
1 9 7 2
T u r i n g
A w a r d
Lecture

The Humble Programmer
EDSGER W. DIJKSTRA

[Extract from the Turing Award Citation read by M. D Mcllroy, chairman
of the ACM Yaring Award Committee, at the presentation of this lecture
on August 14, 1972, at the ACM Annual Conference in Boston.]

The working vocabulary of programmers everywhere is studded with
words originated or forcefully promulgated by E. W. Dijkstra--display, deadly
embrace, semaphore, go-to-less programming, structured programming. But
his influence on programming is more pervasive than any glossary can
possibly indicate. The precious gift that this Taring Award acknowledges is
Dijkstra's style: his approach to programming as a high, intellectual
challenge; his eloquent insistence and practical demonstration that programs
should be composed correctly, not just debugged into correctness; and his
illuminating perception of problems at the foundations of program design.
He has published about a dozen papers, both technical and reflective, among
which are especially to be noted his philosophical addresses at'IFIE 1 his
already classic papers on cooperating sequential processes, 2 and his
memorable indictment of the go-to statement. 3 An influential series of letters
by Dijkstra have recently surfaced as a polished monograph on the art of
composing programs. 4

1Some~ meditations on advanced programming, Proceedings of the IFIP Congress 1962,
535-538; Programming considered as a human activity, Proceedings of the IFIP Con-
gress 1965, 213-217.

ZSolution of a problem in concurrent programming, control, CACM 8 (Sept. 1965}, 569;
The structure of the "THE" muir!programming system, CACM 11 (May 1968), 341-346.
3Go to statement considered harmful, CACM 11 (Mar. 1968}, 147-148.

4A short introduction to the art of computer programming. Technische Hogeschool,
Eindhoven, 1971.

Author's present address: Department of Computer Sciences, The University of Texas
at Austin, Austin, TX 78712.

17

We have come to value good programs in much the same way as
we value good literature. And at the center of this movement, creating
and reflecting patterns no less beautiful than useful, stands E. W. Dijkstra.

As a result of a long sequence of coincidences I entered the pro-
gramming profession officially on the first spring morning of 1952, and
as far as I have been able to trace, I was the first Dutchman to do so
in my country. In retrospect the most amazing thing is the slowness
with which, at least in my part of the world, the programming profes-
sion emerged, a slowness which is now hard to believe. But I am grateful
for two vivid recollections f rom that period that established that
slowness beyond any doubt.

After having programmed for some three years, I had a discussion
with van Wijngaarden, who was then my boss at the Mathematical
Centre in A m s t e r d a m - - a discussion for which I shall remain grateful
to him as long as I live. The point was that I was supposed to s tudy
theoretical physics at the Universi ty of Leiden simultaneously, and as
I found the two activities harder and harder to combine, I had to make
up my mind, either to stop programming and become a real, respect-
able theoretical physicist, or to carry my study of physics to a formal
completion only, with a min imum of effort, and to become yes what?
A programmer? But was that a respectable profession? After all, what
was programming? Where was the sound body of knowledge that could
support it as an intellectually respectable discipline? I r em em b er quite
vividly how I envied my hardware colleagues, who, when asked about
their professional competence, could at least point out that they knew
everything about vacuum tubes, amplifiers and the rest, whereas I felt
that, when faced with that question, I would stand empty-handed. Full
of misgivings I knocked on van Wijngaarden's office door, asking him
whe ther I could speak to him for a moment ; w h en I left his office a
number of hours later, I was another person. For after having listened
to my problems patiently, he agreed that up till that momen t there was
not much of a programming discipline, but then he went on to explain
quietly that automatic computers were here to stay, that we were just
at the beginning and could not I be one of the persons called to make
programming a respectable discipline in the years to come? This was
a turning point in my life and I completed my study of physics formally
as quickly as I could. One moral of the above story is, of course, that
we must be very careful when we give advice to younger people:
sometimes they follow it!

Two years later, in 1957, I married, and Dutch marriage rites require
you to state your profession and I stated that I was a programmer. But
the municipal authorities of the town of Amsterdam did not accept
it on the grounds that there was no such profession. And, believe it
or not, but under the heading "profession" my marriage record shows
the ridiculous entry "theoretical physicist"!

18 EDSGER W. DIJKSTRA

SO much for the slowness with which I saw the programming
profession emerge in my own country. Since then I have seen more
of the world, and it is my general impression that in other countries,
apart from a possible shift of dates, the growth pattern has been very
much the same.

Let me try to capture the situation in those old days in a little bit
more detail, in the hope of getting a better understanding of the
situation today. While we pursue our analysis, we shall see how many
common misunderstandngs about the true nature of the programming
task can be traced back to that now distant past.

The first automatic electronic computers were all unique, single-
copy machines and they were all to be found in an environment with
the exciting flavor of an experimental laboratory. Once the vision of
the automatic computer was there, its realization was a tremendous
challenge to the electronic technology then available, and one thing
is certain: we cannot deny the courage of the groups that decided
to try to build such a fantastic piece of equipment. For fantastic pieces
of equipment they were: in retrospect one can only wonder that those
first machines worked at all, at least sometimes. The overwhelming
problem was to get and keep the machine in working order. The pre-
occupation with the physical aspects of automatic computing is still
reflected in the names of the older scientific societies in the field,
such as the Association for Computing Machinery or the British
Computer Society, names in which explicit reference is made to the
physical equipment.

What about the poor programmer? Well, to tell the honest truth, he
was hardly noticed. For one thing, the first machines were so bulky
that you could hardly move them and besides that, they required such
extensive maintenance that it was quite natural that the place where
people tried to use the machine was the same laboratory where the
machine had been developed. Secondly, the programmer's somewhat
invisible work was without any glamour: you could show the machine
to visitors and that was several orders of magnitude more spectacular
than some sheets of coding. But most important of all, the programmer
himself had a very modest view of his own work: his work derived
all its significance from the existence of that wonderful machine.
Because that was a unique machine, he knew only too well that his
programs had only local significance, and also because it was patently
obvious that this machine would have a limited lifetime, he knew that
very little of his work would have a lasting value. Finally, there is yet
another circumstance that had a profound influence on the program-
mer's attitude toward his work: on the one hand, besides being
unreliable, his machine was usually too slow and its memory was
usually too small, i.e., he was faced with a pinching shoe, while on
the other hand its usually somewhat queer order code would cater for
the most unexpected constructions. And in those days many a clever

I ~ 1 7 2

' I t , n ' i , i g

Aw~,rd

1,17¢'111 I'1"

The Humble Programmer 19

programmer derived an immense intellectual satisfaction from the
cunning tricks by means of which he contrived to squeeze the impos-
sible into the constraints of his equipment.

Two opinions about programming date from those days. I mention
them now; I shall return to them later. The one opinion was that a really
competent programmer should be puzzle-minded and very fond of
clever tricks; the other opinion was that programming was nothing more
than optimizing the efficiency of the computational process, in one
direction or the other.

The latter opinion was the result of the frequent circumstance that,
indeed, the available equipment was a painfully pinching shoe, and in
those days one often encountered the naive expectation that, once more
powerful machines were available, programming would no longer be
a problem, for then the struggle to push the machine to its limits would
no longer be necessary and that was all that programming was about,
wasn't it? But in the next decades something completely different
happened: more powerful machines became available, not just an order
of magnitude more powerful, even several orders of magnitude more
powerful. But instead of finding ourselves in a state of eternal bliss with
all programming problems solved, we found ourselves up to our necks
in the software crisis! How come?

There is a minor cause: in one or two respects modern machinery
is basically more difficult to handle than the old machinery. Firstly,
we have got the I/O interrupts, occurring at unpredictable and ir-
reproducible moments; compared with the old sequential machine that
pretended to be a fully deterministic automaton, this has been a
dramatic change, and many a systems programmer's grey hair bears
witness to the fact that we should not talk lightly about the logical
problems created by that feature. Secondly, we have got machines
equipped with multilevel stores, presenting us problems of manage-
ment strategy that, in spite of the extensive literature on the subject,
still remain rather elusive. So much for the added complication due
to structural changes of the actual machines.

But I called this a minor cause; the major cause is . . . that the
machines have become several orders of magnitude more powerful!
To put it quite bluntly: as long as there were no machines, program-
ming was no problem at all; when we had a few weak computers,
programming became a mild problem, and now that we have gigantic
computers, programming has become an equally gigantic problem. In
this sense the electronic industry has not solved a single problem, it
has only created them-- it has created the problem of using its products.
To put it in another way: as the power of available machines grew by
a factor of more than a thousand, society's ambition to apply these
machines grew in proportion, and it was the poor programmer who
found his job in this exploded field of tension between ends and means.
The increased power of the hardware, together with the perhaps even

20 EDSGER W, DIJKSTRA

more dramatic increase in its reliability, made solutions feasible that
the programmer had not dared to dream about a few years before. And
now, a few years later, he had to dream about them and, even worse,
he had to transform such dreams into reality! Is it a wonder that we
found ourselves in a software crisis? No, certainly not, and as you may
guess, it was even predicted well in advance; but the trouble with minor
prophets, of course, is that it is only five years later that you really know
that they had been right.

Then, in the mid-sixties something terrible happened: the computers
of the so-called third generation made their appearance. The official
literature tells us that their price/performance ratio has been one of
the major design objectives. But if you take as "performance" the duty
cycle of the machine's various components, little will prevent you from
ending up with a design in which the major part of your performance
goal is reached by internal housekeeping activities of doubtful necessity.
And if your definition of price is the price to be paid for the hardware,
little will prevent you from ending up with a design that is terribly
hard to program for: for instance the order code might be such as
to enforce, either upon the programmer or upon the system, early
binding decisions presenting conflicts that really cannot be resolved.
And to a large extent these unpleasant possibilities seem to have
become reality.

When these machines were announced and their functional
specifications became known, many among us must have become
quite miserable: at least I was. It was only reasonable to expect that
such machines would flood the computing community, and it was
therefore all the more important that their design should be as sound
as possible. But the design embodied such serious flaws that I felt that
with a single stroke the progress of computing science had been retarded
by at least ten years; it was then that I had the blackest week in the
whole of my professional life. Perhaps the most saddening thing now
is that, even after all those years of frustrating experience, still so many
people honestly believe that some law of nature tells us that machines
have to be that way. They silence their doubts by observing how many
of these machines have been sold, and derive from that observation
the false sense of security that, after all, the design cannot have been
that bad. But upon the closer inspection, that line of defense has the
same convincing strength as the argument that cigarette smoking must
be healthy because so many people do it.

It is in this connection that I regret that it is not customary for
scientific journals in the computing area to publish reviews of newly
announced computers in much the same way as we review scientific
publications: to review machines would be at least as important. And
here I have a confession to make: in the early sixties I wrote such a
review with the intention of submitting it to Communications, but in
spite of the fact that the few colleagues to whom the text was sent

The Humble Programmer 21

for their advice urged me to do so, I did not dare to do it, fearing
that the difficulties either for myself or for the Editorial Board would
prove to be too great. This suppression was an act of cowardice on
my side for which I blame myself more and more. The difficulties
I foresaw were a consequence of the absence of generally accepted
criteria, and although I was convinced of the validity of the criteria I
had chosen to apply, I feared that my review would be refused or
discarded as "a matter of personal taste." I still think that such reviews
would be extremely useful and I am longing to see them appear, for
their accepted appearance would be a sure sign of matur i ty of the
computing community.

The reason that I have paid the above at tention to the hardware
scene is because I have the feeling that one of the most important
aspects of any computing tool is its influence on the thinking habits
of those who try to use it, and because I have reasons to believe that
the influence is many times stronger than is commonly assumed. Let
us now switch our at tention to the software scene.

Here the diversity has been so large that I must confine myself to a
few stepping stones. I am painfully aware of the arbitrariness of my
choice, and I beg you not to draw any conclusions with regard to my
appreciation of the many efforts that will have to remain unmentioned.

In the beginning there was the EDSAC in Cambridge, England, and
I think it quite impressive that right f rom the start the notion of a
subroutine l ibrary played a central role in the design of that machine
and of the way in which it should be used. It is now nearly 25 years
later and the computing scene has changed dramatically, but the notion
of basic software is still with us, and the notion of the closed subroutine
is still one of the key concepts in programming. We should recognize
the closed subrout ine as one of the greatest software inventions; it
has survived three generations of computers and it will survive a few
more, because it caters for the implementat ion of one of our basic
pat terns of abstraction. Regrettably enough, its importance has been
underes t imated in the design of the third generation computers, in
which the great number of explicitly named registers of the ari thmetic
unit implies a large overhead on the subrout ine mechanism. But even
that did not kill the concept of the subroutine, and we can only pray
that the mutat ion won' t prove to be hereditary.

The second major development on the software scene that I would
like to ment ion is the birth of FORTRAN. At that t ime this was a project
of great temerity, and the people responsible for it deserve our great
admiration. It would be absolutely unfair to blame them for short-
comings that only became apparent after a decade or so of extensive
usage: groups with a successful look-ahead of ten years are quite rare!
In retrospect we must rate FORTRAN as a successful coding technique,
but with very few effective aids to conception, aids which are now so
urgently needed that t ime has come to consider it out of date. The

22 EDSGER W. DIJKSTRA

sooner we can forget that FORTRAN ever existed, the better, for as a
vehicle of thought it is no longer adequate: it wastes our brainpower,
and it is too risky and therefore too expensive to use. FORTRAN's tragic
fate has been its wide acceptance, mental ly chaining thousands and
thousands of programmers to our past mistakes. I pray daily that more
of my fel low-programmers may find the means of freeing themselves
from the curse of compatibility.

The third project I would not like to leave unment ioned is LISP,
a fascinating enterprise of a completely different nature. With a few
very basic principles at its foundation, it has shown a remarkable
stability. Besides that, LiSP has been the carrier for a considerable
number of, in a sense, our most sophisticated computer applications.
LISP has jokingly been described as "the most intelligent way to mis-
use a computer." I think that description a great compl iment because
it transmits the full flavor of liberation: it has assisted a number of
our most gifted fellow humans in thinking previoUsly impossible
thoughts.

The fourth project to be ment ioned is ALGOL 60. While up to the
present day FORTRAN programmers still tend to unders tand their pro-
gramming language in terms of the specific implementat ion they are
working wi th - - hence the prevalence of octal or hexadecimal d u m p s - -
while the definition of LISP is still a curious mixture of what the
language means and how the mechanism works, the famous Report
on the Algorithmic Language ALGOL 60 is the fruit of a genuine effort
to carry abstraction a vital step fur ther and to define a programming
language in an implementat ion-independent way. One could argue that
in this respect its authors have been so successful that they have created
serious doubts as to whether it could be implemented at all! The report
gloriously demonstra ted the power of the formal method BNF, now
fairly known as Backus-Naur-Form, and the power of carefully phrased
English, at least when used by someone as brilliant as Peter Naur.
I think that it is fair to say that only very few documents as short
as this have had an equally profound influence on the computing
community. The ease with which in later years the names ALGOL and
ALGOL-like have been used, as an unprotected trademark, to lend glory
to a number of sometimes hardly related younger projects is a somewhat
shocking compliment to ALGOIAs standing. The strength of BNF as a
defining device is responsible for what I regard as one of the weaknesses
of the language: an overelaborate and not too systematic syntax could
now be c rammed into the confines of very few pages. With a device
as powerful as BNF, the Report on the Algorithmic Language ALGOL 60
should have been much shorter. Besides that, I am getting very doubt-
ful about ALGOL 60'S parameter mechanism: it allows the programmer
so much combinatorial f reedom that its confident use requires a strong
discipline from the programmer. Besides being expensive to implement,
it seems dangerous to use.

The Humble Programmer 23

Finally, al though the subject is not a pleasant one, I must ment ion
EL/I, a programming language for which the defining documenta t ion
is of a frightening size and complexity. Using PL/I must be like flying
a plane with 7,000 buttons, switches, and handles to manipulate in
the cockpit. I absolutely fail to see how we can keep our growing
programs firmly within our intellectual grip when by its sheer baroque-
ness the programming l a n g u a g e - our basic tool, mind y o u ! - already
escapes our intellectual control. And if I have to describe the influence
PL/I can have on its users, the closest metaphor that comes to my
mind is that of a drug. I r emember from a symposium on higher level
programming languages a lecture given in defense of eL/I by a man who
described himself as one of its devoted users. But within a one-hour
lecture in praise of eL/I, he managed to ask for the addition of about
50 new "features," little supposing that the main source of his problems
could very well be that it contained already far too many "features."
The speaker displayed all the depressing symptoms of addiction,
reduced as he was to the state of mental stagnation in which he could
only ask for more, more, more When FORTRAN has been called an
infantile disorder, full eL/I, with its growth characteristics of a
dangerous tumor, could turn out to be a fatal disease.

So much for the past. But there is no point in making mistakes unless
thereafter we are able to learn from them. As a mat ter of fact, I think
that we have learned so much that within a few years programming
can be an activity vastly different f rom what it has been up till now, so
different that we had bet ter prepare ourselves for the shock. Let me
sketch for you one of the possible futures. At first sight, this vision of
programming in perhaps already the near future may strike you as
utterly fantastic. Let me therefore also add the considerations that might
lead one to the conclusion that this vision could be a very real possibility.

The vision is that, well before the seventies have run to completion,
we shall be able to design and implement the kind of systems that
are now straining our programming ability at the expense of only a
few percent in man-years of what they cost us now, and that besides
that, these systems will be virtually free of bugs. These two improve-
ments go hand in hand. In the latter respect software seems to be
different f rom many other products, where as a rule a higher qua l i t y
implies a higher price. Those who want really reliable software will
discover that they must find means of avoiding the majori ty of bugs
to start with, and as a result the programming process will become
cheaper. If you want more effective programmers, you will discover
that they should not waste their t ime debugg ing- - they should not
introduce the bugs to start with. In other words, both goals point to
the same change.

Such a drastic change in such a short period of time would be a revo-
lution, and to all persons that base their expectations for the future on
smooth extrapolation of the recent past -- appealing to some unwri t ten

24 EDSGER W. DIJKSTRA

laws of social and cultural inertia--the chance that this drastic change
will take place must seem negligible. But we all know that sometimes
revolutions do take place] And what are the chances for this one?

There seem to be three major conditions that must be fulfilled. The
world at large must recognize the need for the change; secondly, the
economic need for it must be sufficiently strong; and, thirdly, the change
must be technically feasible. Let me discuss these three conditions in
the above order.

With respect to the recognition of the need for greater reliability
of software, I expect no disagreement anymore. Only a few years ago
this was different: to talk about a software crisis was blasphemy. The
turning point was the Conference on Software Engineering in Garmisch,
October 1968, a conference that created a sensation as there occurred
the first open admission of the software crisis. And by now it is generally
recognized that the design of any large sophisticated system is going
to be a very difficult job, and whenever one meets people responsible
for such undertakings, one finds them very much concerned about the
reliability issue, and rightly so. In short, our first condition seems to
be satisfied.

Now for the economic need. Nowadays one often encounters the
opinion that in the sixties programming has been an overpaid profes-
sion, and that in the coming years programmer salaries may be expected
to go down. Usually this opinion is expressed in connection with the
recession, but it could be a symptom of something different and quite
healthy, viz. that perhaps the programmers of the past decade have not
done so good a job as they should have done. Society is getting
dissatisfied with the performance of programmers and of their products.
But there is another factor of much greater weight. In the present
situation it is quite usual that for a specific system, the price to be
paid for the development of the software is of the same order of
magnitude as the price of the hardware needed, and society more or
less accepts that. But hardware manufacturers tell us that in the next
decade hardware prices can be expected to drop with a factor of ten.
If software development were to continue to be the same clumsy and
expensive process as it is now, things would get completely out of
balance. You cannot expect society to accept this, and therefore we mus t

learn to program an order of magnitude more effectively. To put it
in another way: as long as machines were the largest item on the budget,
the programming profession could get away with its clumsy techniques;
but the umbrella will fold very rapidly. In short, also our second con-
dition seems to be satisfied.

And now the third condition: is it technically feasible? I think it might
be, and I shall give you six arguments in support of that opinion.

A study of program structure has revealed that programs--even
alternative programs for the same task and with the same mathematical
content--can differ tremendously in their intellectual manageability.

I t) 7 2

' l ~ l r i n g

A ~ ; i r d

| ,u (' l l l l t"

The Humble Programmer 25

A number of rules have been discovered, violation of which will either
seriously impair or totally destroy the intellectual manageability of the
program. These rules are of two kinds. Those of the first kind are easily
imposed mechanically, viz. by a suitably chosen programming language.
Examples are the exclusion of go-to statements and of procedures with
more than one output parameter. For those of the second kind, I at
least--but that may be due to lack of competence on my side--see no
way of imposing them mechanically, as it seems to need some sort of
automatic theorem prover for which I:have no existence proof. There-
fore, for the time being and perhaps forever, the rules of the second
kind present themselves as elements of discipline required from the
programmer. Some of the rules I have in mind are so clear that they
can be taught and that there never needs to be an argument as to
whether a given program violates them or not. Examples are the
requirements that no loop should be written down without providing
a proof for termination or without stating the relation whose invariance
will not be destroyed by the execution of the repeatable statement.

I now suggest that we confine ourselves to the design and imple-
mentation of intellectually manageable programs. If someone fears that
this restriction is so severe that we cannot live with it, I can reassure
him: the class of intellectually manageable programs is still sufficiently
rich to contain many very realistic programs for any problem capable
of algorithmic solution. We must not forget that it is not our business
to make programs; it is our business to design classes of computations
that will display a desired behavior. The suggestion of confining
ourselves to intellectually manageable programs is the basis for the first
two of my announced six arguments.

Argument one is that, as the programmer only needs to consider
intellectually manageable programs, the alternatives he is choosing from
are much, much easier to cope with.

Argument two is that, as soon as we have decided to restrict our-
selves to the subject of the intellectually manageable programs, we have
achieved, once and for all, a drastic reduction of the solution space to
be considered. And this argument is distinct from argument one.

Argument three is based on the constructive approach to the problem
of program correctness. Today a usual technique is to make a program
and then to test it. But: program testing can be a very effective way
to show the presence of bugs, but it is hopelessly inadequate for
showing their absence. The only effective way to raise the confidence
level of a program significantly is to give a convincing proof of its
correctness. But one should not first make the program and then prove
its correctness, because then the requirement of providing the proof
would only increase the poor programmer's burden. On the contrary:
the programmer should let correctness proof and program grow hand
in hand. Argument three is essentially based on the following observa-
tion. If one first asks oneself what the structure of a convincing proof

26 EDSGER W. DIJKSTRA

would be and, having found this, then constructs a program satisfying
this proof 's requirements, then these correctness concerns turn out
to be a very effective heuristic guidance. By definition this approach
is only applicable when we restrict ourselves to intellectually manage-
able programs, but it provides us with effective means for finding a
satisfactory one among these.

Argument four has to do with the way in which the amount of
intellectual effort needed to design a program depends on the program
length. It has been suggested that there is some law of nature telling
us that the amount of intellectual effort needed grows with the square
of program length. But, thank goodness, no one has been able to prove
this law. And this is because it need not be true. We all know that the
only mental tool by means of which a very finite piece of reasoning
can cover a myriad of cases is called "abstraction"; as a result the
effective exploitation of his powers of abstraction must be regarded as
one of the most vital activities of a competent programmer. In this
connect ion it might be worthwhile to point out that the purpose of
abstracting is not to be vague, but to create a new semantic level in
which one can be absolutely precise. Of course I have tried to find a
fundamental cause that would prevent our abstraction mechanisms
from being sufficiently effective. But no matter how hard I tried, I did
not find such a cause. As a result I tend to the assumpt ion-- up till now
not disproved by experience -- that by suitable application of our powers
of abstraction, the intellectual effort required to conceive or to under-
stand a program need not grow more than proport ional to program
length. A by-product of these investigations may be of much greater
practical significance, and is, in fact, the basis of my fourth argument.
The by-product was tl~e identification of a number of patterns of abstrac-
tion that play a vital role in the whole process of composing programs.
Enough is known about these patterns of abstraction that you could
devote a lecture to each of them. What the familiarity and conscious
knowledge of these patterns of abstraction imply dawned upon me
when I realized that, had they been common knowledge 15 years ago,
the step from BNF to syntax-directed compilers, for instance, could have
taken a few minutes instead of a few years. Therefore I present our
recent knowledge of vital abstraction patterns as the fourth argument.

Now for the fifth argument. It has to do with the influence of the
tool we are trying to use upon o'ur own thinking habits. I observe
a cultural tradition, which in all probabil i ty has its roots in the
Renaissance, to ignore this influence, to regard the human mind as the
supreme and autonomous master of its artifacts. But if I start to analyze
the thinking habits of myself and of my fellow human beings, I come,
whe ther I like it or not, to a completely different conclusion, viz. that
the tools we are trying to use and the language or notation we are using
to express or record our thoughts are the major factors determining
that we can think or express at all! The analysis of the influence that

I 9 7 2

"1 u r h l g

I , t ' t h l I,.'

The Humble Programmer 27

programming languages have on the thinking habits of their users,
and the recognition that, by now, brainpower is by far our scarcest
resource, these together give us a new collection of yardsticks for

comparing the relative merits of various programming languages. The
competent p rogrammer is fully aware of the strictly limited size of
his own skull; therefore he approaches the programming task in full
humility, and among other things he avoids clever tricks like the plague.
In the case of a well-known conversational programming language
I have been told from various sides that as soon as a programming
communi ty is equipped with a terminal for it, a specific p h en o m en o n
occurs that even has a well-established name: it is called "the one-liners."
It takes one of two different forms: one programmer places a one-line
program on the desk of another and either he proudly tells what it does
and adds the question, "Can you code this in less symbols?" - -as if this
were of any conceptual r e l evance ! - -o r he just says, "Guess what it
does!" From this observation we must conclude that this language
as a tool is an open invitation for clever tricks; and while exactly this
may be the explanation for some of its appeal, viz. to those who like
to show how clever they are, I am sorry, but I must regard this as one
of the most damning things that can be said about a programming
language. Another lesson we should have learned from the recent past
is that the development of "r icher" or "more powerful" programming
languages was a mistake in the sense that these baroque monstrosities,
these conglomerat ions of idiosyncrasies, are really unmanageable,
both mechanically and mentally. I see a great future for very systematic
and very modest programming languages. When I say "modest," I
mean that, for instance, not only ALGOL 60's "for clause," but even
FORTRAN's "DO loop" may find themselves thrown out as being too baro-
que. I have run a little programming experiment with really experienced
volunteers, but something quite unin tended and quite unexpected
turned up. None of my volunteers found the obvious and most elegant
solution. Upon closer analysis this turned out to have a common source:
their notion of repetit ion was so tightly connected to the idea of an
associated controlled variable to be stepped up, that they were mentally
blocked f rom seeing the obvious. Their solutions were less efficient,
needlessly hard to understand, and it took them a very long time to
find them. It was a revealing, but also shocking experience for me.
Finally, in one respect one hopes that tomorrow's programming
languages will differ greatly from what we are used to now: to a much
greater extent than hitherto they should invite us to reflect in the
structure of what we write down all abstractions needed to cope
conceptual ly with the complexi ty of what we are designing. So much
for the greater adequacy of our future tools, which was the basis of
the fifth argument.

As an aside I would like to insert a warning to those who identify
the difficulty of the programming task with the struggle against the
inadequacies of our current tools, because they might conclude that,

28 EDSGER W. DIJKSTRA

once our tools will be much more adequate, programming will no longer
be a problem. Programming will remain very difficult, because once
we have freed ourselves from the circumstantial cumbersomeness,
we will find ourselves free to tackle the problems that are now well
beyond our programming capacity.

You can quarrel with my sixth argument, for it is not so easy to
collect experimental evidence for its support, a fact that will not
prevent me from believing in its validity. Up till now I have not
mentioned the word "hierarchy," but I think that it is fair to say that
this is a key concept for all systems embodying a nicely factored
solution. I could even go one step further and make an article of faith
out of it, viz. that the only problems we can really solve in a satisfactory
manner are those that finally admit a nicely factored solution. At first
sight this view of human limitations may strike you as a rather depress-
ing view of our predicament, but I don't feel it that way. On the
contrary, the best way to learn to live with our limitations is to know
them. By the time we are sufficiently modest to try factored solutions
only, because the other efforts escape our intellectual grip, we shall do
our utmost to avoid all those interfaces impairing our ability to factor
the system in a helpful way. And I cannot but expect that this will
repeatedly lead to the discovery that an initially untractable problem
can be factored after all. Anyone who has seen how the majority of
the troubles of the compiling phase called "code generation" can be
tracked down to funny properties of the order code will know a simple
example of the kind of things I have in mind. The wide applicability
of nicely factored solutions is my sixth and last argument for the
technical feasibility of the revolution that might take place in the
current decade.

In principle I leave it to you to decide for yourself how much weight
you are going to give to my considerations, knowing only too well
that I can force no one else to share my beliefs. As in each serious
revolution, it will provoke violent opposition and one can ask oneself
where to expect the conservative forces trying to counteract such a
development. I don't expect them primarily in big business, not even
in the computer business: I expect them rather in the educational
institutions that provide today's training and in those conservative
groups of computer users that think their old programs so important
that they don't think it worthwhile to rewrite and improve them.
In this connection it is sad to observe that on many a university
campus the choice of the central computing facility has too often been
determined by the demands of a few established but expensive applica-
tions with a disregard of the question, how many thousands of "small
users" who are willing to write their own programs are going to suffer
from this choice. Too often, for instance, high-energy physics seems
to have blackmailed the scientific community with the price of its
remaining experimental equipment. The easiest answer, of course,

1 9 7 2 ~

" l . , i .g

l.t'('l II l't'

The Humble Programmer 29

is a flat denial of the technical feasibility, but I am afraid that you
need pret ty strong arguments for that. No reassurance, alas, can be
obtained from the remark that the intellectual ceiling of today's average
programmer will prevent the revolution from taking place: with others
programming so much more effectively, he is liable to be edged out
of the picture anyway.

There may also be political impediments. Even if we know how to
educate tomorrow's professional programmer, it is not certain that the
society we are living in will allow us to do so. The first effect of teaching
a me thodo logy - - r a the r than disseminating knowledge- - i s that of
enhancing the capacities of the already capable, thus magnifying the
difference in intelligence. In a society in which the educational System
is used as an instrument for the establishment of a homogenized culture,
in which the cream is prevented from rising to the top, the educat ion
of competent programmers could be politically unpalatable.

Let me conclude. Automatic computers have now been with us for
a quarter of a century. They have had a great impact on our society
in their capacity of tools, but in that capacity their influence will be
but a ripple on the surface of our culture compared with the much more
profound influence they will have in their capacity of intellectual
challenge which will be wi thout precedent in the cultural history of
mankind. Hierarchical systems seem to have the proper ty that some-
thing considered as an undivided enti ty on one level is considered as
a composite object on the next lower level of greater detail; as a result
the natural grain of space or time that is applicable at each level
decreases by an order of magni tude wh en we shift our at tention f rom
one level to the next lower one. We unders tand walls in terms of bricks,
bricks in terms of crystals, crystals in terms of molecules, etc. As a result
the number of levels that can can be distinguished meaningful ly in a
hierarchical system is kind of proport ional to the logarithm of the ratio
be tween the largest and the smallest grain, and therefore, unless this
ratio is very large, we cannot expect many levels. In computer program-
ming Our basic building block has an associated t ime grain of less than
a microsecond, but our program may take hours of computat ion time.
I do not know O f any other technology covering a ratio of 101° or more:
the computer, by virtue of its fantastic speed, seems to be the first to
provide us with an envi ronment where highly hierarchical artifacts are
both possible and necessary. This challenge, viz. the confrontat ion with
the programming task, is so unique that this novel experience can teach
us a lot about ourselves. It should deepen our understanding of the
processes of design and creation; it should give us bet ter control over
the task of organizing our thoughts. If it did not do so, to my taste
we should not deserve the computer at all!

It has already taught us a few lessons, and the one I have chosen
to stress in this talk is the following. We shall do a much bet ter pro-
gramming job, provided that we approach the task with a full apprecia-

30 EDSGER W. DIJKSTRA

tion of its tremendous difficulty, provided that we stick to modest and
elegant programming languages, provided that we respect the intrinsic
limitations of the human mind and approach the task as Very Humble
Programmers.

i 972
'1 I i r l n g
/~ %~ril I ' l l

I.{ '¢'hl l 'C

Categories and Subject Descriptors:
D.2.4 [Software]: Program Verification-correctness proofs; D.3.0 [Soft-
ware]: General--standards; D.3.3 [Software]: Language Constructs--
procedures, functions and subroutines; K.2 [Computing Milieux]: History
of Computing--people; K.7.1 [Computing Milieux]: The Computing
Profession -- occupations

General Terms:
Design, Human Factors, Languages, Reliability

Addi t ional Key Words and Phrases:
ALGOL 60, EDSAC, FORTRAN, PL/I

The Humble Programmer 31

Postscript

EDSGER W. DIJKSTRA
Department of Computer Sciences
The University of Texas at Austin

My Turing Award lecture of 1972 was very much a credo that presented
the programming task as an intellectual challenge of the highest, caliber. That
credo strikes me now lin 1986} as still fully up to date: How not to get lost in
the complexities of our own making is still computing's core challenge.

In its proposals of how to meet that challenge, however, the lecture is
clearly dated: Had I to give it now, I w o u l d d e v o t e a major part of it to the
role of formal techniques in programming.

The confrontation of my expectations in those days with what has happened
since evokes mixed feelings. On the one hand, my wildest expectations have
been surpassed: neat, concise arguments leading to sophisticated algorithms
that were very hard, if not impossible, to conceive as little as ten years ago
are a regular source of intellectual excitement. On the other hand, I am
disappointed to see how little of this has penetrated into the average computing
science curriculum, in which the effective design of high-quality programs is
neglected in favor of fads (say, " incremental self-improvement of the user-
friendliness of expert systems interfaces"}.

There is an upper bound on the speed with which society can absorb
progress, and I guess I have still to learn how to be more patient.

32

