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Abstract—This paper presents a method for processing
sparse, non-Gaussian multimodal data in a simultaneous
localization and mapping (SLAM) framework using factor
graphs. Our approach demonstrates the feasibility of using
a sum-product inference strategy to recover functional belief
marginals from highly non-Gaussian situations, relaxing the
prolific unimodal Gaussian assumption. The method is more
focused than conventional multi-hypothesis approaches, but still
captures dominant modes via multi-modality. The proposed
algorithm exists in a trade space that spans the anticipated
uncertainty of measurement data, task-specific performance,
sensor quality, and computational cost. This work leverages
several major algorithm design constructs, including clique
recycling, to put an upper bound on the allowable computational
expense — a major challenge in non-parametric methods. To
better demonstrate robustness, experimental results show the
feasibility of the method on at least two of four major sources
of non-Gaussian behavior: i) the first introduces a canonical
range-only problem which is always underdetermined although
composed exclusively from Gaussian measurements; ii) a real-
world AUV dataset, demonstrating how ambiguous acoustic
correlator measurements are directly incorporated into a non-
Gaussian SLAM solution, while using dead reckon tethering to
overcome short term computational requirements.

I. INTRODUCTION

Many robotic navigation applications require state-
estimation methods beyond unimodal solutions due to four
identified sources of non-Gaussian/multimodal behavior: i)
non-linearity in measurement models [1]; ii) uncertain data
association [2], [3]; iii) underdetermined problems (i.e. more
unknowns than constraints) [4]; iv) physical measurement
process is inherently ambiguous. This paper investigates
latter two of these four identified sources, with the goal
of developing robust simultaneous localization and map-
ping (SLAM). In addition, this paper addresses two major
problems facing many perception systems, namely: han-
dling of non-Gaussian data in an easy-to-understand fac-
tor graph framework, and methodologies that enable real-
time navigation solutions. This work aims to demonstrate
the feasibility, complexity, and importance of non-Gaussian
solutions/methods in the context of applications dealing with
such multimodal and highly uncertain problems.

1D. Fourie, N. R. Rypkema, P. V. Teixeira, J. Leonard are
with the MIT, Cambridge, MA 02139, USA. {fourie, rypkema,
pvt}@mit.edu

2 Woods Hole Oceanographic Instritution, Woods Hole, MA, USA.
efischell@whoi.edu

i ....JJ... 1A .l

range

Fig. 1: Predicted and measured (sampled) acoustic range probability density
values from an underwater robotic data set. Top: the predicted measurement
after initialization coincides with a secondary, incorrect mode; after joint
inference, the predicted range coincides with the correct mode. Bottom: after
inference, the predicted range matches a smaller but correct measurement
mode.

A major concern with non-Gaussian/multimodal work is
the computational complexity that results from relaxing the
ubiquitous Gaussian parametric assumption; the proposed
method presents a adjustable upper bounded computational
load approach during operation of the system, while resolving
fully continuous non-Gaussian marginal estimates for vari-
ables of interest. Our method leverages several concepts from
both existing state-estimation as well as novel researched
methods, and casts these ideas in a natural, common, and easy
to understand methodology. This paper is complementary
to, as well as heavily dependent on, prior computational
reduction by characterizing marginalization operations on the
underlying Bayes tree [5]. The associated clique recycling
methods are briefly discussed here in Section III-B and forms
a critical part of the development towards real-time non-
Gaussian SLAM. Our claim is that the proposed approach
is viable for real-time applications given an order of magni-
tude improvement in computational performance (either by
improved implementation or hardware).

Contributions  of  this  work

include: i) non-
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dead reckon tethers, alongside clique recycling [5], as a path
towards real-time belief based non-Gaussian SLAM; iii)
introduction of an easily reproducible canonical test problem
for underdetermined (i.e. non-Gaussian multimodal) SLAM;
iv) demonstration of a single range beacon non-Gaussian
SLAM navigation solution on real data; and simultaneous
v) demonstration of an end-to-end (sensors-to-solution)
sum-product solution without requiring any Gaussian
assumptions in the navigation processing pipeline.

The next section discusses related methods and prior solu-
tions, followed by our proposed approach and experimental
results. Two sets of results are presented, illustrating cases
iii) and iv) of the four sources of non-Gaussian behavior:
a) a novel canonical underdetermined (i.e. singular) system
and b) real-world AUV results for single-beacon navigation
looking at multimodal processing with ambiguity in range
measurement. Lastly, interpretations and a conclusion is
given.

II. RELATED WORK

In many acoustic and radio navigation applications (e.g.
underwater acoustic or remote sensor system positioning), the
range to a source or target is estimated through correlation
of the received signal with a copy of the transmitted signal
(i.e. matched filter [7]). The response is a energy intensity
over time-of-arrival which does not always produce a clear
distinct unimodal peak, see Vaz Teixeira et. al. [8]. Bayesian
(e.g. Kalman) filtering techniques are often employed to track
the correct portion of the correlator output, however, most
filtering methods marginalized-out all but the current state
making them ill-suited [9] for further development of joint
smoothing with other multi-sensor data. Although SLAM
is often used for multi-sensor processing, direct use of this
correlator intensity output is poorly suited to state-of-the-art
Gaussian-only methods, as both acoustic and electromagnetic
signals are subject to phenomena (e.g. non-linearities, multi-
path propagation, interference) that result in a highly non-
Gaussian, and often multimodal correlator output. Figure 1
illustrates multipath interference in the correlator output of a
real-world acoustic time-of-flight signal, prioritized selection
of the highest peaks would, in this case, be incorrect.

Recent work by Rypkema et. al. [10] demonstrates the
feasibility of a passive on-vehicle beam-forming and particle
filtering approach, using a low-cost Bluefin SandShark AUV
[11]. Particle filtering followed by SLAM [12] means that
measurement data association decisions are marginalized out
and the new Gaussian-only measurement likelihood assump-
tion is made for consumption by the SLAM framework.
Seminal work by Newman and Leonard [13] demonstrated
a smoothing approach by applying pre-filtered LBL range
measurements in an EKF-SLAM framework. This work was
further extended by Olson et. al. [14] by improving the
method of outlier rejection.

Leitinger et. al. [15] propose a range-based SLAM tech-
nique that explicitly handles multipath effects by instantiating
both real and virtual (image) beacons. This requires handling
association of range measurements, which is performed using

a probabilistic method. Pacholska et al. [16] tackle the range-
only localization problem by employing a parametric model
of the vehicle trajectory, and formulate the recovery as a
quadratic optimization problem, dependent on the trajectory
parameters and range measurements, whose uncertainty is
assumed to follow a zero-mean Gaussian. This problem is
then relaxed to a linear form, and conditions are presented
for the successful recovery of trajectories.

Fourie et. al. [2] recently introduced a framework for
performing non-parametric inference over a factor graph,
providing a method of solving graphs that include non-
Gaussian and multimodal constraints. This framework was
used in [4] to estimate the trajectory of an AUV using raw
acoustic measurements output by matched filtering and beam-
forming, without having to integrate a complex and carefully
tuned outlier rejection pre-filter. This approach allowed for
direct processing of non-Gaussian acoustic measurements
produced by conventional beamforming and matched filtering
(as shown in Figure 1), without having to artificially ‘fit’
Gaussians to these distributions. In this work, we seek to
improve prior navigation work [10] by directly converting
(i.e. tightly coupling) the acoustic front-end correlator as a
probability likelihood [17] into a non-Gaussian factor graph
SLAM framework, thereby avoiding any maximum point
selection or Gaussian belief assumptions in the sensing to
inference pipeline.

III. METHOD

For many applications, the long term robustness of the
stand-alone navigation system is significantly more important
than the instantaneous position accuracy, as long as post-
hoc data processing can recover the desired accuracy and up
to some tolerable risk. For example, long-endurance AUVs
require a reliable navgition solution, which can leverage all
ambiguous sensor data including uncertain loop closures in
a sparse feature environment. Navigation reliability may be
improved for AUV applications either with higher accuracy
(and more expensive/power-hungry) sensors, or by improved
data fusion of heterogeneous sensor data streams. The ap-
proach presented in this paper trades instantaneous accuracy
in favor of more navigation robustness using methods in non-
Gaussian/multimodal SLAM that fundamentally address the
underlying probability uncertainties at an increased compu-
tational load. We posit that—considering the AUV use-case
example—a slower SLAM solution cycle time (e.g. on the
order of tens of seconds) for a full factor graph solution is
viable, if the benefits of significantly increased robustness
helps enable long-term navigation autonomy. Furthermore,
SLAM-based joint data post-processing can also allows pro-
vide accuracy improvements for data products frequently
required for survey, inspection, and mapping applications.

A. Factor Graph SLAM

While exploring the world, a robot incrementally collects
sets of measurements Z = {z;.;} at each time step ¢. These
measurements are made locally involving only a few hidden
variable states. This sparse structure is best leveraged using
a factor graph modeling language, as illustrated in Figure 2.
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Fig. 2: Illustration of factor graph construction during AUV vehicle collecting data from the environment: odometry factors (blue) relate the successive
vehicle poses (green) and range constraints (brown) relate the vehicle poses to the beacon location (light brown). Dead reckon tethers (red) provide an
unified means of near instantaneous state-estimation while a new SLAM is busy solving, while incorporating trajectory optimization.

Each sensor measurement is modeled by a their own mea-
surement function ¢; (©;, z;) over a subset of variables ©;.
These functions either construct or already are a probabilistic
likelihood model, or factor, py, = p(Zy, = 24, |©®;) € P;
P denotes the space of all allowable probability density
functions, and the union of all likelihoods is called the set
of factors F = J, ps, -

Assuming that measurements z;, z; are taken from statis-
tically independent processes Z;, Z; given the factor model
{piuj}(i # j), the inference problem can be formulated
as a joint probability distribution through a large product
operation. Considering the variables of interest ®, factors F,
and a collection of edges £ between them, the factor graph
G ={F,©,&} encodes

p(©12) x[[p(z10) [[(©))

(D

where partition scaling taken as constant due to the indepen-
dence assumption. This allows further simplification of the
unnormalized joint probability function. By the chain rule,
this product of independent measurements Z—through like-
lihoods p (z4, | ©;) and variable priors p(® ;)—represents
the unnormalized, non-Gaussian posterior joint probability
density [6]. The inference task now becomes to invert the
system and estimate the belief over state variables given the
data p(Z|®) — p(O|Z) € P that likely produced the
received measurements Z.

B. Solving Chapman-Kolmogorov (& Clique Recycling)

While cyclic factor graphs are well suited for combining
various sensory data streams, their cyclic structure (i.e.
loop-closures) renders them hard to compute algebraically.
Tractability is addressed by factorization into an acyclic
Bayes tree [18], [5]: the process first selects a variable
order [19] to guide construction of a chordal Bayes net-
work [20] using a bipartite elimination game [21], and

then discovers cliques through the maximum cardinality
search [22]. Each clique k in the represents a partial joint
over a subset of frontal variables © r ;. with their connected
factors likelihoods i’ and priors j'

on Ch
p(Ork|Osk,2zk ) OCHP(ZW |©,) HP(GJ'/)- (2)
i 3’

These factors separate the frontal variables from the rest
of the factor graph via the separator variables ©Og j, with
Ock = OF LUBg . The tree of cliques describes a sequence
of statistical dependencies staring from the leaves along
parallel branches up to the root clique:

My (Ock) xp(OFk | Osk, 2k ) Hmu|Y (Os.u), (3)

where incoming belief messages from each child clique u is
the out-marginalized partial joint posterior of separators:

M)y (Osu) = /_ My (©cu) doFu, “4)
where variable marginalizations take place over their respec-
tive manifold domains [23], 0p ) € Z.

Egs. (3) and (4) describe the general Chapman-
Kolmogorov transit integrals that both describe familiar belief
propagation as well as Bayesian filtering. The filtering case
can be recognized when considering an acyclic factor graph
forming a long chain—a hidden Markov model—and chrono-
logical variable order for elimination into a linear Bayes
tree; thus the messages m,|y (©s,,) represent the forward
propagating belief that is familiar in recursive methods such
as particle or Kalman filtering (assuming messages my,y are
Gaussian).

It is precisely this structure of the Bayes tree that allows the
computational complexity to be controlled by the designer, by
selecting how many of the clique beliefs M,y (©c¢,x) should
be recalculated; leaving the (likely older) cliques as though
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out-marginalized — this is directly analogous to conventional
filtering. The characteristics of marginalization and recycling
operation on the Bayes tree are described in more detail by
Fourie et. al. [5]. The criteria by which variables (ultimately
cliques) in the factor graph are marked for marginalization
can vary; for the purposes of this work, a first-in-first-out
fixed-lag window of non-marginalized variables is used. As
the mission progresses, more variables and in essence a
larger part of the Bayes tree is recycled, thereby focusing
computational resources only on the newest variables added
to the graph.

Lastly, the numerical calculation of clique partial joint
posteriors My,y (©c,x) can be performed by any cho-
sen method. Traditionally, when conguency of parametric
Gaussian-only assumptions is used, the clique’s maximum-a-
posteriori estimate is sought from the dense least-squares ob-
jective 07, = argming,, , —log My (©c k). Adaptations
such as max-mixtures at factor [24] or clique level multi-
hypothesis [25] may also be used to solve for eqs. (3) and
4).

However, a more capable non-Gaussian approach is need
to resolve the Chapman-Kolmogorov equations generated in
this paper, since the resulting joint partial posteriors are
simultaneously highly non-Gaussian and multimodal. Our
approach follows earlier work on non-parametric belief prop-
agation [2], [23] to resolve full functional belief estimates of
eq. (4), which together with clique recycling on the Bayes
tree is called the multimodal incremental smoothing and
mapping (MM-iSAM) algorithm [4]. The Kernel Density [26]
posterior estimation approach was inspired by [27] and is
best summarized as a multiscale, nested-mini-batch Gibbs
sampling process which is based on successive functional
convolution and function product operations.

C. Dead Reckon Tether

A meaningful fixed-lag window still requires non-zero
computation time which likely exceeds the instantaneous
real-time timing requirements. The dead reckon tethers
(DRT), in Figure 2, provides high-rate localization estimates
by using a mutable odometry factor (either parametric or
non-parametric) starting from the latest gauge variable (i.e.
recently SLAM-inferred). The tethers operate directly on the
factor graph and can use the same odometry factor mecha-
nization as the ongoing SLAM solution, but are separately
updated from sensor data at high-rate to produce near instan-
taneous state estimates. By spanning over an unsolved section
of the factor graph, the DRT allows for additional SLAM
compute time. This architecture also provides a framework
for pricing various sensor technologies: the cost of a blind
inertial odometry solution [4], [28], for example, should
sustain the required drift accuracies over the computation
period required, see Figure 2.

After a large data fusion calculation, the step transi-
tion from DRT1 to DRT3 as primary estimate may cause
a discrete jump in the state estimate, which may induce
poor/unsatisfactory control performance in a conventional
closed-loop system architecture. However, DRTs also provide

a solution by combining trajectory planning and model pre-
dictive control optimization routines into the factor graph as a
joint inference process, as suggested by Dong et al. [29] and
Fourie [4]. In Figure 2, DRT1 is anchored on gauge-variable
x1 and the result can be directly compared to waypoint target
wps for a real-time control solution. Forthcoming work using
intelligent message passing on the Bayes tree will address
how to prevent errors in the future trajectory portion from
adversely effecting the historic portions of the factor graph,
a problem identified in [29].

IV. EXPERIMENTS AND RESULTS

Two experiments (using simulated and real data) demon-
strate how the proposed method copes with two of the four
identified sources of non-Gaussian behavior described in
Section I: iii) underdetermined problem situations and iv)
physical measurement process uncertainties. The experiments
aim to demonstrate the method feasibility and that the method
is possibly one of the first truly non-Gaussian-belief (sum-
product) SLAM navigation approaches with controllable
computational complexity. The first experiment investigates
underdetermined SLAM without the use of DRT, and using
only Gaussian factors that still produce highly non-Gaussian
posteriors. The second example is based on real-world data
and demonstrates a single range system with the addition
of non-Gaussian factors and DRT tethers for instantaneous
solutions. All results presented here were performed using
the MM-iSAM implementation [30], running on a laptop
equipped with an i7-9750H CPU at 2.6GHz and 64GB of
RAM.

A. Underdetermined Range-Only Example

To aid with the lack of canonical non-Gaussian SLAM
problems in literature, the following simulated two dimen-
sional problem is constructed to highlight how underdeter-
mined behavior manifests, and that it cannot be directly
solved with conventional linear algebra techniques. A pro-
gression of repeated solutions follows the addition of each
new pose variable, along with sparse measurements so that
the number of unknown dimensions always exceeds the num-
ber of measurement dimensions. In effect, this problem is a
singular system for which a unimodal inversion p (Z |0 ) —
p(©|Z) is not possible, and the resulting variable marginal
posteriors are non-Gaussian and multimodal.

Figure 3 shows the ground truth of the vehicle (cyan
line) as it moves between four unique landmark beacons
in a series of 13 distinct positions tracing out the shape
of the letter ’e’. The true locations of the two prior
known red landmarks are L1:(10,30), L2:(30 — 30), and
two prior unknown cyan landmarks are L3:(80,40) and
L4:(120,—50). Range measurements from pose to beacon
are indicated in Plots A and B using magenta lines and
do not exceed 150 m. The noteworthy vehicle positions
are at P1:(0,0), P3:(100,0), P5:(100,100), P7:(0,100),
P8:(0,50), P9:(0,—-50), P10:(0,—100), P12:(100,—100),
P13:(100, —50), with intermittent values midway between
their neighbors. All odometry and beacon ranges are
taken as 1-dimensional, normally distributed values only
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Fig. 3: Underdetermined trilateration example. A. Marginal posterior belief for landmark L4 in bottom right with nearly infinite possible distinct locations.
B. Four distinct modes are shown for pose 12 when relying on two landmarks. C. Trajectory hypotheses for first 9 poses - note the two starting location
modes, M1 (cyan, coincident with grount truth GT) and M2 (pink). D. Various trajectory hypotheses for pose 13.
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Fig. 4: Top, distinct sustained modes in all pose and landmark marginals.
Similar variables are grouped by color throughout the entire robot trajectory.
For example, landmark L4 is only observed at the second pose with near
infinite possible distinct locations. Notice how the mode counts collapse as
more measurement likelihood information is gathered. Due to weaker con-
straint, L4 maintains around three distinct modes throughout the latter part
of the robot trajectory. Bottom, total number of distinct modes considered
in the system.

— e.g. the odometry factor from P1 to P2 is taken as a
N (= 50,0 = 3). After each new pose and ranging, a full
factor graph solution is computed, using the previous values
as initialization for the next.

After adding P2 and solving, the contour lines in Plot A
Figure 3 shows the marginal posterior belief for the unknown
landmark (bottom right) p (ﬁg | Z), clearly showing the
highly non-Gaussian and multimodal nature of the beliefs.
Note that marginal posteriors for P1, P2, L1, L2, L3, and L4
were all simultaneously recovered, but Plot A only shows
the marginal for L3. Plot B shows the marginal over pose
P (]312 | Z ), which is clearly has four distinct visible modes,
as well as significant probability density at the true location
(bottom right of the ’e’). Note that the ground truth and main
trajectory shown in Plot B are coincident as the cyan lines,
and that the true mode is not the maximum-a-posteriori point.

To simplify the visualization, Plots C and D depict a

manual interpretation of the variable posterior marginals by
fitting normal densities to each of the distinct modes found by
MM-iSAM. Since the starting position is initially unknown,
the two ranges from red landmarks L1 and L2 produce two
intersections — i.e two modes for possible starting location.
This is shown in plot C of Figure 3 by the cyan (M1)
and magenta (M2) lines for position 1. P1 through P3
sustain two modes (M1 and M2) post inference, and pose 4
drops down to only one mode. Plot C shows four trajectory
hypotheses recovered from data for the first nine possible
pose locations, and Plot D indicates the resolved trajectory
possibilities through pose P13. Each of the traces are alternate
trajectory hypotheses that was recovered by the multimodal
rempresentation, and which fit the data in a sufficiently likely
way. Positions 5 through 7 again see a uptick in modes,
shown as the cyan and green (M3) traces, and similar for
poses 8 and 9 with the cyan and yellow trace (M4). The
process continues with modes M5 through M10 through to
pose 13, as shown in the right plot of Figure 3.

Note that the main mode of interest, M1, is tracked
throughout the entire SLAM problem growth and completely
solves after each new pose addition. The parasitic loss of
modes are not permanent and can be reacquired depending on
stochastics, solution quality, or introduction of new data, see
Figures 3 and 4. There still is a low likelihood second mode
at P4 as the total mirror image around the two red landmarks,
but this mode is dropped due to its stochastic low likelihood.
Repeat runs sometimes produces the same set of “nearby*
modes surrounding the M2 case, while dropping the M1 case
presented here. While the error statistics of this example have
less immediate value for the scope of discussion, and given
a lack of meaningful metric for non-Gaussian distributions,
a long format discussion with more detail is available for
further reference [4]. Furthermore, runnable source code for
this example is available as open-source software along with
the MM-iSAM solver [30].

B. Underwater Acoustic Ranging Navigation

This experiment aims to show, by means of post-
processing real-world AUV data, the feasibility of devel-
oping a fully non-Gaussian factor graph SLAM solution.
To demonstrate the benefits of the non-Gaussian SLAM
approach, a solution is constructed using only a subset of
the available data—i.e. a single hydrophone/beacon—from
the five-hydrophone data that was previously independently
shown by Rypkema et. al. [12], [10]. This demonstrates a
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Fig. 5: Diagrammatic system overview. A single acoustic beacon periodically
transmits an acoustic signal which is synchronously received by a five
element iUSBL hydrophone array mounted on the AUV. This recorded
acoustic data is processed offline by matched filtering and beamforming,
followed by sampling, and finally by the non-parametric SLAM framework.

Fig. 6: Photo of our commercial Bluefin SandShark miniature AUV outfitted
with a custom pyramidal iUSBL hydrophone array mounted above the nose
(inset).

real-world underdetermined measurement (i.e. weak observ-
ability) environment, while simultaneously using inherently
ambiguous (non-Gaussian and multimodal) raw acoustic
correlator measurements, see examples in Figure 1. This
increased ambiguity is either very difficult or impossible
to resolve with conventional unimodal Gaussian-only ap-
proaches. Lastly, this experiment is also complementary to
related work on synthetic aperture sonar SLAM [1].

1) Experiment Setup: A Bluefin SandShark AUV [11]
outfitted with our custom acoustic payload [12], shown in
Figure 6, was operated on a section of the Charles River
adjacent to the MIT sailing pavilion. The acoustic beacon
was submerged and fastened to the pavilion dock in a
fixed, known location at a depth of approximately 1 m,
transmitting a unique GPS time-synchronized acoustic chirp
every second. Reference data was recorded by means of a
second time-synchronized, but frequency separated, beacon
also mounted to the dock and post-processed to provide a
conventional reference long baseline (LBL) arg max solution
for the vehicle position during the mission. The AUV was
preprogrammed to travel back-and-forth along the dock in a
racetrack pattern of length 80 m and width 10 m at a depth
of 2 m and a speed of 1.4 m/s. The duration of the mission
was set to 1400 s. After processing the reference data, we
found the actual track covered to be stretched longer and
racetrack orbits slowly drifted South-East.

2) Matched Filter Ranging and SLAM: The acoustic
chirps were received via an AUV-mounted hydrophone,
digitized and recorded by custom onboard electronics. The
AUV is also equipped with a GPS time-synchronized chip
scale atomic clock (CSAC) to allow for one-way ranging
over reasonable mission times. One-way time-of-flight is
calculated as the energy intensity response [7] from the
recorded acoustic data using matched filtering (MF) and a
template of the chirp template signal

yin) = 3 hln— Klai[], )
k=0

where z[n| is the signal recorded by the hydrophone, and
hln] is the template of the known transmitted waveform
that produces the energy intensity response y[n]. This energy
intensity over the time-of-flight response is converted into a
pseudo range probability likelihood density by deconvolving
the best known channel model m[n] and exponentiating the
negative energy response function [17] p(Z,|X;, L ). The
probability likelihood z ~ Z, is normalized and converted
into the range-domain z € R by multiplying samples by
the speed of sound c¢ and dividing by the sampling rate S —
examples are shown in Figure 1.

In contrast to parametric methods, we seek the full energy
over time-of-flight response. Natively constructing range fac-
tors from acoustic correlator likelihood p ( Z, | X;, L ) avoids
an maximum point selection, and therefore any loss of infor-
mation only occurs during joint SLAM inference. Thereby
preserving the entire range of possible values. Odometry
factors are also added to the factor graph using a more
familiar multivariate normal error model from a heading
and speed motion models using inertial measurement unit
(IMU) gyro rotation and propeller rotation rate. Uniformly
distributed (£5°) magnetometer-derived yaw priors are also
added to each pose. A location prior is supplied to the beacon
as well as to the first AUV pose in the odometry chain using

200
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time [s]

100

50

0 500 1000 1500

# poses

Fig. 7: AUV example: SLAM solve times for individual full non-Gaussian
belief factor graph solutions using MM-iSAM — a new solution occurs after
every ten new poses are added. The red trace is the initialization time s for
all variables that have been added since completion of the last solve. The
blue trace is the Bayes tree solution time with clique recycling [5] enabled
and a lag-window of 50 unmarginalized variables selected.
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Fig. 8: SLAM result showing AUV performing several passes off the Dock
at the MIT sailing pavilion. The black trace shows the mean point estimate
for each pose in the trajectory, surrounded by a shaded region representing
the actual marginal beliefs of each pose superimposed on a common image.
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Fig. 9: Zoomed in region of Figure 8 comparing the “real-time” dead
reckoning tether DRT1 (red trace) to the non-Gaussian SLAM solution
estimate (black), which is available after the joint solution is calculated.
Note although the tether result is noisy, it is within the marginal beliefs for
each of the poses.

GPS just before the vehicle dives. Figure 9 shows a portion
from Figure 8 to better illustrate Busy Solving and Data
Gathering aspects from Figure 2.

C. Single Beacon Results

The results utilize both the clique recycling [5] and DRT,
Section III-C, methodologies from Section III to upper bound
on computational load. Figure 8 shows the MIT sailing
pavilion and resolved trajectory. The red trace represents the
active DRT solution (DRT1 in Figure 2) which is available
near instantaneously during the Data Gathering phase, but
is more noisy. The black trace in Figures 8 and 2 shows
a maximum-a-posteriori point on the full variable marginal
beliefs (i.e. equivalent to maximum-a-posteriori), which be-
come numerically available a short time after real-time as
variables from the Busy Solving segment are completed. As
discussed in Section III-B, the shaded region in Figure 8 is
from variables that have been (at least) Solved Once. The
dark blue shading is the current belief estimate of the latest
pose, and the lighter shading is the marginal belief probability
mass (i.e. confidences) of older poses.

[m]

North

1500

East

1500

time [s]

Fig. 10: North and East position time series estimate. The SLAM result is
shown as the black trace, with DRT as red and two beacon LBL reference
in magenta.

Both the most recent instantaneous DRT position esti-
mate (red trace) and SLAM-derived maximum-a-posteriori
position estimate (black trace) are compared to the LBL
reference estimate (magenta trace) in Figure 10. The SLAM
solution shown in Figure 10 does not exactly correspond to
the LBL solution during the center part of the trajectory,
but returns during the last quarter. This is due the trajectory
running tangential to the range measurement towards the
single beacon, where displacement along the direction of
the dock is weakly observable. The discrepancy in range
measurements at this point is small compared to the size
of East-West offset.

The quantified 1 ¢ variation between the SLAM solution
and the dead reckon tether is less than 4 m over the entire
20 man trajectory, as shown in Figure 11. Furthermore,
the distribution shapes are concentrated around zero which
is indicates minimal systematic errors in the dead reckon
tether approach. In addition, the aggregate errors between
SLAM and the LBL reference are tabulated in I for various
parameter sweeps relevant to the proposed approach, such
as marginalization lag-window size or odometry factor noise
level.

Lastly, the computation time of SLAM with tree clique
recycling enabled is indeed bounded, as shown in Figure 7.
The result also shows that for a lag-window of 50 un-

DRT error, 0=3.50 DRT error, 0=2.289
0.20 0.

>y

P 0.15 R

-~ 0.

n 0.10

8 0.05 0.1

T 400 bl 0.0 L sl '

5-10 -5 0 5 10 5 ) 5 1
x [m] y [m]

Fig. 11: Error between instantaneous DRT solution and delayed full SLAM
result aggregated for all poses.
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TABLE I: Summarized AUV 1-beacon error results as 1 o from post-hoc 2-
beacon LBL reference, as pose by error similar to Figure 10. The pose-solve
stride is fixed at every 10 poses, but range factor p stride either 3 or 4, tree-
based marginalization /ag length, and odometry noise (small/medium/large).

‘ ps‘/P ‘ lag ‘ Qodo ‘ lo[m] ‘ RMSE [m]

#1 3 50 | Med. 9.77 19.6
#2 3 50 Lrg. 4.24 12.0
#3 4 30 Sml. 4.49 9.52
#4 4 30 sml. 4.28 9.41
#5 4 30 Lrg. 42.75 22.32

marginalized variables, the total initialization and SLAM
processing time is, on average, limited to less than 200 s
per solve iteration, sustained throughout the entire 1400 s
trajectory. As far as we are aware, this is the first time a
fully non-Gaussian/multimodal SLAM approach of this kind
has been presented.

V. CONCLUSION

While the results presented herein were computed with
prototype level software, we posit that with a 10-fold im-
provement in processing performance—mostly by means of
improved software performance and resource utilization—
non-Gaussian SLAM approaches should become viable for
real-time applications in the years ahead. This work demon-
strates a factor graph centric approach for multi-sensor data
fusion is viable and can operate in circumstances where
conventional methods fail, specifically in cases of underde-
termined constraint or high measurement ambiguity. Thus,
front-end navigation system design efforts can be simplified
since ambiguous measurements no longer have to be pro-
cessed/filtered to fit a unimodal Gaussian assumption. The
improved flexibility of such an approach does incur a higher
computational cost, however, this paper in combination with
other work [5] outlined a mechanism to upper bound the
computational load of the non-Gaussian/multimodal SLAM
solution.
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