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Abstract— This paper describes a method that corrects errors
of a VSLAM-estimated trajectory for cars driving in GPS-
denied environments, by applying constraints from public
databases of geo-tagged images (Google Street View, Mapillary,
etc). The method, dubbed Appearance-based Geo-Alignment for
Simultaneous Localisation and Mapping (AGA-SLAM), encodes
the available image database as an appearance map, which
represents the space with a compact holistic descriptor for
each image plus its associated geo-tag. The VSLAM trajec-
tory is corrected on-line by incorporating constraints from
the recognized places along the trajectory into a position-
based optimization framework. The paper presents a seamless
formulation to combine local and absolute metric observations
with associations from Visual Place Recognition. The robustness
of the holistic image descriptor to changes due to weather or
illumination variations ensures a long-term consistent method
to improve car localization. The proposed method has been
extensively evaluated on more than 70 sequences from 4
different datasets, proving out its effectiveness and endurance
to appearance challenges.

I. INTRODUCTION

Despite great advances in Visual Simultaneous Local-
ization and Mapping (VSLAM) in the last decades, long-
term operation in challenging scenarios still remains an
open problem [1]. It is well-known that loop closure is
one of the keys to achieve a consistent map and precise
localization. In the context of car localization and mapping
in urban environments, driving in the same place more
than once during a tour is not that common, consequently
loop closures constraints can not be applied during a large
trajectory and the odometry errors grow without bounds.
Under the perspective of long-term SLAM, previously built
3D maps can be used as a reference to correct the drift
of a real-time computed trajectory, which requires efficient
2D-to-3D matching of local descriptors [2]. This approach,
however, presents two serious limitations: first, 3D models
scale poorly in large environments [3] and secondly, since
the corresponding descriptors are likely to be recorded under
very different appearance conditions (e.g. from day/night
cycles or cross seasons), feature-based matching is prone to
failure.
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Fig. 1: AGA-SLAM combines geometric information from
VSLAM keyframes (blue triangles) and absolute positions
from an appearance map (red dots) through holistic VPR
techniques (green ellipses), resulting in a corrected trajectory
aligned with the map.

Our proposal to correct the trajectory of the vehicle
relies on using compact whole-image (holistic) descriptors
that can be designed to be robust to lighting changes, as
demonstrated in recent publications [4], [5]. Specifically, we
propose to enforce the local estimations of any VSLAM
solution (ORB SLAM2 [6], PL-SLAM [7], LSD-SLAM [8],
etc) to be compliant with geometric position constraints im-
posed publicly available 2D databases of geo-tagged images
(Google Street View, Mapillary, etc). Such dataset must be
previously transformed into a city-scale appearance map,
composed of holistic image descriptors and the associated
geo-tags (i.e. latitude and longitude). Thus, for any keyframe
along the trajectory, a Visual Place Recognition (VPR)
method [9] can efficiently query the appearance map, rising
similarity relations between the keyframe and the recognized
place positions (see Figure 1).

The combination of the appearance similarity constraints
and those from the VSLAM localization output (odometry
and loop closure) is not straightforward. We present a
seamless formulation that regularizes, through appearance
similarity, an optimizable position graph. We report local-
ization improvements of a state-of-the-art VSLAM solution
(ORB SLAM2) in 4 car-mounted public datasets presenting
different perceptual challenges.
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The reader may be wondering why not use GPS data to
correct the visual trajectory, for example, integrating both
estimations with a bayesian filter (e.g. Kalman filter). The
main reason is that the precision of GPS receivers can
drop substantially (or even fail) in urban, densely built-up
environments due to the so-called street canyon effect [10].
Additionally, such integration is not immediate [11], in-
volving additional problems, such as keeping accurate time
synchronization for long periods. Then, having a solution
that can work in GPS-denied areas is of clear interest.

The novelty of this work is supported by the following
contributions:
• A new vision-based position localization framework

robust to appearance changes, which enhances existing
stereo-based VSLAM systems operating in city-scale
environments

• A regularization-based position fusion between local
estimates from VSLAM and absolute constraints from
the appearance map through topological relations based
on visual similarity (described in Section III-E.3)

• As a side effect, our system can geo-tag each keyframe,
which allows its further incorporation into the appear-
ance map

• To the best of our knowledge, holistic appearance
constraints are used to correct metric estimations for
the first time

An running example of AGA-SLAM is shown in https:
//youtu.be/mEDW_dB-EK4.

II. RELATED WORK

Adding absolute constraints to improve the performance
and robustness of Visual Odometry (VO) and VSLAM tech-
niques has been explored from different perspectives. These
can be classified in three categories: relying on additional
sensors, taking a pure visual approach or a combination of
both.

In the first category lays the work of Rehder et. al.,
who use sparse GPS measurements in [12] to improve the
robustness of VO in low-textured environments. The relative
observations (odometry) are merged with global constraints
(GPS) into a graph for optimization. In the context of car
navigation, the authors of [13] exploit the chain structure
of the graph of constraints to adjust the computation time
depending on the available resources. Recently, Qin et. al.
[11] developed a general graph-based framework aiming
to fuse odometry estimates with global constraints. The
framework is general in the sense that, apart from GPS, other
sensors providing partial global localization measurements
(barometers, magnetometers, etc) can be easily integrated.

Pure vision-based approaches typically match local fea-
tures against 3D models to estimate geometric constraints
in the form of relative poses (known as visual localization).
This is the case of [14], where the trajectory of a camera
is estimated within a known scene, interleaving feature
tracking and spatio-temporal coherent matching in Structure-
from-Motion models. Due to poor scalability of 3D model-
based visual localization, several distributed solutions have

been proposed [15], [16], where lightweight visual trackers
are executed on client devices and the more expensive
computations are left to a dedicated server. The server,
in general, provides global constraints for the client-side
bundle adjustment. Rather than using pre-built 3D maps,
some works use constraints obtained from feature-based
visual localization on 2D geo-tagged image databases. The
authors of [17] address global aerial localization in urban
environments fusing local estimates from feature tracking
and global constraints from air-ground matches with database
images, refined with 3D cadastral models. Agarwal et. al.
[18] propose a two-step approach to visual localization in
urban environments. The first performs feature tracking for
a short image sequence, and the second estimates the relative
pose between the reconstruction and the Google Street View
panoramas.

The performance of visual techniques can worsen due
to perceptual problems or large models, therefore some
works combine them with external sensors to improve it.
Surber et. al. [19] use a Kalman filter framework to ex-
plicitly estimate the transformation between the local and
the global frame, i.e. the so-called baseframe transformation.
The framework improves visual-inertial odometry using GPS
priors to globally localize on pre-built 3D maps. Instead
of relying on filtering, the authors of [20] combine in-
ertial measurements with visual localization in a graph-
based formulation to estimate the baseframe transformation.
The inertial measurements are exploited to make 2 DoF
of the rotational part of the baseframe transformation ob-
servable, enhancing this way the optimization convergence.
Lynen et. al. [2] describe a global localization system that
works on large-scale, compressed 3D models, providing
absolute constraints to trajectories estimated through visual-
inertial SLAM. The system is decoupled in a server-client
architecture and efficiently localizes in city-scale scenarios,
exploiting the environment appearance and geometry. In [21],
the authors substitute feature-based visual localization with
a Deep Neural Network, which provides accurate global
localization from VO and additional measurements (form
GPS and IMU). The resulting global trajectory is further
refined in a pose graph optimization framework in a sliding-
window to provide smoother results.

In this work, we rely on appearance maps to provide global
position constraints from a pure visual approach. Specifically,
the VSLAM trajectory is globally constrained by finding
matches between keyframes and mapped places through
appearance-based VPR. To the best of our knowledge, we
use for the first time holistic appearance-based topologi-
cal constraints to perform metric corrections. We choose
holistic image descriptors as the core of the appearance-
based VPR as they are robust to strong perceptual changes
(illumination, weather, view-point) [4], [9]. We focus on car-
navigated urban environments, which allows simplifications
of appearance-based VPR tasks and to use high quality, pub-
licly available geo-tagged image databases such as Google
Street View for the map generation.
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Fig. 2: Block diagram representation of AGA-SLAM. Note
that the VSLAM back-end module is substituted by the
proposed framework.

III. SYSTEM OVERVIEW

In this Section, we describe the main building blocks of
AGA-SLAM, depicted in Figure 2. Our method attaches to
an existing keyframe-based VSLAM system and consists
of three main modules: visual place recognition, alignment
estimation and position information fusion.

A. Assumptions

The proposed framework is designed to operate attached
only to metric VSLAM systems (stereo or visual-inertial,
namely). Besides, we assume car-mounted cameras facing
forwards or backwards and travelling through urban envi-
ronments. Therefore, we assume that that any street can be
observed in two different directions (even single-way ones).

B. Local Position Estimates

The local position estimation module is not a contribution
of this paper, and we rely on existing VSLAM algorithms.
Nevertheless, minor modifications might be needed in order
to provide the information as required by our framework.

Generally speaking, the local position Lti ∈ IR3 and
covisibility factors1 cij ∈ IR+ with j ∈ {i − nc, . . . , i − 1}
are required, for each keyframe Ki. The parameter nc defines
the size of the covisibility window and, therefore, the density
of the final graph (Section III-E).

In the event of loop closure between keyframes Ki and
Kl, the relative translation itl ∈ IR3 (as estimated by SLAM)
and the covisibility factor cil between them are also required.

C. Visual Place Recognition

The visual place recognition module compares the appear-
ance of a new keyframe Ki with a sparse appearance map

1In this paper, we use the term covisibility as defined in [6].

through holistic image descriptors in order to relate the local
VSLAM frame to the global map frame.

1) Appearance map: The sparse appearance map M
consists of nM descriptor-pose pairs

M =
{(

dM
j ,MTj

)
, j = 1, . . . , nM

}
, (1)

where dM
j ∈ IRnd refers to the appearance-based image

descriptors and MTj ∈ IR3×SO(2) to the absolute pose2 (in
global map coordinates) of the j-th entry of M , respectively.
In terms of VPR, we stack the map descriptors to construct
the image descriptor database DM ∈ IRnM×nd .

2) Appearance-based VPR: The execution time of the
place recognition module is critical for real-time perfor-
mance, specially when working with city-scale maps. For this
reason, we assume a sparse map, so that the appearance of
an image query can be explained by few dictionary elements.

We formulate the VPR of the current keyframe descriptor
dKi ∈ IRnd and the sparse image descriptor database
DM as a noise-aware `1-minimization problem. The sparse
optimization problem regards noise bases within the recon-
struction error, expressed as

x̂∗ = min
x̂
‖x̂‖1 subject to dKi = D̂M x̂, (2)

where D̂M =
[
Ind

DM

]
is the noise-aware image de-

scriptor database and x̂ ∈ IRnM+nd is the noise-aware
sparse solution. Subsequently, the relaxed, unconstrained
minimization problem associated to (2) is solved by means
of the homotopy algorithm associated to the Basis Pursuit
Denoising (BPDN) problem. For further information about
its computation, we refer the interested reader to [22].

We compute an approximated solution with the homotopy
solver in few iterations and later we obtain the most con-
tributing basis of the dictionary as j∗ = argmax x̂∗

‖x̂∗‖ .
3) Similarity score: Finally, the module provides an

appearance-based similarity score sij∗ ∈ IR+ between the
current keyframe descriptor dKi and the matched map
descriptor dM

j∗ for the regularization of the graph-based
optimization (Section III-E). Similarly to [23], we use a
normalized similarity score, although based on the cosine
similarity SC , as

sij∗ = µns
·
SC(dKi ,d

M
j∗ )

SC(dKi ,dKi−1
)
, (3)

where µns is a score obtained from the previous ns
keyframes that weights sij∗ according to the sequential
appearance evolution.

D. Initialization

The initialization module aims to provide an initial esti-
mate of the rigid body baseframe transformation M T̃L ∈
SE(3) that aligns the local frame to the frame defined
by the appearance map. After initialization, the baseframe
transformation is subsequently refined (Section III-E).

2We assume that the movement of a car in urban environments is modelled
with a 3D position plus heading direction.
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1) Prior conditions: In order to avoid unsuccessful or
degenerated solutions, we impose some initialization con-
ditions. First, the number of matched keyframes has to
exceed a threshold τk (50 in our experiments). Secondly,
keeping the proportion between the singular values of the
trajectory in the range [0.1, 10], we ensure enough curvature
for a consistent initialization. This way, we avoid initializing
with purely straight trajectories as they present ambiguous
rotations along the direction of motion.

2) Alignment estimation: The alignment is performed
through Random Sample Consensus (RANSAC) [24] on all
candidates. The aim of the alignment is to find the 6DoF
rigid body transformation between the local trajectory and
the appearance map positions that minimizes the distance
error metric:

eRANSAC =
∑

(i,j)∈CPR

∥∥∥M tj −M T̃L
Lti

∥∥∥ , (4)

where CPR is the set of indices between the i-th keyframe
and the matched j-th entry of the appearance map M . In each
RANSAC iteration, the transformation M T̃L is estimated
using Umeyama’s closed-form solution [25] with 3 pairs
from CPR, sampled according to their similarity scores.
Despite metric VSLAM do not suffer from strong scale
drift, we empirically found that using the 7DoF closed-form
solution and then filtering out candidate solutions whose
scale factor is not close enough to the identity ([0.8, 1.25]
in our experiments) produces more consistent initializations.

E. Position Information Fusion

The information fusion between local estimates from the
VSLAM system and additional, global constraints from the
appearance map is carried out by optimizing a position graph.

1) Graph Structure: In our formulation, we consider three
different types of observations (see Figure 3):
• Odometry: providing sequential relative translations

between keyframes (from VSLAM). For each new
keyframe, we consider the nc previous keyframes with
the highest covisibility factors. The parameter nc con-
trols the density of the graph, and setting it to 1 yields
the essential graph [6].

• Loop closure: providing relative translations between
distant keyframes in time (from VSLAM). These con-
straints are sparse, less frequent than the odometry ones.

• Place recognition: providing global position constraints
for keyframes (from appearance map). These constraints
are also sparse, but more frequent than loop closure and
one-to-many.

2) State Vector and Error Function: The state vector,
defined by AGA-SLAM, comprises the 3D position of each
keyframe with a global rotation

x =
[
x1 · · · xi · · · q

]>
, (5)

where xi ∈ IR3 denotes the position vector for the keyframe
Ki and q represents the rotation of the baseframe transfor-
mation, parametrized as a unit quaternion.

Fig. 3: Representation of the graph structure to be optimized.
The reference positions from the appearance map are repre-
sented with M tk, and the local VSLAM estimates (odometry
and loop closure) are represented by itj . The state vector is
represented as variable nodes in the graph.

Fig. 4: The sparsity of the appearance map and the geometric
covisibility between keyframes foster that multiple covisible
keyframes (blue triangles within green ellipses) will match
to the same place (red).

The error function is defined to be:

F (x) =
∑

(i,j)∈CPR

fij(xj , q)+∑
(i,j)∈COdo

λ1 gij(xi,xj , q) +
∑

(i,j)∈CLC

λ2 gij(xi,xj , q),

(6)

where

fij(xj , q) = sij

∥∥∥M T̃L−1 M ti − q ⊗ xj

∥∥∥2 (7)

is the distance between the i-th map position and the j-th
keyframe, weighted by the similarity score sij , and

gij(xi,xj , q) = cij
∥∥itj − q ⊗ (xi − xj)

∥∥2 (8)

is the distance between the observed and the current transla-
tion vector form the i-th to the j-th keyframe, weighted by
the covisibility factor cij . Note that through the similarity
score sij , (7) can be seen as a regularization term of the
global function (6).
COdo and CLC represent the odometry and loop closure

connections between keyframes, respectively. The ⊗ operator
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refers to the unit quaternion rotation of 3D points (or vec-
tors). The two regularization terms λ1 and λ2 in (6) control
the relative rigidity of the odometry chain and the relative
importance of loop closure, respectively. The relation of these
parameters with appearance is discussed in Section III-E.3.

Finally, the optimal solution x∗ is given by the state vector
that minimizes the error function in (6):

x∗ = argmin
x

F (x). (9)

3) Appearance regularization: The fusion of metric in-
formation (VSLAM keyframes and map positions) topolog-
ically related (through VPR) is a challenging issue, since
the appearance space is not directly relatable with metric
observations. In order to perform this fusion, we optimize the
graph regarding the relative rigidity of the nodes (determined
by λ1 and λ2) and the regularization term (7), determined
by the similarity score sij . The score is the result of a VPR-
based optimization on the assumption of a sparse appearance
map (Section III-C.2), which spawns a sparse topology
having two main implications (see Figure 4):
• First, the appearance overlap between elements of the

map is limited. One place is sufficiently described by
one element of the database, and this element will be
sufficiently distinct from the remain ones.

• Secondly, highly covisible keyframes from VSLAM
will match to the same place, so the map elements will
have one-to-many connections with keyframes.

IV. EXPERIMENTAL VALIDATION

We extensively evaluated the proposed framework on vari-
ous urban stereo datasets and compared it with ORB SLAM2
[6], an open-source state-of-the-art VSLAM solution. Alto-
gether, we evaluated our approach in more than 70 sequences
from 4 different datasets, in terms of local accuracy, time
efficiency and geo-tagging precision.

We chose ORB SLAM2 as the underlying VSLAM system
for a fair comparison and used 4096-dimensional NetVLAD
descriptors [9] (each one requiring ∼16 KB) to capture
the holistic appearance for the VPR. We carried out the
experimental evaluation with an Intel Core i7-6700K desktop
computer with 16-GB RAM and a Titan X Pascal GPU.

As stated earlier, GPS receivers suffer in urban environ-
ments and thus can lead to inaccuracies when using it as
a ground-truth. We tried our best to identify and remove
inaccurate GPS measurements for the datasets considered in
the experimental evaluation.

A. Datasets

The appearance map was built taking images from Google
Street View3, providing finely geo-tagged images captured
under homogeneous appearance conditions. We extracted
NetVLAD descriptors from images oriented along the two
main street directions [26], covering the city surroundings of
the evaluation sequences for each dataset4 (see Table I).

3Provided and copyrighted by Google: www.google.com/maps
4Experimental validation was not possible in KITTI Vision Benchmark

due to the lack of Google Street View information in Karlsruhe.

TABLE I: Employed Google Street View databases

City Area Images Appearance map
required space

Oxford 11.2 km2 9820 76.71 MB

Seognam 7.1 km2 11082 86.57 MB

Malaga 11.1 km2 37828 295.53 MB

TABLE II: Evaluation of translational RMSE (m)

Dataset ORB SLAM2 AGA-SLAM

Oxford RobotCar No LC 8.77 7.58

Complex Urban LC 16.53 14.31
No LC 17.05 15.39

Malaga Urban LC 8.83 10.96

No LC 11.01 10.88

New Malaga Stereo LC 9.65 12.79

No LC 39.74 15.24

Oxford RobotCar Dataset [27]: collects stereo at 16 Hz
sequences grabbed on a car on Oxford from May 2014
to December 2015 without loop closures, providing strong
appearance seasonal challenges.

Complex Urban Dataset [28]: provides stereo images of
the downtown of Seongnam at 10 Hz, consisting in large
avenues and tall buildings. The resemblance of the whole
downtown conforms an environment prone to perceptual
aliasing.

Malaga Urban Dataset [29]: presents over 35 km of
stereo images collected at 20 Hz on December 2009 over
different areas of the city of Malaga. The dataset provides
loop closures and a temporal shift for almost a decade
with respect to the Google Street View database (grabbed
approximately on 2018).

New Malaga stereo Dataset: data collected on our own
at 20 Hz in the same areas than the Malaga Urban Dataset,
gathered at January 2019 under different weather conditions.

B. Local position estimation

In order to test the accuracy of each method on the
evaluation sequences, we measured the average absolute
translation RMSE [6] of both approaches over 5 executions.
Table II depicts the results, distinguishing between sequences
containing loop closures and not.

The results show that our system improves the perfor-
mance of ORB SLAM2 in sequences where no loop closures
are present. In such cases, the performance of ORB SLAM2
depends solely on its VO module, while AGA-SLAM man-
ages to find matches with the appearance map, thus limiting
the drift accumulation. Also, our approach is not able to
initialize when VO drifts excessively, leading to inconsistent
and intractable trajectories.

In sequences containing loop closures, the performance
of AGA-SLAM drops compared to ORB SLAM2 in some
sequences. In those cases, the holistic appearance regular-
ization shows a deterioration of the estimations since the
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TABLE III: Timing results of each module in miliseconds per frame (median time)

ORB SLAM2 AGA-SLAM

Dataset N GBA Total Descriptor ext. `1 opt. Pos. graph opt. Total

Oxford RobotCar No LC 28 - 256.19 5.12 9.16 3.55 255.87

Complex Urban LC 6 52.97 181.31 15.11 28.63 294.66 475.70

No LC 7 - 171.59 14.90 27.46 16.01 195.21

Malaga Urban LC 8 45.23 218.31 8.81 41.97 28.18 272.37

No LC 13 - 204.84 10.78 49.24 7.12 256.39

New Malaga Stereo LC 3 57.88 259.93 12.21 57.32 25.18 325.44

No LC 9 - 241.03 18.73 92.84 33.09 355.24

topological relations provided by VPR are unable to replace
the accuracy of Global Bundle Adjustment (GBA).

The statistics also represent the influence of the environ-
ment appearance on the performance of out approach, wors-
ening in scenarios with uniform appearance. The appearance
ambiguity hinders the place characterization and the initial-
ization, making the graph optimization less accurate. This
case is particularly remarkable in the Complex Urban dataset,
where the propensity to perceptual aliasing impedes precise
corrections. On the other hand, the proposed framework
outperforms the VSLAM method in the Oxford RobotCar
dataset, demonstrating its robustness under seasonal and
weather changes. A feasible explanation is that historical and
characteristic buildings of central Oxford contribute to the
place characterization and to the accuracy in general.

We compared the time requirements of both approaches,
measuring the average processing time per frame over 5
executions for each sequence and summarized them in Ta-
ble III. The results show a general increase of the time spent
by AGA-SLAM with respect to ORB SLAM2 since every
module demands extra time, although similar performance is
achieved in a CPU-GPU framework without requiring multi-
threading. In the version of ORB SLAM2 attached to our
framework, GBA is the only process disabled, for which we
measured its execution time in the original implementation.

As the results show, the execution time of the VPR module
(descriptor extraction + `1 optimization) is constant for each
dataset. The descriptor extraction is carried out on a GPU,
with constant times for similar image sizes, and the `1
optimization depends mainly on the size of the database of
descriptors.

The position graph is the most time-consuming module,
running only in sequences with appearance constraints (VPR,
loop closures or both). We observed that the complexity
of the graph optimization grows in two different situations.
First, in those sequences where VO drifts excessively, the
position graph needs higher deformations, which requires
more time to be completed. Secondly, loop closures detected
after a long time forces our approach to optimize a large
portion of the graph at once. This last case is particularly
noticeable in Complex Urban dataset.

Fig. 5: A geo-tagged, corrected trajectory (red) compared
with the GPS ground-truth trajectory (green). AGA-SLAM
shows higher drift where there are not enough matches with
the appearance map (blue dots).

C. Geo-tagging estimation

Once the VSLAM trajectory is matched and aligned with
an appearance map constructed from geo-tagged images,
our system can produce geo-tags for each keyframe by
expressing the positions IR3 in GPS coordinates.

The amount of correctly recognized places and low VO
drift are the main conditions for a successful trajectory
alignment with the appearance map. For instance, trajectories
with few matches do not surpass the initial conditions im-
posed in the alignment estimator, as happens in environments
presenting perceptual challenges. The achieved geo-tagging
precision shows that the assumptions to fuse metric and
topological observations are correct, but there is still room for
improvements. Presumably, the appearance map sparsity may
not be sufficient for the current holistic descriptor. The low
accuracy achieved in the Complex Urban dataset may be due
to the high perceptual aliasing present in the environment,
adding uncertainty to the recognition of places from the
appearance map.

An example of georeference is depicted in Figure 5 over a
map5, where the final trajectory appears with several matched
places. As can be seen in the image, the ground-truth GPS
trajectory is inconsistent due to the street canyon effect in a
portion of the sequence. Despite some outliers, the precise
absolute positions of the appearance map lead AGA-SLAM

5Extracted from https://www.openstreetmap.org
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TABLE IV: Geo-tagging accuracy

Dataset Mean Aligned
RMSE (m) sequences (%)

Oxford RobotCar 11.18 61.90

Complex Urban 20.29 55.00

Malaga Urban 16.08 74.36

New Malaga Stereo 17.28 100

to produce accurate and visually consistent estimations.

V. CONCLUSIONS

This work presents AGA-SLAM, a novel, vision-based
framework that extends VO from any stereo-based VSLAM
system by including geometric constraints from appearance
maps. Hereby, we contribute with a pure visual system robust
to appearance changes that provides accurate position esti-
mates and heads towards persistent long-term maps for VS-
LAM. These claims are supported by an extensive evaluation
on 4 public datasets, each one targeting different perceptual
challenges. We showed improvements over the state-of-the-
art ORB SLAM2 system in urban scenarios, achieving high
performance with city-scale appearance maps built from a
public geo-tagged image database (Google Street View). The
proposed framework is able to integrate metric estimations
topologically connected, under a sparse map assumption.

In future work, the proposed framework might be extended
including orientation constraints for full pose corrections, as
the works based on 3D models [2]. Our work might also
be improved to face a wider set of configurations, such as
operating with monocular VSLAM. Finally, the geo-tagging
capabilities can be employed to update appearance maps.
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