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Abstract— In this work, we present a vision-only global
localization architecture for autonomous vehicle applications,
and achieves centimeter-level accuracy and high robustness in
various scenarios. We first apply pixel-wise segmentation to
the front-view mono camera and extract the semantic features,
e.g. pole-like objects, lane markings, and curbs, which are
robust to illumination, viewing angles and seasonal changes.
For the scenes without enough semantic information, we extract
interest feature points on static backgrounds, such as ground
surface and buildings, assisted by our semantic segmentation.
We create the visual global map with semantic feature map
layers extracted from LiDAR point-cloud semantic map and the
point feature map layer built with a fixed-pose SFM. A lumped
Levenberg-Marquardt optimization solver is then applied to
minimize the cost from two types of observations. We further
evaluate the accuracy and robustness of our method with road
tests on Alibaba’s autonomous delivery vehicles in multiple
scenarios as well as a KAIST urban dataset.

I. INTRODUCTION

Significant improvements in self-driving vehicles have
been made in the last decades, which have been extended
to various areas including robo-taxi, autonomous bus and
delivery vehicles [12]. Map-based global localization is a
fundamental functionality for autonomous driving vehicles
with high-definition (HD) map based solution, i.e., decision
and planning modules rely on the road elements from pre-
built HD map. A robust and precise localization module
serves as a prerequisite for a safe and healthy autonomous
software architecture.

The solutions of visual global localization are mainly
separated into two ramifications, i.e., tracking and matching
with non-linear optimizer upon the usage of global map,
and end-to-end learning network for place recognition. As a
traditional approach, structure-based visual positioning can
also be divided into two categories. The first category is
to track the extracted features from current image frame
with a pre-built feature map [10], [20], [26], which heavily
depends on the repeatability and consistency of feature
extraction under different viewing angle and illumination
conditions. Recently, the corner features extracted by deep
neural network (DNN) models [5], [23] have outperformed
the traditional handcrafted methods such as speeding-up
features (SURF) [21] or oriented FAST and rotated BRIEF
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(ORB) [22]. Tracking with the unsupervised learned features
exhibits higher robustness to illumination change, and yet
still fails to find correspondences in some extreme conditions
or confused by repeated patterns. Instead of using textural
information, some research works use semantic features
to improve robustness. The research work [8] use lane
markings as observations to match with global map, while
[19], [32] keep tracking with curb and other road structural
features for localization. More than that, with the develop-
ment of pixel-level semantic segmentation, more semantic
information can be stably extracted as landmark features, e.g.
the traffic signs [16], and pole-like objects [17]. However, the
semantic feature based approaches might not work properly
when lacking of enough effective semantic information in
the scene. In order to achieve more robustness, some research
works manage to fuse the semantic segmentation with corner
features. The research work [30] adopts semantic segmen-
tation mask to filter the outliers of optical flow during the
visual-odometry prediction. [4] combines the depth variance
and semantic information to produce accurate key-points in
Mono-SLAM system.

In recent years, learning-based localization methods have
been proposed to solve pose estimation [7], [26]. They
learn the features with stable appearance over time [18],
and train CNNs to regress 2D-3D matches [2] or camera
poses [29]. The work PoseNet [15] first proposed the end-
to-end camera 6 degree-of-freedom (DOF) pose estimation,
and is proven to be feasible in various occasions. MapNet [3]
enables learning a data-driven map representation, exploits
cheap and ubiquitous sensory inputs like visual odometry
and GPS in addition to images and fuses them together for
visual localization. The work [3] shows that the data-driven
approaches perform poorly in pose estimation with respect
to accuracy, compared to the traditional feature matching
approaches.

To this end, we proposed a localization framework that
combines both semantic feature observations for higher ro-
bustness as well as interest-point features for longer cover-
age. With the assistance of LiDAR point-cloud map, we are
able to extract the precise ground truth semantic features
in 3-D space. Fig. 1 shows the data process from the
input image to optimized poses. In Sec. VI, we demonstrate
that our visual algorithm attains state-of-the-art localization
accuracy, high robustness and capability for generalization
with multiple experiments.

The contributions to this work are twofold. Firstly, we
combine the pixel-wise semantic segmentation as well as the
key-point features in a coupled flavour that we use semantic
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masks to reject the features points located on dynamic
obstacles, movable or changeable objects like vehicles or
trees. Secondly, we integrate the LiDAR point-cloud map
for its high precision as the input global reference. On the
other hand, it provides a reference or ground truth, in some
sense, for the feature map built by structure from motion
(SFM).

Fig. 1: Framework architecture for our visual localization
module with input source as monocular image, visual-inertial
odometry and global map. The main pipeline is serialized
as four sub-blocks, i.e., image preprocessor, feature detector,
feature matching and pose optimizer. The image preprocessor
generates semantic segmentation and interest feature points
with two DNN models. The feature detector extracts seman-
tic features and interest-point descriptors, for matching with
the corresponding layer in global map. The pose is iteratively
solved by minimizing the lumped observation cost with a
Levenberg-Marquardt (LM) optimizer.

II. IMAGE PREPROCESSING

In order to obtain refined features to be residualized, raw
images go through the preprocessor pipeline, where pixel-
level information is extracted and quantized into vectors
by two DNN models, 1) semantic segmentation to extract
semantic regions and 2) key-point extraction with image
point and descriptor for point features. Both architectures are
restricted to be small and efficient for real-time processing on
resource confined machines yet accurate and robust with high
mean intersection over union (mIoU) index. Thus we design
our network based on one of the most efficient semantic
segmentation networks, BiSeNet [31] for the first task and
adopt the unsupervised interest-point learner [9] for the
second task. Fig. 2 shows the image preprocessing pipeline.

A. Semantic Segmentation

In the semantic segmentation task, we select the high
efficient architecture, BiSeNet [31] as the backbone, which is
remarkable for high-speed and real-time process. However,
the original BiSeNet encounters low mIoU results for pole-
like objects such as lamp posts or tree trunks. Such cases may
be caused by the down-sample characteristic of convolutional

Fig. 2: Image preprocessing pipeline: (a) The raw input
image with the size of 512⇥640; (b) Semantic segmentation
network output with six categories, i.e., static elements,
including “poles”, “trunks”, “curbs”, “landmarks”, “roads”
and “buildings”; (c) Key-point extraction; (d) Points filtered
with effective semantic masks.

layers in the last several layers of the network, as the pole-
like objects occupy only several pixels in width and are
hardly recognized by the network. In order to improve the
performance, an upsampling structure is introduced to solve
the pole-like object issues, shown in Fig. 3. Deconvolu-
tional layers [11] outperforming other unpooling layers, is
demonstrated to be effective in reconstructing fine-details of
structures. Therefore, we apply three deconvolutional layers
cascade with point-wise convolutional layer [13], which con-
tains 1⇥1 kernel to achieve an enlarged feature map instead
of classical interpolation. Performance of mIoU (Table. I)
and visual results reveal that this scheme achieves higher
semantic segmentation quality in edge details, especially
beneficial for pole-like object categories.

Fig. 3: Deconvolutional structure for up-sampling task to
achieve refined details of edge features.

TABLE I: The mIoU performance comparison

No. Categories Our Method BiSeNet [31] Deeplab-V3
1 Poles 68.6 56.7 63.7
2 Trunks 64.8 55.2 62.1
3 Curbs 75.2 68.9 77.8
4 Landmarks 82.7 75.4 81.1
5 Roads 97.6 95.2 98.0
6 Buildings 91.7 90.7 93.5
7 Total 80.1 73.7 79.4

1) Key-Point Extraction: For scenes that lack effective
semantic information, e.g. the open square, trails in the
residential areas or inside tunnels, we have to consider
the textural information for global localization even though
it is affected by illumination and affine transformation.
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Fig. 4: Refinement of edge feature segmentation details: (a)
Segmented image; (b) Segmentation detail of lamp post by
BiSeNet; (c) Segmentation detail of our method.

Fig. 5: Super-Point architecture: the whole data processing
pipeline is based on the encoder-decoder framework.

Nowadays, more learning-based methods are replacing hand-
crafted methods for their promising performance. Super-
Point stands for one of the most efficient structures and a
reasonable training pipeline.

In order to achieve better accuracy of the key-points, we
enlarge the VGG network in Fig. 5 to store more textural
information in the first step. In both decoders, reshape
and interpolation operations are used to adjust the spatial
dimension of output results.

III. VISUAL FEATURES EXTRACTION

Visual features used for optimization are further extracted
from the image segmentation and the interest-point network
output. The extraction methodology is as follows.

A. Ground Marker Features

Consider that a new image frame k, we can extract
ground marking points1 pg

I with its identical semantic label,
i.e., the lane markers (including dashed lines, solid lines,
arrows, crosswalks and so on) and the curb points in the
image frame coordinate {I }. For the last estimated pose
TW

C,k�1 =
⇥
RW

C,k�1 tW
C,k�1

⇤
, where TW

C is the homogeneous
transformation matrix from world frame {W } to camera
frame {C }, we are able to derive the current predicted pose

1The superscript stands for the semantic label and the subscript stands
for the coordinate frame. We use lowercase to represent point 2-D point in
image frame and uppercase to represent 3-D point.

Fig. 6: The ground features (lane markings in green and
curb lower edge in blue) extraction procedure: (a) Mask
the semantic label in the raw image; (b) Obtain feature
depth with map ground point projected into camera frame
by predicted pose; (c) Re-project semantic features into 3-D
point-cloud.
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C,k with the delta motion from the VIO odometer,

R̄W
C,k = RW

C,k�1
�
RO

C,k�1
��1 RO

C,k (1)

t̄W
C,k = R̄W

C,k
�
RO

C,k�1
��1 �tO

C,k � tO
C,k�1

�
+ tW

C,k�1 (2)

where RO
C and tO

C stands for the rotation and translation
from odometry coordinate frame {O} to {C }. Based on the
ground surface planar assumption, the inverse depth dp of
point pg

I can be recovered with the adjacent 3-D points in
the ground surface map points Pg

m. The nearest neighbour
of pg

I from re-projected map points p̄g
I can be found by a

kD-tree process,

p̄g
I ' p

h�
T̄W

C,k�1
��1 Pg

m

i
(3)

where p[·] is the camera intrinsic model. Fig. 6 explains the
procedures for ground marking feature extraction.

B. Ground Sampled Features

Ground points are sampled using the same methodology
with ground lane markings. The sampled points are projected
to camera frame to form constraints aimed at height, roll and
pitch channel, especially in areas without effective ground
marking features.

C. Pole-like Features

A pole-like object (e.g. lamp posts, tree trunks, etc.)
provides bearing constraint for solving camera pose, and
multiple constraints determine a unique 6-DOF pose. With
the pixel-level pole-like segmentation output, we extract
the pole-like features for residualization as the following
procedures:

1) Process the pixel-level segmentation mask into a binary
image and fill holes with common morphology opera-
tors.

2) In order to record the peak coordinates as the initial
position of each pole, we obtain the histograms of the
column response in the pole binary image and group
the light poles based on each wave peak.

3) Based on the peak position, we search up pixels belong-
ing to the light pole and perform a least squares fit to
obtain the descriptor of the line model and end points.

4583



D. Point Features

Details of interest-point feature extraction are explained
in Section. II-A.1, and instead of selecting all the points
extracted in a certain frame, we select those can be stably
tracked among several consecutive frames and remove those
on the dynamic objects with the aid of semantic segmentation
(see Fig. 8).

IV. GLOBAL MAP

Global map provides accurate global references to the
online extracted features and in this work we use 3-D point-
cloud map and global SFM to build the map.

1) Semantic Feature Map: With the high-precision point-
cloud map built by INS system and multiple 3-D LiDAR
devices, the semantic level point-cloud is further processed
with the DNN model described in [28]. We extract the
categories identical to the above-mentioned features types,
i.e., ground surface, lane markings, curb points, pole-like
objects and buildings. As described in Fig. 6, since the
ground points are significant for depth estimation in the
re-projection process, we further process the 3-D ground
points for noise removal and ground hole filling based on
the moving least squares (MLS) algorithm. The lane marking
points and curb points can be directly acquired from the
KpConv network2 output.

The 3-D pole-like map features are extracted with the
following steps:

1) Get the instance-level pole-like objects points using
point-cloud Euclidean clustering;

2) Fit a 7-parameter cylindrical model to each pole-like
points cluster with RANSAC;

3) Merge multiple pole model into one if they are divided
into segments vertically in the first step and redo the
second step to get an updated model;

4) Save the pole with the end points and cylindrical
parameters as its descriptors.

2) SFM Feature Map: We use the consecutive images of
mapping dataset to reconstruct the whole 3-D point-cloud
by the off-line SFM process [25]. To align the SFM point
feature with the semantic feature map, we use the fixed
pose approach (the poses are optimized from LiDAR SLAM
backend) in the feature generation process. However, visual
point behaving unstable to illumination and reconstruction
error introduced in the reprojection and matching phase, the
accuracy of reconstrcuted point-cloud can hardly compare
to LiDAR SLAM mapping performance. We further remove
the outlier of the SFM point-cloud with the assistance of
kD-tree nearest neighbor search built by LiDAR point-cloud
map. The visualization of both semantic feature layer and
SFM point layer can be seen in Fig. 8.

V. OPTIMIZATION SOLVER

For k-th frame, the states to be optimized is simply defined
as xk

.
=

⇥
✓T

k
pT

k

⇤T for a single-frame optimization and the
problem is formed as a non-linear optimization to solve

2The model is trained with point intensity as an add-on point attribute.

(a) Binary (b) Response (c) Pole

Fig. 7: This shows the intermediate results of the pole
extraction and representation. (a) Binary pole-like semantic
image. (b) Wave peak of the light pole pixels’ vertical
histogram. (c) Fitted vertical line model.

the pose iteratively. We divide the cost Ck into components
according to different feature types.

A. Ground Marker Features

With the ground surface planar assumption, we are able to
optimize these features with global semantic with 3-D point-
cloud approaches. We use local map solution to accumulate
the lane marking and curb points, since the optimization
is not robust with the measurements only from the current
frame, due to the limited field-of-view and the error in image
segmentation, especially when the vehicle is performing
aggressive motions. Then we use the predicted camera pose
x̄k to project local map points to map frame as P̄l

k
, search

global map kD-tree and obtain the correspondence Pl
m and

the cost of ground marking features is derived as:

C
l
k

.
= Â 1

2
kP̄l

k
�Pl

mk2 (4)

B. Ground Sampled Features

Different from lane marking points, the residual selected
for the sampled ground points is the distance dg from point
to plane and the corresponding cost term is:

C
g
k

.
= Â 1

2
d

2
g (5)

C. Pole-like Objects

Based on fundamental matrix F, we are able to project
the 3-D map pole-like objects point Pp

m to image frame with
the predicted pose. We use three points lm = (pT

1 ,pT
2 ,pT

3 ) to
describe the projected map pole feature in the image frame.
To find a correct match, firstly performs nearest neighbor
search among the extracted pole features set with a pre-
defined distance threshold, and then reject the wrong match
with line direction and length. Mark the correct match pair
as (lk, lm), the residual is the sum of the distance from map
line points to line lk, accumulating the residuals we have,

C
p
k

.
= Â 1

2
�
d

2
p,0 +d

2
p,1 +d

2
p,2
�

(6)

D. Point Features

To find the correspondence of a certain feature point pf
k

in the global map, the map feature points Pf
m are projected

with predicted pose to the image frame. The initial features
matching pairs are selected with descriptor distance, which
may introduce mismatches with similar texture. Hence, we
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perform RANSAC to remove the outliers and the cost term
is finalized with the inlier matches as,

C
f
k

.
= Â 1

2
kp̄f

k
�p0

mk2 (7)

We stack residuals and Jacobians of all the above terms
and perform L-M optimization to solve the pose iteratively
by Ceres solver [1]. To make the optimization numerically
stable, we use Huber kernel as loss function and assign
different weights to each feature type.

VI. EXPERIMENTAL RESULTS

This section presents experiments of our proposed visual
localization approach on the practical autonomous vehicle
dataset. The testing platform is our in-house designed vehicle
for autonomous delivery services. The camera selected is an
industrial image sensor MV-CA032-10GM from HIKRobot,
which outputs 1280 ⇥ 1024 resolution image at a rate of
10 Hz. The sensor suite also includes a low-cost MTi-3
MEMS IMU and a chassis build-in wheel encoder for visual-
inertial odometry purpose. The whole software system runs
on an Intel 8700 CPU and an Nvidia 2080 GPU module.

(a) Features (b) Semantic (c) Map

Fig. 8: Illustrations of different scenarios on the industrial
park dataset. Three columns represent the point features
matched with SFM map layer, semantic element extraction
and matching with global map. The first row indicates
the scene with point features and lane marking semantic
elements; the second and the third rows show the scenes
lack of effective semantic features, with no or only one lamp
post; the fourth shows the case that both key-point features
and semantic features exist and the last row presents the
performance at dusk.

(a) Satellite map (b) Semantic map

Fig. 9: The industrial park area selected for experiment 1,
with the red boxes indicating the zones without enough
semantic information.

A. Road Test Experiments

To validate the performance and robustness of our pro-
posed algorithm, we select various scenes for practical tests,
which cover the cases with enough semantic information,
i.e. the public road with lane markings, curbs or poles, and
the cases without semantic information, e.g. narrow road
inside residential areas or industrial parks. To evaluate the
effectiveness and significance of our semantic+feature points

approach, we have conducted several tests that enable only
one or several of the proposed approaches.

1) Experiment 1: This experiment is designed to test
the accuracy and robustness of each proposed optimization
method. We select an industrial park area (see Fig.9), where
most of the scenes have enough semantic information. We
have designed four combinations of function modules as
follows:

• Lane-Curb (LC) module: enables lane and curb opti-
mizer only to test the lane markings based approach;

• Pole-Curb-Ground (PCG) module: enables pole-like ob-
jects, curbs and ground sampled points;

• Feature-Only (FO) module: enables feature point only
to test key-point feature based approach;

• Fusion: enables all feature types to show the superiority
of our proposed method.

The experiment is also carried out to validate the visual
pose robustness in both day and night condition as a standard
benchmark3(see Fig.8).

2) Experiment 2: This experiment is conducted to test
the effectiveness of each module in various scenarios, e.g.,
the industrial park scene, the university campuses, the public
roads, etc. We have accumulated around 52 km dataset and
covered 6 different areas to obtain statistical results. We
also tried out the above-mentioned four approaches on these
datasets, and in some circumstances, relying on a certain type
of feature would fail to localize due to lack of corresponding
features.

3A visual localization benchmarking site:
https://www.visuallocalization.net/benchmark/.
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TABLE II: Performance comparison of our proposed opti-
mization approaches under day and night conditions

dataset
m

deg

day night
.25/.50/5.0

2/5/10
.25/.50/5.0

2/5/10
LC 15.79/69.06/90.15 4.1/45.3/52.1

PCG 12.55/18.06/50.44 8.3/12.8/34.2
FO 52.26/87.41/98.12 0.3/6.2/10.4

Fusion 69.77/96.55/98.34 10.2/50.2/55.7
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Fig. 10: Error statistics of vertical and horizontal direction
in the vehicle frame, and heading angle respectively. The
methods details are explained in experiment 1.

3) Experiment 3: To further evaluate the performance,
we conducted an experiment using the KAIST [6] Urban
Dataset [14] sequence urban39 with a total distance of
11.06 km. We chose three scenes, i.e. urban, highway, and
suburban to compare our algorithm with CL+PA and PC
semantic. The ground truth is KAIST vehicle baseline data
and the evaluation method is the translational and rotational
root mean squared error (RMSE).

TABLE III: RMSE statistics of KAIST urban 39 dataset.

dataset
Trans (m)
Rot (deg)

Suburban Urban Highway

CL+PA [17] 0.604
0.882

0.580
1.080

1.806
0.935

PC Semantic [27] 1.798
0.464

0.893
0.914

2.494
0.907

Ours 0.573
0.510

0.54
0.68

1.964
0.853

B. Performance Analysis

1) Pose accuracy and robustness: Pose accuracy is ob-
tained by comparison of the visual global pose estimation
and the ground truth, which is recorded by a high-precision
INS system. Fig. 10 shows the pose error of vertical and
horizontal position error in the vehicle frame as well as the
heading error. It can be revealed that the fused optimiza-
tion outperforms all the other approaches with the highest
precision. Fig. 11 shows the correlation of the matched

TABLE IV: Localization accuracy comparison with 4 opti-
mization methods for multiple datasets.

dataset
m

deg

Park Campus Public Road
.25/.50/5.0

2/5/10
.25/.50/5.0

2/5/10
.25/.50/5.0

2/5/10
LC 15.79/69.06/90.15 14.2/55.3/85.1 18.02/75.43/95.3

PCG 12.55/18.06/50.44 8.3/12.8/54.2 23.5/35.2/45.5
FO 52.26/87.41/98.5 49.9/77.2/96.9 34.4/65.2/83.6

Fusion 69.77/93.55/99.3 60.9/83.2/95.7 69.77/90.12/92.3

feature number and the pose accuracy, where we can find the
heading error is correlated with the matched pole count. The
horizontal position error in the vehicle frame is affected by
the lane matching performance, since lane markings or curbs
can hardly provide vertical constraints on straight roads.

For pose robustness, the last row in Fig. 8 shows the test
scene at around 6 pm and the first figure reveals that few
feature points are matched with the SFM map layer due to
the dark light condition, while the semantic approach present
high reliability to illumination change. Table. II presents the
fusion method is more robust than other methods.

2) Pose effectiveness: We follow the standard visual lo-
calization evaluation method proposed in [24], where we use
three categories, i.e. (0.25m, 2�), (0.5m, 5�), (5m, 10�), to
represent the localization accuracy. Indeed, for autonomous
driving function, the localization error above 0.5m is un-
acceptable. Table. IV presents the statistical results on the
52 km road tests in various scenes, where we can see the
semantic based methods fail to localize without effective
semantic information, e.g. the university campuses where
inside the building area there are no lane markings or pole-
like objects. The feature based method performs poorly in
the texture-less scenario, e.g. on the public road where the
view is blocked or features extracted are too far away and
only lane marking or curb can be used.
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Fig. 11: The relationship between pose error and feature
count with our Fusion method. The lower chart shows the
number of each type of features where we put 5⇥ key-point
feature count for visualization.
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3) Runtime performance: Our module is able to provide
real-time visual pose estimation with 10Hz image input when
deploying on the real vehicle platform. The whole extraction,
matching and optimization process consumes 70% of a CPU
thread and around 1GB GPU memory. The computational
delay for each module is: semantic segmentation around
15ms, feature point extraction less than 10ms in average and
optimization around 20ms with 5 maximum iterations.

VII. CONCLUSIONS

In conclusion, a vision-only global localization approach
using both semantic features and key-point features matched
with LiDAR semantic point-cloud and SFM reconstructed
feature map, is proposed for autonomous vehicle applica-
tions. We have carried out several experiments with our in-
house developed autonomous vehicle platforms in various
challenging cases, including urban public road, industrial
parks, university campuses and etc. According to the road
test results, our module outperforms the other approaches
using only semantic features or key-point features on the
aspects of precision and robustness. To compare with the
state-of-the-art visual localization methods, we test our al-
gorithm on KAIST Urban 39 dataset and achieve satisfac-
tory results. In practice, our method has been deployed on
Alibaba’s autonomous vehicles for delivery services with a
low-cost sensor suite in disparate challenging scenes with
high accuracy and robustness.
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