies that no upper
bound is possible of the form O(Tα(lnK)β), where 0 ≤ α < 1, β > 0.

Theorem 5.1. For any number of actions K ≥ 2 and for any time horizon T ,
there exists a distribution over the assignment of rewards such that the expected weak
regret of any algorithm (where the expectation is taken with respect to both the ran-
domization over rewards and the algorithm’s internal randomization) is at least

1

20
min{

√
KT, T}.

The proof is given in Appendix A.
The lower bound implies, of course, that for any algorithm there is a particular

choice of rewards that will cause the expected weak regret (where the expectation is
now with respect to the algorithm’s internal randomization only) to be larger than
this value.
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Algorithm Exp3.P
Parameters: Reals α > 0 and γ ∈ (0, 1].
Initialization: For i = 1, . . . ,K

wi(1) = exp

(

αγ

3

√

T

K

)

.

For each t = 1, 2, . . . , T
1. For i = 1, . . . ,K set

pi(t) = (1 − γ)
wi(t)

∑K
j=1 wj(t)

+
γ

K
.

2. Choose it randomly according to the distribution p1(t), . . . , pK(t).
3. Receive reward xit(t) ∈ [0, 1].
4. For j = 1, . . . ,K set

x̂j(t) =

{

xj(t)/pj(t) if j = it,
0 otherwise,

wj(t + 1) = wj(t) exp

(

γ

3K

(

x̂j(t) +
α

pj(t)
√
KT

))

.

Fig. 3. Pseudocode of algorithm Exp3.P achieving small weak regret with high probability.

6. Bounds on the weak regret that hold with probability 1. In section 4
we showed that the expected weak regret of algorithm Exp3.1 is O(

√
KT lnK).

In this section we show that a modification of Exp3 achieves a weak regret of
O(
√

KT ln(KT/δ)) with probability at least 1 − δ, for any fixed δ and uniformly
over T . From this, a bound on the weak regret that holds with probability 1 easily
follows.

The modification of Exp3 is necessary since the variance of the regret achieved
by this algorithm is large—so large that an interesting high probability bound may
not hold. The large variance of the regret comes from the large variance of the esti-
mates x̂i(t) for the payoffs xi(t). In fact, the variance of x̂i(t) can be close to 1/pi(t),
which, for γ in our range of interest, is (ignoring the dependence of K) of magni-
tude

√
T . Summing over trials, the variance of the return of Exp3 is about T 3/2, so

that the regret might be as large as T 3/4.
To control the variance we modify algorithm Exp3 so that it uses estimates

which are based on upper confidence bounds instead of estimates with the correct
expectation. The modified algorithm Exp3.P is given in Figure 3. Let

σ̂i(t + 1)
def
=

√
KT +

t
∑

s=1

1

pi(t)
√
KT

.

Whereas algorithm Exp3 directly uses the estimates Ĝi(t) when choosing it at ran-
dom, algorithm Exp3.P uses the upper confidence bounds Ĝi(t) + ασ̂i(t). The next
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lemma shows that, for appropriate α, these are indeed upper confidence bounds. Fix
some time horizon T . In what follows, we will use σ̂i to denote σ̂i(T + 1) and Ĝi to
denote Ĝi(T + 1).

Lemma 6.1. If 2
√

ln(KT/δ) ≤ α ≤ 2
√
KT , then

P
{

∃i : Ĝi + ασ̂i < Gi

}

≤ δ.

Proof. Fix some i and set

st
def
=

α

2σ̂i(t + 1)
.

Since α ≤ 2
√
KT and σ̂i(t + 1) ≥

√
KT , we have st ≤ 1. Now

P
{

Ĝi + ασ̂i < Gi

}

= P

{

T
∑

t=1

(xi(t) − x̂i(t)) −
α

2
σ̂i >

α

2
σ̂i

}

≤ P

{

sT

T
∑

t=1

(

xi(t) − x̂i(t) −
α

2pi(t)
√
KT

)

>
α2

4

}

(16)

= P

{

exp

(

sT

T
∑

t=1

(

xi(t) − x̂i(t) −
α

2pi(t)
√
KT

)

)

> exp

(

α2

4

)

}

≤ e−α2/4E

[

exp

(

sT

T
∑

t=1

(

xi(t) − x̂i(t) −
α

2pi(t)
√
KT

)

)]

,(17)

where in step (16) we multiplied both sides by sT and used σ̂i ≥
∑T

t=1 1/(pi(t)
√
KT ),

while in step (17) we used Markov’s inequality. For t = 1, . . . , T set

Zt
def
= exp

(

st

t
∑

τ=1

(

xi(τ) − x̂i(τ) − α

2pi(τ)
√
KT

)

)

.

Then, for t = 2, . . . , T

Zt = exp

(

st

(

xi(t) − x̂i(t) −
α

2pi(t)
√
KT

))

· (Zt−1)
st

st−1 .

Denote by Et [Zt] = E [Zt | i1, . . . , it−1] the expectation of Zt with respect to the
random choice in trial t and conditioned on the past t− 1 trials. Note that when the
past t− 1 trials are fixed the only random quantities in Zt are the x̂i(t)’s. Note also
that xi(t) − x̂i(t) ≤ 1 and that

Et

[

(xi(t) − x̂i(t))
2
]

= Et

[

x̂i(t)
2
]

− xi(t)
2

≤ Et

[

x̂i(t)
2
]

=
xi(t)

2

pi(t)
≤ 1

pi(t)
.(18)
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Hence, for each t = 2, . . . , T

Et [Zt] ≤ Et

[

exp st

(

xi(t) − x̂i(t) −
st

pi(t)

)]

(Zt−1)
st

st−1(19)

≤ Et

[

1 + st(xi(t) − x̂i(t)) + s2
t (xi(t) − x̂i(t))

2
]

exp

(

− s2
t

pi(t)

)

(Zt−1)
st

st−1(20)

≤
(

1 + s2
t/pi(t)

)

exp

(

− s2
t

pi(t)

)

(Zt−1)
st

st−1(21)

≤ (Zt−1)
st

st−1(22)

≤ 1 + Zt−1.(23)

Equation (19) uses

α

2pi(t)
√
KT

≥ α

2pi(t)σ̂i(t + 1)
=

st
pi(t)

since σ̂i(t + 1) ≥
√
KT . Equation (20) uses ea ≤ 1 + a + a2 for a ≤ 1. Equation (21)

uses Et [x̂i(t)] = xi(t). Equation (22) uses 1 + x ≤ ex for any real x. Equation (23)
uses st ≤ st−1 and zu ≤ 1+ z for any z > 0 and u ∈ [0, 1]. Observing that E [Z1] ≤ 1,
we get by induction that E[ZT ] ≤ T , and the lemma follows by our choice of α.

The next lemma shows that the return achieved by algorithm Exp3.P is close to
its upper confidence bounds. Let

Û
def
= max

1≤i≤K

(

Ĝi + ασ̂i

)

.

Lemma 6.2. If α ≤ 2
√
KT , then

GExp3.P ≥
(

1 − 5γ

3

)

Û − 3

γ
K lnK − 2α

√
KT − 2α2 .

Proof. We proceed as in the analysis of algorithm Exp3. Set η = γ/(3K) and
consider any sequence i1, . . . , iT of actions chosen by Exp3.P. As x̂i(t) ≤ K/γ,
pi(t) ≥ γ/K, and α ≤ 2

√
KT , we have

ηx̂i(t) +
αη

pi(t)
√
KT

≤ 1 .

Therefore,

Wt+1

Wt
=

K
∑

i=1

wi(t + 1)

Wt

=

K
∑

i=1

wi(t)

Wt
exp

(

ηx̂i(t) +
αη

pi(t)
√
KT

)

=

K
∑

i=1

pi(t) − γ/K

1 − γ
exp

(

ηx̂i(t) +
αη

pi(t)
√
KT

)

≤
K
∑

i=1

pi(t) − γ/K

1 − γ

[

1 + ηx̂i(t) +
αη

pi(t)
√
KT

+ 2η2x̂i(t)
2 +

2α2η2

pi(t)2KT

]
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≤ 1 +
η

1 − γ

K
∑

i=1

pi(t)x̂i(t) +
αη

1 − γ

K
∑

i=1

1√
KT

+
2η2

1 − γ

K
∑

i=1

pi(t)x̂i(t)
2 +

2α2η2

1 − γ

K
∑

i=1

1

pi(t)KT

≤ 1 +
η

1 − γ
xit(t) +

αη

1 − γ

√

K

T
+

2η2

1 − γ

K
∑

i=1

x̂i(t) +
2α2η

1 − γ

1

T
.

The second inequality uses ea ≤ 1+a+a2 for a ≤ 1, and (a+ b)2 ≤ 2(a2 + b2) for any
a, b. The last inequality uses (2), (3), and (4). Taking logarithms, using ln(1+x) ≤ x,
and summing over t = 1, . . . , T , we get

ln
WT+1

W1
≤ η

1 − γ
GExp3.P +

αη

1 − γ

√
KT +

2η2

1 − γ

K
∑

i=1

Ĝi +
2α2η

1 − γ
.

Since

lnW1 = αη
√
KT + lnK

and for any j

lnWT+1 ≥ lnwj(T + 1) ≥ ηĜj + αησ̂j ,

this implies

GExp3.P ≥ (1 − γ)
(

Ĝj + ασ̂j

)

− 1

η
lnK − 2α

√
KT − 2η

K
∑

i=1

Ĝi − 2α2

for any j. Finally, using η = γ/(3K) and

K
∑

i=1

Ĝi ≤ KÛ

yields the lemma.
Combining Lemmas 6.1 and 6.2 gives the main result of this section.
Theorem 6.3. For any fixed T > 0, for all K ≥ 2 and for all δ > 0, if

γ = min

{

3

5
, 2

√

3

5

K lnK

T

}

and α = 2
√

ln(KT/δ) ,

then

Gmax −GExp3.P ≤ 4

√

KT ln
KT

δ
+ 4

√

5

3
KT lnK + 8 ln

KT

δ

holds for any assignment of rewards with probability at least 1 − δ.
Proof. We assume without loss of generality that T ≥ (20/3)K lnK and that

δ ≥ KTe−KT . If either of these conditions do not hold, then the theorem holds
trivially. Note that T ≥ (20/3)K lnK ensures γ ≤ 3/5. Note also that δ ≥ KTe−KT
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Algorithm Exp3.P.1
Parameters: Real 0 < δ < 1.
Initialization: For each r ≥ 1 let Tr = 2r, δr = δ

(r+1)(r+2) , and set

r∗ = min{r ∈ N : δr ≥ KTre
−KTr}.(24)

Repeat for r = r∗, r∗ + 1, . . .
Run Exp3.P for Tr trials choosing α and γ as in Theorem 6.3 with T = Tr and

δ = δr.

Fig. 4. Pseudocode of algorithm Exp3.P.1 (see Theorem 6.4).

implies α ≤ 2
√
KT for our choice of α. So we can apply Lemmas 6.1 and 6.2. By

Lemma 6.2 we have

GExp3.P ≥
(

1 − 5γ

3

)

Û − 3

γ
K lnK − 2α

√
KT − 2α2 .

By Lemma 6.1 we have Û ≥ Gmax with probability at least 1 − δ. Collecting terms
and using Gmax ≤ T gives the theorem.

It is not difficult to obtain an algorithm that does not need the time horizon T
as input parameter and whose regret is only slightly worse than that proven for the
algorithm Exp3.P in Theorem 6.3. This new algorithm, called Exp3.P.1 and shown
in Figure 4, simply restarts Exp3.P doubling its guess for T each time. The only
crucial issue is the choice of the confidence parameter δ and of the minimum length
of the runs to ensure that Lemma 6.1 holds for all the runs of Exp3.P.

Theorem 6.4. Let r∗ be as in (24). Let K ≥ 2, δ ∈ (0, 1), and T ≥ 2r
∗

. Let
cT = 2 ln(2 + log2 T ). Then

Gmax −GExp3.P.1 ≤ 10√
2 − 1

√

2KT

(

ln
KT

δ
+ cT

)

+ 10(1 + log2 T )

(

ln
KT

δ
+ cT

)

holds with probability at least 1 − δ.
Proof. Choose the time horizon T arbitrarily and call epoch the sequence of trials

between two successive restarts of algorithm Exp3.P.
For each r > r∗, where r∗ is defined in (24), let

Gi(r)
def
=

2r+1

∑

t=2r+1

xi(t) , Ĝi(r)
def
=

2r+1

∑

t=2r+1

x̂i(t) , σ̂i(r)
def
=
√

KTr +

2r+1

∑

t=2r+1

1

pi(t)
√
KTr

and similarly define the quantities Gi(r
∗) and Ĝi(r

∗) with sums that go from t = 1
to t = 2r

∗+1.
For each r ≥ r∗, we have δr ≥ KTre

−KTr . Thus we can find numbers αr such
that, by Lemma 6.1,

P
{

(∃r ≥ r∗)(∃i) : Ĝi(r) + αrσ̂i(r) < Gi(r)
}

≤
∞
∑

r=r∗

P
{

∃i : Ĝi(r) + αrσ̂i(r) < Gi(r)
}
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≤
∞
∑

r=0

δ

(r + 1)(r + 2)

= δ .

We now apply Theorem 6.3 to each epoch. Since T ≥ 2r
∗

, there is an ℓ ≥ 1 such that

2r
∗+ℓ−1 ≤ T =

ℓ−1
∑

r=0

2r
∗+r < 2r

∗+ℓ .

With probability at least 1−δ over the random draw of Exp3.P.1’s actions i1, . . . , iT ,

Gmax −GExp3.P.1

≤
ℓ−1
∑

r=0

10

[
√

KTr∗+r ln
KTr∗+r

δr∗+r
+ ln

KTr∗+r

δr∗+r

]

≤ 10

[
√

K ln
KTr∗+ℓ−1

δr∗+ℓ−1

ℓ−1
∑

r=0

√

Tr∗+r + ℓ ln
KTr∗+ℓ−1

δr∗+ℓ−1

]

≤ 10

[
√

K ln
KTr∗+ℓ−1

δr∗+ℓ−1

(

2(r∗+ℓ)/2

√
2 − 1

)

+ ℓ ln
KTr∗+ℓ−1

δr∗+ℓ−1

]

≤ 10√
2 − 1

√

2KT

(

ln
KT

δ
+ cT

)

+ 10(1 + log2 T )

(

ln
KT

δ
+ cT

)

,

where cT = 2 ln(2 + log2 T ).
From the above theorem we get, as a simple corollary, a statement about the

almost sure convergence of the return of algorithm Exp3.P. The rate of convergence
is almost optimal, as one can see from our lower bound in section 5.

Corollary 6.5. For any K ≥ 2 and for any function f : R → R with
limT→∞ f(T ) = ∞,

lim
T→∞

Gmax −GExp3.P.1
√

T (lnT )f(T )
= 0

holds for any assignment of rewards with probability 1.
Proof. Let δ = 1/T 2. Then, by Theorem 6.4, there exists a constant C such that

for all T large enough

Gmax −GExp3.P.1 ≤ C
√
KT lnT

with probability at least 1 − 1/T 2. This implies that

P

{

Gmax −GExp3.P.1
√

(T lnT )f(T )
> C

√

K

f(T )

}

≤ 1

T 2
,

and the theorem follows from the Borel–Cantelli lemma.

7. The regret against the best strategy from a pool. Consider a setting
where the player has preliminarily fixed a set of strategies that could be used for
choosing actions. These strategies might select different actions at different itera-
tions. The strategies can be computations performed by the player or they can be
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external advice given to the player by “experts.” We will use the more general term
“expert” (borrowed from Cesa-Bianchi et al. [3]) because we place no restrictions on
the generation of the advice. The player’s goal in this case is to combine the advice
of the experts in such a way that its return is close to that of the best expert.

Formally, an expert i is an infinite sequence ξi(1), ξi(2), . . . ∈ [0, 1]K of prob-
ability vectors, where the jth component ξij(t) of ξi(t) represents the recommended
probability of playing action j at time t. An adversarial bandit problem with N experts
is thus specified by both an assignment of rewards to actions and by an assignment
of probability vectors to each expert. We assume that the player, prior to choosing
an action at time t, is provided with the set ξ1(t), . . . , ξN (t) ∈ [0, 1]K . (As a spe-
cial case, the distribution can be concentrated on a single action, which represents a
deterministic recommendation.) If the vector of rewards at time t is x(t), then the
expected reward for expert i, with respect to the chosen probability vector ξi(t), is
simply ξi(t) · x(t). In analogy of Gmax, we define

G̃max
def
= max

1≤i≤N

T
∑

t=1

ξi(t) · x(t)

measuring the expected return of the best strategy. Then the regret for the best
strategy at time horizon T , defined by G̃max(T ) − GA(T ), measures the difference
between the return of the best expert and player’s A return up to time T .

We could at this point view each expert as a “meta-action” in a higher-level
bandit problem with payoff vector defined at trial t as (ξ1(t) · x(t), . . . , ξN (t) · x(t)).
We could then immediately apply Corollary 3.2 to obtain a bound of O(

√
gN logN)

on the player’s regret relative to the best expert (where g is an upper bound on G̃max).
However, this bound is quite weak if the player is combining many experts (i.e., if N is
very large). We show below that the algorithm Exp3 from section 3 can be modified
yielding a regret term of the form O(

√
gK logN). This bound is very reasonable

when the number of actions is small, but the number of experts is quite large (even
exponential).

Our algorithm Exp4 is shown in Figure 5, and is only a slightly modified ver-
sion of Exp3. (Exp4 stands for “exponential-weight algorithm for exploration and
exploitation using expert advice.”) Let us define y(t) ∈ [0, 1]N to be the vector with
components corresponding to the gains of the experts: yi(t) = ξi(t) · x(t).

The simplest possible expert is one which always assigns uniform weight to all
actions so that ξj(t) = 1/K on each round t. We call this the uniform expert. To
prove our results, we need to assume that the uniform expert is included in the family
of experts.3 Clearly, the uniform expert can always be added to any given family of
experts at the very small expense of increasing N by one.

Theorem 7.1. For any K,T > 0, for any γ ∈ (0, 1], and for any family of
experts which includes the uniform expert,

G̃max − E[GExp4] ≤ (e− 1)γG̃max +
K lnN

γ

holds for any assignment of rewards.

3In fact, we can use a slightly weaker sufficient condition, namely, that the uniform expert is
included in the convex hull of the family of experts, i.e., that there exists nonnegative numbers

α1, . . . , αN with
∑N

j=1
αj = 1 such that, for all t and all i,

∑N

j=1
αjξ

j
i (t) = 1/K.



66 AUER, CESA-BIANCHI, FREUND, AND SCHAPIRE

Algorithm Exp4

Parameters: Real γ ∈ (0, 1].
Initialization: wi(1) = 1 for i = 1, . . . , N .

For each t = 1, 2, . . .
1. Get advice vectors ξ1(t), . . . , ξN (t).

2. Set Wt =
∑N

i=1 wi(t) and for j = 1, . . . ,K set

pj(t) = (1 − γ)

N
∑

i=1

wi(t)ξ
i
j(t)

Wt
+

γ

K
.

3. Draw action it randomly according to the probabilities p1(t), . . . , pK(t).
4. Receive reward xit(t) ∈ [0, 1].
5. For j = 1, . . . ,K set

x̂j(t) =

{

xj(t)/pj(t) if j = it,
0 otherwise.

6. For i = 1, . . . , N set

ŷi(t) = ξi(t) · x̂(t),

wi(t + 1) = wi(t) exp (γŷi(t)/K) .

Fig. 5. Pseudocode of algorithm Exp4 for using expert advice.

Proof. We prove this theorem along the lines of the proof of Theorem 3.1. Let
qi(t) = wi(t)/Wt. Then

Wt+1

Wt
=

N
∑

i=1

wi(t + 1)

Wt

=

N
∑

i=1

qi(t) exp
( γ

K
ŷi(t)

)

≤
N
∑

i=1

qi(t)

[

1 +
γ

K
ŷi(t) + (e− 2)

( γ

K
ŷi(t)

)2
]

= 1 +
( γ

K

)

N
∑

i=1

qi(t)ŷi(t) + (e− 2)
( γ

K

)2 N
∑

i=1

qi(t)ŷi(t)
2 .

Taking logarithms and summing over t we get

ln
WT+1

W1
≤
( γ

K

)

T
∑

t=1

N
∑

i=1

qi(t)ŷi(t) + (e− 2)
( γ

K

)2 T
∑

t=1

N
∑

i=1

qi(t)ŷi(t)
2 .
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Since, for any expert k,

ln
WT+1

W1
≥ ln

wk(T + 1)

W1
=

γ

K

T
∑

t=1

ŷk(t) − lnN,

we get

T
∑

t=1

N
∑

i=1

qi(t)ŷi(t) ≥
T
∑

t=1

ŷk(t) −
K lnN

γ
− (e− 2)

γ

K

T
∑

t=1

N
∑

i=1

qi(t)ŷi(t)
2 .

Note that

N
∑

i=1

qi(t)ŷi(t) =

N
∑

i=1

qi(t)





K
∑

j=1

ξij(t)x̂j(t)





=

K
∑

j=1

(

N
∑

i=1

qi(t)ξ
i
j(t)

)

x̂j(t)

=

K
∑

j=1

(

pj(t) − γ
K

1 − γ

)

x̂j(t) ≤
xj(t)

1 − γ
.

Also,

N
∑

i=1

qi(t)ŷi(t)
2 =

N
∑

i=1

qi(t)(ξ
i
it(t)x̂it(t))

2

≤ x̂it(t)
2 pit(t)

1 − γ

≤ x̂it(t)

1 − γ
.

Therefore, for all experts k,

GExp4 =

T
∑

t=1

x̂it(t) ≥ (1 − γ)

T
∑

t=1

ŷk(t) −
K lnN

γ
− (e− 2)

γ

K

T
∑

t=1

K
∑

j=1

x̂j(t) .

We now take expectations of both sides of this inequality. Note that

E[ŷk(t)] = E





K
∑

j=1

ξkj (t)x̂j(t)



 =

K
∑

j=1

ξkj (t)xj(t) = yk(t) .

Further,

1

K
E





T
∑

t=1

K
∑

j=1

x̂j(t)



 =

T
∑

t=1

1

K

K
∑

j=1

xj(t) ≤ max
1≤i≤N

T
∑

t=1

yi(t) = G̃max

since we have assumed that the uniform expert is included in the family of experts.
Combining these facts immediately implies the statement of the theorem.
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Algorithm Exp3.S
Parameters: Reals γ ∈ (0, 1] and α > 0.
Initialization: wi(1) = 1 for i = 1, . . . ,K.

For each t = 1, 2, . . .
1. Set

pi(t) = (1 − γ)
wi(t)

∑K
j=1 wj(t)

+
γ

K
, i = 1, . . . ,K.

2. Draw it according to the probabilities p1(t), . . . , pK(t).
3. Receive reward xit(t) ∈ [0, 1].
4. For j = 1, . . . ,K set

x̂j(t) =

{

xj(t)/pj(t) if j = it,
0 otherwise,

wj(t + 1) = wj(t) exp (γx̂j(t)/K) +
eα

K

K
∑

i=1

wi(t) .

Fig. 6. Pseudocode of algorithm Exp3.S to control the expected regret.

8. The regret against arbitrary strategies. In this section we present a
variant of algorithm Exp3 and prove a bound on its expected regret for any sequence
(j1, . . . , jT ) of actions. To prove this result, we rank all sequences of actions according
to their “hardness.” The hardness of a sequence (j1, . . . , jT ) is defined by

h(j1, . . . , jT )
def
= 1 + |{1 ≤ ℓ < T : jℓ 6= jℓ+1}| .

So, h(1, . . . , 1) = 1 and h(1, 1, 3, 2, 2) = 3. The bound on the regret which we will
prove grows with the hardness of the sequence for which we are measuring the regret.
In particular, we will show that the player algorithm Exp3.S described in Figure 6
has an expected regret of O(h(jT )

√

KT ln(KT )) for any sequence jT = (j1, . . . , jT )
of actions. On the other hand, if the regret is measured for any sequence jT of actions
of hardness h(jT ) ≤ S, then the expected regret of Exp3.S (with parameters tuned
to this S) reduces to O(

√

SKT ln(KT )). In what follows, we will use GjT to denote
the return xj1(1) + · · · + xjT (T ) of a sequence jT = (j1, . . . , jT ) of actions.

Theorem 8.1. For any K > 0, for any γ ∈ (0, 1], and for any α > 0,

GjT − E [GExp3.S] ≤ K(h(jT ) ln(K/α) + eαT )

γ
+ (e− 1)γT

holds for any assignment of rewards, for any T > 0, and for any sequence jT =
(j1, . . . , jT ) of actions.

Corollary 8.2. Assume that algorithm Exp3.S is run with input parameters
α = 1/T and

γ = min

{

1,

√

K ln(KT )

T

}

.
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Then

GjT − E [GExp3.S] ≤ h(jT )
√

KT ln(KT ) + 2e

√

KT

ln(KT )

holds for any sequence jT = (j1, . . . , jT ) of actions.
Note that the statement of Corollary 8.2 can be equivalently written as

E [GExp3.S] ≥ max
jT

(

GjT − h(jT )
√

KT ln(KT )
)

− 2e

√

KT

ln(KT )
,

revealing that algorithm Exp3.S is able to automatically trade-off between the re-
turn GjT of a sequence jT and its hardness h(jT ).

Corollary 8.3. Assume that algorithm Exp3.S is run with input parameters
α = 1/T and

γ = min

{

1,

√

K(S ln(KT ) + e)

(e− 1)T

}

.

Then

GjT − E [GExp3.S] ≤ 2
√
e− 1

√

KT (S ln(KT ) + e)

holds for any sequence jT = (j1, . . . , jT ) of actions such that h(jT ) ≤ S.
Proof of Theorem 8.1. Fix any sequence jT = (j1, . . . , jT ) of actions. With a

technique that closely follows the proof of Theorem 3.1, we can prove that for all
sequences i1, . . . , iT of actions drawn by Exp3.S,

Wt+1

Wt
≤ 1 +

γ/K

1 − γ
xit(t) +

(e− 2)(γ/K)2

1 − γ

K
∑

i=1

x̂i(t) + eα,(25)

where, as usual, Wt = w1(t)+ · · ·+wK(t). Now let S = h(jT ) and partition (1, . . . , T )
in segments

[T1, . . . , T2), [T2, . . . , T3), . . . , [TS , . . . , TS+1),

where T1 = 1, TS+1 = T + 1, and jTs
= jTs+1 = · · · = jTs+1−1 for each segment s =

1, . . . , S. Fix an arbitrary segment [Ts, Ts+1) and let ∆s = Ts+1 − Ts. Furthermore,
let

GExp3.S(s)
def
=

Ts+1−1
∑

t=Ts

xit(t) .

Taking logarithms on both sides of (25) and summing over t = Ts, . . . , Ts+1 − 1, we
get

ln
WTs+1

WTs

≤ γ/K

1 − γ
GExp3.S(s) +

(e− 2)(γ/K)2

1 − γ

Ts+1−1
∑

t=Ts

K
∑

i=1

x̂i(t) + eα∆s .(26)
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Now let j be the action such that jTs
= · · · = jTs+1−1 = j. Since

wj(Ts+1) ≥ wj(Ts + 1) exp





γ

K

Ts+1−1
∑

t=Ts+1

x̂j(t)





≥ eα

K
WTs

exp





γ

K

Ts+1−1
∑

t=Ts+1

x̂j(t)





≥ α

K
WTs

exp





γ

K

Ts+1−1
∑

t=Ts

x̂j(t)



 ,

where the last step uses γx̂j(t)/K ≤ 1, we have

ln
WTs+1

WTs

≥ ln
wj(Ts+1)

WTs

≥ ln
( α

K

)

+
γ

K

Ts+1−1
∑

t=Ts

x̂j(t) .(27)

Piecing together (26) and (27) we get

GExp3.S(s) ≥ (1 − γ)

Ts+1−1
∑

t=Ts

x̂j(t) −
K ln(Kα )

γ
− (e− 2)

γ

K

Ts+1−1
∑

t=Ts

K
∑

i=1

x̂i(t) −
eαK∆s

γ
.

Summing over all segments s = 1, . . . , S, taking expectation with respect to the
random choices of algorithm Exp3.S, and using

G(j1,...,jT ) ≤ T and

T
∑

t=1

K
∑

i=1

xi(t) ≤ KT

yields the inequality in the statement of the theorem.
If the time horizon T is not known, we can apply techniques similar to those

applied for proving Theorem 6.4 in section 6. More specifically, we introduce a new
algorithm, Exp3.S.1, that runs Exp3.S as a subroutine. Suppose that at each new
run (or epoch) r = 0, 1, . . . , Exp3.S is started with its parameters set as prescribed in
Corollary 8.2, where T is set to Tr = 2r, and then stopped after Tr iterations. Clearly,
for any fixed sequence jT = (j1, . . . , jT ) of actions, the number of segments (see proof
of Theorem 8.1 for a definition of segment) within each epoch r is at most h(jT ).
Hence the expected regret of Exp3.S.1 for epoch r is certainly not more than

(h(jT ) + 2e)
√

KTr ln(KTr) .

Let ℓ be such that 2ℓ ≤ T < 2ℓ+1. Then the last epoch is ℓ ≤ log2 T and the overall
regret (over the ℓ + 1 epochs) is at most

(h(jT ) + 2e)

ℓ
∑

r=0

√

KTr ln(KTr) ≤ (h(jT ) + 2e)
√

K ln(KTℓ)

ℓ
∑

r=0

√

Tr .

Finishing up the calculations proves the following.
Corollary 8.4.

GjT − E [GExp3.S.1] ≤ h(jT ) + 2e√
2 − 1

√

2KT ln(KT )
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for any T > 0 and for any sequence jT = (j1, . . . , jT ) of actions.
On the other hand, if Exp3.S.1 runs Exp3.S with parameters set as prescribed

in Corollary 8.3, with a reasoning similar to the one above we conclude the following.
Corollary 8.5.

GjT − E [GExp3.S.1] ≤ 2
√
e− 1√
2 − 1

√

2KT (S ln(KT ) + e)

for any T > 0 and for any sequence jT = (j1, . . . , jT ) of actions such that h(jT ) ≤ S.

9. Applications to game theory. The adversarial bandit problem can be eas-
ily related to the problem of playing repeated games. For N > 1 integer, an N -person
finite game is defined by N finite sets S1, . . . , SN of pure strategies, one set for each
player, and by N functions u1, . . . , uN , where function ui : S1 × · · · × SN → R is
player’s i payoff function. Note the each player’s payoff depends both on the pure
strategy chosen by the player and on the pure strategies chosen by the other players.
Let S = S1 × · · · × SN , and let S−i = S1 × · · · × Si−1 × Si+1 × · · · × SN . We use s

and s−i to denote typical members of, respectively, S and S−i. Given s ∈ S, we will
often write (j, s−i) to denote (s1, . . . , si−1, j, si+1, . . . , sN ), where j ∈ Si. Suppose
that the game is repeatedly played through time. Assume for now that each player
knows all payoff functions and, after each repetition (or round) t, also knows the
vector s(t) = (s1(t), . . . , sN (t)) of pure strategies chosen by the players. Hence, the
pure strategy si(t) chosen by player i at round t may depend on what player i and
the other players chose in the past rounds. The average regret of player i for the pure
strategy j after T rounds is defined by

R
(j)
i (T ) =

1

T

T
∑

t=1

[ui(j, s−i(t)) − ui(s(t))] .

This is how much player i lost on average for not playing the pure strategy j on all
rounds, given that all the other players kept their choices fixed.

A desirable property for a player is Hannan-consistency [8], defined as follows.
Player i is Hannan-consistent if

lim sup
T→∞

max
j∈Si

R
(j)
i (T ) = 0 with probability 1.

The existence and properties of Hannan-consistent players have been first investigated
by Hannan [10] and Blackwell [2] and later by many others (see [5] for a nice survey).

Hannan-consistency can be also studied in the so-called unknown game setup,
where it is further assumed that (1) each player knows neither the total number of
players nor the payoff function of any player (including itself), (2) after each round
each player sees its own payoffs but it sees neither the choices of the other players nor
the resulting payoffs. This setup was previously studied by Baños [1], Megiddo [16],
and by Hart and Mas-Colell [11, 12].

We can apply the results of section 6 to prove that a player using algorithm
Exp3.P.1 as mixed strategy is Hannan-consistent in the unknown game setup when-
ever the payoffs obtained by the player belong to a known bounded real interval. To
do that, we must first extend our results to the case when the assignment of rewards
can be chosen adaptively. More precisely, we can view the payoff xit(t), received
by the gambler at trial t of the bandit problem, as the payoff ui(it, s−i(t)) received
by player i at the tth round of the game. However, unlike our adversarial bandit
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framework where all the rewards were assigned to each arm at the beginning, here
the payoff ui(it, s−i(t)) depends on the (possibly randomized) choices of all players,
which, in turn, are functions of their realized payoffs. In our bandit terminology, this
corresponds to assuming that the vector (x1(t), . . . , xK(t)) of rewards for each trial t
is chosen by an adversary who knows the gambler’s strategy and the outcome of the
gambler’s random draws up to time t− 1. We leave to the interested reader the easy
but lengthy task of checking that all of our results (including those of section 6) hold
under this additional assumption.

Using Theorem 6.4 we then get the following.
Theorem 9.1. If player i has K ≥ 2 pure strategies and plays in the unknown

game setup (with payoffs in [0, 1]) using the mixed strategy Exp3.P.1, then

max
j∈Si

R
(j)
i (T ) ≤ 10√

2 − 1

√

2K

T

(

ln
KT

δ
+ cT

)

+
10(1 + log2 T )

T

(

ln
KT

δ
+ cT

)

,

where cT = 2 ln(2 + log2 T ), holds with probability at least 1 − δ, for all 0 < δ < 1
and for all T ≥ (ln(K/δ))1/(K−1).

The constraint on T in the statement of Theorem 9.1 is derived from the condition
T ≥ 2r

∗

in Theorem 6.4. Note that, according to Theorem 5.1, the rate of convergence
is optimal both in T and K up to logarithmic factors.

Theorem 9.1, along with Corollary 6.5, immediately implies the result below.
Corollary 9.2. Player’s strategy Exp3.P.1 is Hannan-consistent in the un-

known game setup.
As pointed out in [5], Hannan-consistency has an interesting consequence for

repeated zero-sum games. These games are defined by an n×m matrix M. On each
round t, the row player chooses a row i of the matrix. At the same time, the column
player chooses a column j. The row player then gains the quantity Mij , while the
column player loses the same quantity. In repeated play, the row player’s goal is to
maximize its expected total gain over a sequence of plays, while the column player’s
goal is to minimize its expected total loss.

Suppose in some round the row player chooses its next move i randomly according
to a probability distribution on rows represented by a (column) vector p ∈ [0, 1]n, and
the column player similarly chooses according to a probability vector q ∈ [0, 1]m. Then
the expected payoff is pTMq. Von Neumann’s minimax theorem states that

max
p

min
q

pTMq = min
q

max
p

pTMq ,

where maximum and minimum are taken over the (compact) set of all distribution
vectors p and q. The quantity v defined by the above equation is called the value
of the zero-sum game with matrix M. In words, this says that there exists a mixed
(randomized) strategy p for the row player that guarantees expected payoff at least v,
regardless of the column player’s action. Moreover, this payoff is optimal in the sense
that the column player can choose a mixed strategy whose expected payoff is at most v,
regardless of the row player’s action. Thus, if the row player knows the matrix M,
it can compute a strategy (for instance, using linear programming) that is certain to
bring an expected optimal payoff not smaller than v on each round.

Suppose now that the game M is entirely unknown to the row player. To be
precise, assume the row player knows only the number of rows of the matrix and a
bound on the magnitude of the entries of M. Then, using the results of section 4, we
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can show that the row player can play in such a manner that its payoff per round will
rapidly converge to the optimal maximin payoff v.

Theorem 9.3. Let M be an unknown game matrix in [a, b]n×m with value v.
Suppose the row player, knowing only a, b, and n, uses the mixed strategy Exp3.1.
Then the row player’s expected payoff per round is at least

v − 8(b− a)

(

√
e− 1

√

n lnn

T
− 8(e− 1)

n

T
− 2

n lnn

T

)

.

Proof. We assume that [a, b] = [0, 1]; the extension to the general case is straight-
forward. By Theorem 4.1, we have

E

[

T
∑

t=1

Mitjt

]

= E

[

T
∑

t=1

xit(t)

]

≥ max
i

E

[

T
∑

t=1

xi(t)

]

− 8
√
e− 1

√
Tn lnn− 8(e− 1)n− 2n lnn .

Let p be a maxmin strategy for the row player such that

v = max
p

min
q

pTMq = min
q

pTMq ,

and let q(t) be a distribution vector whose jtth component is 1. Then

max
i

E

[

T
∑

t=1

xi(t)

]

≥
n
∑

i=1

piE

[

T
∑

t=1

xi(t)

]

= E

[

T
∑

t=1

p · x(t)

]

= E

[

T
∑

t=1

pTMq(t)

]

≥ vT

since pTMq ≥ v for all q.
Thus, the row player’s expected payoff is at least

vT − 8
√
e− 1

√
Tn lnn− 8(e− 1)n− 2n lnn .

Dividing by T to get the average per-round payoff gives the result.
Note that the theorem is independent of the number of columns of M and, with

appropriate assumptions, the theorem can be easily generalized to column players
with an infinite number of strategies. If the matrix M is very large and all entries
are small, then, even if M is known to the player, our algorithm may be an efficient
alternative to linear programming.

Appendix A. Proof of Theorem 5.1. We construct the random distribution
of rewards as follows. First, before play begins, one action I is chosen uniformly
at random to be the “good” action. The T rewards xI(t) associated with the good
action are chosen independently at random to be 1 with probability 1/2 + ǫ and
0 otherwise for some small, fixed constant ǫ ∈ (0, 1/2] to be chosen later in the proof.
The rewards xj(t) associated with the other actions j 6= I are chosen independently
at random to be 0 or 1 with equal odds. Then the expected reward of the best action
is at least (1/2 + ǫ)T . The main part of the proof below is a derivation of an upper
bound on the expected gain of any algorithm for this distribution of rewards.

We write P∗{·} to denote probability with respect to this random choice of re-
wards, and we also write Pi{·} to denote probability conditioned on i being the good



74 AUER, CESA-BIANCHI, FREUND, AND SCHAPIRE

action: Pi{·} = P∗{· | I = i}. Finally, we write Punif {·} to denote probability with
respect to a uniformly random choice of rewards for all actions (including the good
action). Analogous expectation notation E∗ [·], Ei [·], and Eunif [·] will also be used.

Let A be the player strategy. Let rt = xit(t) be a random variable denoting
the reward received at time t, and let rt denote the sequence of rewards received up
through trial t: rt = 〈r1, . . . , rt〉. For shorthand, r = rT is the entire sequence of
rewards.

Any randomized playing strategy is equivalent to an a priori random choice from
the set of all deterministic strategies. Thus, because the adversary strategy we have
defined is oblivious to the actions of the player, it suffices to prove an upper bound on
the expected gain of any deterministic strategy (this is not crucial for the proof but
simplifies the notation). Therefore, we can formally regard the algorithm A as a fixed
function which, at each step t, maps the reward history rt−1 to its next action it.

As usual, GA =
∑T

t=1 rt denotes the return of the algorithm, and Gmax =

maxj

∑T
t=1 xj(t) is the return of the best action.

Let Ni be a random variable denoting the number of times action i is chosen
by A. Our first lemma bounds the difference between expectations when measured
using Ei [·] or Eunif [·].

Lemma A.1. Let f : {0, 1}T → [0,M ] be any function defined on reward se-
quences r. Then for any action i,

Ei [f(r)] ≤ Eunif [f(r)] +
M

2

√

−Eunif [Ni] ln(1 − 4ǫ2).

Proof. We apply standard methods that can be found, for instance, in Cover and
Thomas [4]. For any distributions P and Q, let

‖P − Q‖1
.
=

∑

r∈{0,1}T

|P{r} − Q{r}|

be the variational distance, and let

KL (P ‖ Q)
.
=

∑

r∈{0,1}T

P{r} lg

(

P{r}
Q{r}

)

be the Kullback–Liebler divergence or relative entropy between the two distributions.
(We use lg to denote log2.) We also use the notation

KL
(

P{rt | rt−1} ‖ Q{rt | rt−1}
) .

=
∑

rt∈{0,1}t

P{rt} lg

(

P{rt | rt−1}
Q{rt | rt−1}

)

for the conditional relative entropy of rt given rt−1. Finally, for p, q ∈ [0, 1], we use

KL (p ‖ q)
.
= p lg

(

p

q

)

+ (1 − p) lg

(

1 − p

1 − q

)

as shorthand for the relative entropy between two Bernoulli random variables with
parameters p and q.
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We have that

Ei [f(r)] − Eunif [f(r)] =
∑

r

f(r)(Pi{r} − Punif {r})

≤
∑

r:Pi{r}≥Punif {r}

f(r)(Pi{r} − Punif {r})

≤ M
∑

r:Pi{r}≥Punif {r}

(Pi{r} − Punif {r})

=
M

2
‖Pi − Punif ‖1.(28)

Also, Cover and Thomas’s Lemma 12.6.1 states that

‖Punif − Pi‖2
1 ≤ (2 ln 2)KL (Punif ‖ Pi).(29)

The “chain rule for relative entropy” (Cover and Thomas’s Theorem 2.5.3) gives that

KL (Punif ‖ Pi) =

T
∑

t=1

KL
(

Punif {rt | rt−1} ‖ Pi{rt | rt−1}
)

=

T
∑

t=1

(

Punif {it 6= i} KL
(

1
2 ‖ 1

2

)

+ Punif {it = i} KL
(

1
2 ‖ 1

2 + ǫ
))

=

T
∑

t=1

Punif {it = i}
(

− 1
2 lg(1 − 4ǫ2)

)

= Eunif [Ni]
(

− 1
2 lg(1 − 4ǫ2)

)

.(30)

The second equality can be seen as follows: Regardless of the past history of re-
wards rt−1, the conditional probability distribution Punif {rt | rt−1} on the next
reward rt is uniform on {0, 1}. The conditional distribution Pi{rt | rt−1} is also
easily computed: Given rt−1, the next action it is fixed by A. If this action is not
the good action i, then the conditional distribution is uniform on {0, 1}; otherwise, if
it = i, then rt is 1 with probability 1/2 + ǫ and 0 otherwise.

The lemma now follows by combining (28), (29), and (30).
We are now ready to prove the theorem. Specifically, we show the following.
Theorem A.2. For any player strategy A, and for the distribution on rewards

described above, the expected regret of algorithm A is lower bounded by

E∗ [Gmax −GA] ≥ ǫ

(

T − T

K
− T

2

√

− T

K
ln(1 − 4ǫ2)

)

.

Proof. If action i is chosen to be the good action, then clearly the expected payoff
at time t is 1/2 + ǫ if it = i and 1/2 if it 6= i:

Ei [rt] =
(

1
2 + ǫ

)

Pi{it = i} + 1
2Pi{it 6= i}

= 1
2 + ǫ Pi{it = i}.

Thus, the expected gain of algorithm A is

Ei [GA] =

T
∑

t=1

Ei [rt] =
T

2
+ ǫ Ei [Ni] .(31)
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Next, we apply Lemma A.1 to Ni, which is a function of the reward sequence r

since the actions of player strategy A are determined by the past rewards. Clearly,
Ni ∈ [0, T ]. Thus,

Ei [Ni] ≤ Eunif [Ni] +
T

2

√

−Eunif [Ni] ln(1 − 4ǫ2),

and so

K
∑

i=1

Ei [Ni] ≤
K
∑

i=1

(

Eunif [Ni] +
T

2

√

−Eunif [Ni] ln(1 − 4ǫ2)

)

≤ T +
T

2

√

−TK ln(1 − 4ǫ2)

using the fact that
∑K

i=1 Eunif [Ni] = T , which implies that
∑K

i=1

√

Eunif [Ni] ≤√
TK. Therefore, combining with (31),

E∗ [GA] =
1

K

K
∑

i=1

Ei [GA] ≤ T

2
+ ǫ

(

T

K
+

T

2

√

− T

K
ln(1 − 4ǫ2)

)

.

The expected gain of the best action is at least the expected gain of the good action,
so E∗ [Gmax] ≥ T (1/2 + ǫ). Thus, we get that the regret is lower bounded by the
bound given in the statement of the theorem.

For small ǫ, the bound given in Theorem A.2 is of the order

Θ

(

Tǫ− Tǫ2
√

T

K

)

.

Choosing ǫ = c
√

K/T for some small constant c gives a lower bound of Ω(
√
KT ).

Specifically, the lower bound given in Theorem 5.1 is obtained from Theorem A.2 by
choosing ǫ = (1/4) min{

√

K/T , 1} and using the inequality − ln(1−x) ≤ (4 ln(4/3))x
for x ∈ [0, 1/4].
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