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Abstract— We propose an efficient edge-based stereo visual
odometry (VO) using multiple quadtrees created according to
image gradient orientations. To characterize edges, we classify
them into eight orientation groups according to their image
gradient directions. Using the edge groups, we construct eight
quadtrees and set overlapping areas belonging to adjacent
quadtrees for robust and efficient matching. For further ac-
celeration, previously visited tree nodes are stored and reused
at the next iteration to warm-start. We propose an edge culling
method to extract prominent edgelets and prune redundant
edges. The camera motion is estimated by minimizing point-to-
edge distances within a re-weighted iterative closest points (ICP)
framework, and simultaneously, 3-D structures are recovered
by static and temporal stereo settings. To analyze the effects
of the proposed methods, we conduct extensive simulations
with various settings. Quantitative results on public datasets
confirm that our approach has competitive performance with
state-of-the-art stereo methods. In addition, we demonstrate
the practical values of our system in author-collected modern
building scenes with curved edges only.

I. INTRODUCTION

Recent advances in the accuracy and real-time perfor-
mance of visual odometry (VO) have been striking thanks
to standard pipelines such as sparse point-based approaches
[1]–[3], direct methods which find an optimal camera motion
minimizing intensity residual between two images [4]–[6],
and iterative closest points (ICP)-based algorithms [7]–[10]
that align a pair of large point sets, e.g. 3-D point clouds, to
obtain relative camera motions.

Despite such maturity, robustness to feature-less scenes
and fluctuating illuminations is not yet sufficient. To alleviate
this, irregular brightness changes have been considered as an
affine model and compensated for semi-dense regions [11],
and straight line features are invited to maintain VO to keep
track of motions even in low-textured scenes [12], [13].

As another attempt to improve robustness, edge-based VO
systems have been introduced recently [14], [15]. The image
edges can be stably detected by a traditional method [16]
even in monotonic surfaces often encountered in the man-
made world. Moreover, a continuum of edge pixels gives
more 3-D structural information of surroundings than sparse
points, which fits interactive applications better.

For utilizing image edges for VO, as reported in [17],
several hurdles still remain. Especially, 1) there are no
apparent and efficient matching criteria for edges contrary
to points and straight lines [18], [19], and 2) too many edge
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Fig. 1: Edge 3-D reconstruction by the proposed method. (a) a scene
with monotonous objects in the modern office, (b) a result of the proposed
edge culling method. Our method can stably operate on challenging scenes
with few points and straight lines by only using free-formed edges. Thanks
to the static and temporal stereo, the edge depth map can be fully recovered.

pixels cause computational burden too heavy for real-time
employment. In this paper, our main objective is to deal
with these two issues and efficiently incorporate free-formed
edges into a robust stereo visual odometry system.

A. Related works

Points & direct intensity: Early VO approaches have
been mostly developed using point features, and point-
based methods have shown high localization accuracy and
robustness to large motions between frames with real-time
operations [1]–[3]. Recently, VO methods utilizing intact
brightness values for localization, so called direct methods,
are actively researched [4], [5]. Compared to the former, the
latter is less susceptible to motion blurs and provides denser
representation, which is more attractive in practical aspects.
Despite the successful research history, both methods still
have limitations in real-world situations: point-based meth-
ods heavily rely on point features hardly existing in modern
man-made scenes, and direct methods can be influenced by
varying illuminations.

Lines: Straight lines are intermediate features between
points and free curves, observed even in low-textured scenes.
For enhancing robustness against those scenes, a stereo VO
aligning multiple lines is proposed in [8], and [12] utilizes
points with lines based on a monocular semi-direct approach
[2]. In [21], a robust rgb-d direct VO combining points and
lines is suggested. In those works, lines are not used as
major features, but for additional constraints for point-based

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 5917



VO, because both end points of a line are not consistently
extracted even by using state-of-the-art line descriptor [19].

Edges: Edges are generalized features including points,
lines, and arbitrary curves, and easily observed in most
scenes. Although some attempts to adopt edges into VO
began in the early days [22], full-fledged edge-based VO
systems have emerged only recently.

Edge-based VO methods can be largely divided into two
types. The first one regards edges only as assistive profiles
for photometric error minimization, not as major features.
The work in [14] estimates rgb-d camera motions by min-
imizing both photometric and geometric errors of distance
transform maps. Similarly, [10] suggests a rapid rgb-d VO
by minimizing photometric errors around sparsely-sampled
edge pixels. [23] develops a sub-gradient image aligning
method using a distance transform around edges. They
can enhance robustness to low-textured scenes by imposing
additional constraints by using edges. Nonetheless, they are
still vulnerable to lighting changes due to the dependency on
photometric properties.

The other type of edge-based VO methods utilizes intact
edge pixels as the main features. In these methods, explicitly
matching edge pixels is one of the most crucial parts. To
mitigate difficulties in matching caused by the absence of
proper descriptors for edges, several approaches are proposed
in [9], [15], [17], [24], [25].

We can further categorize the matching methods of the
latter type into two approaches: 1) searching from geometry
and 2) searching from data structures. Geometric approaches
confine search regions by utilizing edge normal directions.
In [24], searching is conducted along the normal direction of
edge curves. [25] suggests an rgb-d VO using approximated
neighbor fields (ANNFs) for fast edge matching, and the
matching completeness is further improved via oriented edge
neighbor fields (ONNFs) in [17]. The other approaches use
data structures to find the most likely pair. This idea is
originally from ICP algorithm [9] using a k-d tree structure.
In [15], the robustness is improved by adopting a k-d tree
considering image gradient vectors to compare edge similar-
ities in cluttered regions. Note that these edge VO methods
still exploit photometric information and most methods rely
on rgb-d sensors to obtain the 3-D information of edge
regions.

Our main goal is to further improve an edge-based VO
with an explicit match process by proposing a new dedicated
data structure and efficient edge pre-processing steps.

B. Contributions

In this paper, we give in-depth consideration on solving
two problems when realizing an efficient edge-based stereo
VO: high ambiguities on edge matching and redundancy of
edge pixels. The key contributions can be summarized as
follows:

• We propose an ICP-based efficient stereo visual odom-
etry system using the dedicated multiple quadtrees
structure and the edge culling method.

Fig. 2: The flowchart of the proposed system.

• By using the proposed edge culling method, many
cluttered edge responses are suppressed, consequently,
the required computational load is reduced while main-
taining VO performance.

• Edge matching speed and success rates are improved
by the proposed multiple quadtrees and node caching
schemes.

• We demonstrate that our method has robust and com-
petitive performance with state-of-the-art stereo VO on
publicly available datasets and author-collected scenes.

C. Overview

A flowchart of our system is illustrated in Fig. 2. For every
stereo stream, all the edge pixels are classified into eight
orientation bins with mutually inclusive regions according
to their image gradient directions. In Section. III, to reduce
redundant edge pixels, we additionally condense several
thousands of raw edge pixels into well distributed structural
edgelets by the proposed edge culling method. We propose
an efficient multiple quadtrees structure composed of eight
orientation bins, and store the previously matched nodes for
warm-starting in the next iteration, which are detailed in
Section IV. Section V details the ICP-based camera mo-
tion estimation by minimizing stereo point-to-edge normal
distances between current images and key frame images,
and the static and temporal stereo method for updating edge
inverse depths. The extensive analysis on each core part and
experimental results are following in Sections VI and VII.

II. PRELIMINARIES

A. Notation

We use bold letters for column vectors and matrices, and
right superscripts c and k to denote variables represented
in the current frame and key frame, respectively. The sec-
ondary right superscripts l and r express the left and right
frames of stereo cameras. For example, we denote the i-
th pixel coordinate on a left key image as pk,li ∈ R2 with
its inverse depth ρk,li ∈ R+ as suggested in [20]. The
perspective relationship between p having the inverse depth
ρ and corresponding 3D point x ∈ R3 can be represented
as p = π (x) : R3 7→ R2, and its inverse mapping is
x = π−1 (p, ρ). We define an image gradient vector of p
on the left key image as gk,l (p) : R2 7→ R2. For simplicity,
all image gradient vectors are assumed to be normalized.
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B. 3-D geometry of camera motions

The 6-DoF camera motion from a current frame to a key
frame is parametrized by Lie algebra ξlc,k ∈ se (3) where
corresponding rotational matrix on special orthogonal group
Rlc,k ∈ SO (3) and translation tlc,k ∈ R3. The 3-D warping
function transferring pk,l to a corresponding pixel point pc,l
on the current frame is defined as,

pc,l = w
(
pk,l, ξlc,k

)
= π

(
Rlc,k · π−1

(
pk,l, ρk,l

)
+ tlc,k

)
.
(1)

A right camera motion ξrc,k can be denoted with an
operator ⊕ on se (3) and a fixed stereo pose ξll,r ∈ se (3),

ξrc,k = ξlc,k ⊕ ξll,r. (2)

C. ICP-based edge alignment

Our method estimates camera motions by successively
aligning matched pairs of edges within the ICP framework.
To get it working, the most probable pixel correspondences
among current and key edges should be established in
advance. This matching process is called the nearest neighbor
searching (NNS) [9]. For a query q, the nearest pair in a pixel
set R ⊂ R2 can be founded by a NNS function nnR (q),

nnR (q) = argmin
p∈R

‖q− p‖2 ∈ R, (3)

where ‖·‖2 is a 2-norm operator.
The well-distributed edges, however, are not always guar-

anteed, and many false edge responses hinder the correct
matching. To characterize and find more informative edges,
we develop an edge culling method by making use of the
fact that structural edges along object boundaries commonly
possess long series of pixels with regular and high image
gradients. The detailed explanation follows in the next sec-
tion.

Using the correspondences, an ICP algorithm estimates
an optimal camera motion ξ∗c,k by minimizing the sum of
squared distances of the residual vector d ∈ RNp ,

ξ∗c,k = argmin
ξ∈se(3)

dTd, (4)

where Np is the number of matched pixel pairs. The n-th
element of residual vector, dn, formulated between the n-th
pixel pkn on the key image and its matched point in the pixel
set Rc of the current image can be noted as 2-norm distance,

dn =
∥∥w (pkn, ξc,k)− nnRc

(
w
(
pkn, ξc,k

))∥∥
2
. (5)

As our system uses both stereo images to track camera
motions, we design a new stereo cost function and additional
methods to restrain outliers, which are also discussed in the
following sections.

III. EDGE EXTRACTION AND CULLING

In this section, we detail how we distinguish edge pixels
and extract salient structural edgelets out of raw pixels.

Fig. 3: Edge label bins with overlapping regions. (a) the original binning
method proposed in [17] divides eight exclusive directional sets where pixels
adjacent to boundaries could be wrongly matched, (b) the proposed method
with overlapping regions gives flexibility to some extent for boundary pixels.

A. Edge labeling using overlapping regions

When using edges, the major difficulty originates from
the absence of dedicated descriptors for edges. To relieve
this problem, [15] and [17] exploit image gradient directions
to distinguish edges in different ways.

In [15], a similarity score between two pixels is quantified
by an weighted sum of a pixel Euclidean distance and an in-
ner product of normalized image gradients. Despite improved
matching success rates, this method relies on a heuristically-
defined weighting parameter between two terms, making it
improper to be used in universal situations.

The second work [17] divides edges into eight bins ac-
cording to image gradient directions, and absolutely labels
each edge as one of eight mutually exclusive groups like Fig.
3(a). In this way, the search space can be effectively reduced
and at the same time, matching success rates be increased.

We follow the main concept of the absolute labeling
method, but additionally augment overlapping regions be-
tween every neighboring bins where pixels can belong as
duplicates. As can be seen in Fig. 3(a), only with small
rotations on image, the black point labeled as group 2 easily
crosses the decision boundary between groups 1 and 2, and
both black and red points become mutually exclusive. In this
case, the original approach could fail to find the correct pair.

In contrast, by setting up the proposed overlapping regions,
the red one is now be labeled as a duplicate of groups 1 and
2, and can included into searching candidates of the black
one regardless of some extent of rotations as depicted in Fig.
3(b). We utilize this labeling result to extract salient edgelets
and make multiple quadtrees in the following sections.

B. Finding salient edgelets out of labeled edges

A high signal-to-noise ratio from a number of pixels can be
helpful for more accurate motion estimations [17]. However,
many points could be redundant to get sufficient estimation
performance, and spurious edges could hinder finding correct
pairs rather than improve overall performance.

To address both problems, we propose an efficient edge
culling method that filters false responses on cluttered edges
and only sorts out prominent structural edgelets. As shown
in Fig. 4(a), edges along object rims generally have regular
image gradients, and edges in cluttered regions show many
unconnected pixels. Given these observations, we consider a
long series of connected edge pixels with the same labeling
group as structural edgelets, and if not, as cluttered edges.
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Fig. 4: Extracted salient edgelets and center points. (a) raw edges (24,672
pixels), (b) salient edgelets extracted by the proposed method in different
colors. The yellow squares represent center points of edgelets. Total 574
center points are well distributed across the image.

Fig. 5: Example of depth-first search for finding salient edgelets. Each
color represents a different edgelet. Red points denote centers of respective
edgelets.

The structural edgelets can be determined by recursively
connecting adjacent pixels with the same directions. A simple
example is described in Fig. 5. At the first recursion, we
initiate at one of the color-coded starting query points. For
the current query point, 3× 3 adjacent pixels are stored into
a list L if the pixels have the same labels with the query
point. If there is no more pixel to be connected, the list L is
regarded as a new structural edgelet. The algorithm restarts
at non-visited new query points, and ceases when all the edge
points in image are visited.

After grouping, we check the length of each edgelet by
double threshold values, lmin and lmax. As the step (c) in
Fig. 5, fragmented edgelets under the minimum length lmin
are more likely to be spurious responses on cluttered regions.
Thus, we reject those edgelets.

For more compact query sets, we additionally compute
centers of the edgelets and consider them as representative
query points. We found that several long edgelets can yield
very sparse center points. To prevent this, we set the maxi-
mum length limit lmax to get more uniform length edgelets.
We finally obtain the prominent edgelets along the object
profiles and the query points evenly distributed over the
entire image area as small yellow squares shown as Fig.
4(b). In our experience, we found that the practical value for
lmax is about 30 in general images like Fig. 4.

All procedures can be efficiently performed by adapting
the conventional depth-first search algorithm, and a pseudo
code of the method is written in Algorithm 1.

IV. EDGE MATCHING VIA ORIENTED QUADTREES

For estimating the camera motion between key and current
frames, one of the most important and exhaustive parts is to
repetitively match point pairs. To realize faster and more ac-
curate ICP-based edge alignments, it is crucial to efficiently
find the correct correspondences among the massive number
of edge pixels. To this end, we propose an accelerated NNS
strategy using oriented multiple quadtrees dedicated to our
edge-based VO.

Algorithm 1 Find Salient Edgelets and Centers
1: E; an image of labeled edge pixels
2: edgelets; a list of detected edgelets
3: ptsc; center pixels of selected edgelets
4: for All pixel q in E do
5: L← an empty list for a new edgelet;
6: if E (q) is an edge then
7: Create an empty stack and push q to stack;
8: while !isEmpty (stack) do
9: p← frontAndPop (stack);

10: for All pn neighbor of p do
11: if size (L) < lmax&E (pn) = E (q) then
12: Add pn to stack and edgelet;
13: end if
14: end for
15: end while
16: if size (L) > lmin then
17: Add L to edgelets, and mean (L) to ptsc;
18: end if
19: end if
20: end for

A. Generating multiple oriented quadtrees

To begin with, we regard extracted edgelets of a current
image as reference points for making quadtrees, and calcu-
lated center points of a key image as query points to be
matched. Based on this assumption, multiple quadtrees are
built in accordance with eight orientation labels by using a set
of salient edgelets on the current image Rc ⊂ R2. We denote
each set of edge points consisting of its relevant tree as
Rci ⊂ Rc where an indicator i denotes each directional bin.
The difference between a normal quadtree and the proposed
trees is illustrated in Fig. 6.

As depicted before in Fig. 3(b), the pixels near bound-
aries among neighboring bins are doubly inserted into two
neighboring trees. Thus, both boundary query and its correct
match can remain reachable to each other regardless of a
certain degree of image rotation, which makes the matching
process more robust to rotational motions.

B. Fast NNS strategy by storing visited nodes

At every iteration of the ICP-based motion estimation, we
have to warp key points onto the current image and find their
correspondences within the current quadtrees.

For a simple explanation, we assume a situation to find a
matching pair for a single key point pk with an orientation
labeling i. Given the motion ξc,k, let pk′ = w

(
pk, ξc,k

)
be a warped point of pk. Thanks to the orientation labeling,
we can directly narrow down potential candidates within Rci ,
and the nearest pixel can be determined by the NNS function
nnRc

i

(
pk′
)
.

Due to gradual motion updates of the ICP-based approach,
warped points move only few pixels at each iteration. It
implies that the previously matched node is much likely to
be re-matched at the very next iteration.
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Fig. 6: Comparison between a normal single-rooted quadtree and the
multiple cached quadtrees. (a) the original quadtree travels through all the
nodes from a root to get C. (b) the proposed quadtrees cache the previously
visited nodes and warmly start from the cached nodes, which considerably
reduces nodes to be traveled.

Inspired by this observation, the matching process can be
further accelerated by caching the address of the matched
nodes at the previous iteration, and warm-starting the search
from the cached nodes. If the best match does not reside in
the cached node, we restart to search from the root node.

When seeking a true match in the node C depicted in Fig.
6(a), for the normal case, exhaustive re-entry to the root is
required at every iteration, and many nodes are visited on the
way from the root to the node C. In contrast, the proposed
trees in Fig. 6(b) can compactly tighten the search space by
the orientation label, and moreover, the warm-start from the
previously cached node B reduces a large number of visited
nodes to reach the node C compared to the normal case.

V. MOTION TRACKING AND 3-D RECONSTRUCTION

A. Stereo Point-to-Edge Distances Minimization

We estimate the left camera motion ξlc,k by minimizing the
stereo point-to-edge normal distances generated by matched
edge pairs of the current and key frames. In Fig. 7, we
assume that the n-th query pixel pk,ln has an orientation label
i, and its warped point by the camera motion ξlc,k is denoted

by pk,ln ′ = w
(

pk,ln , ξlc,k

)
. The warped pixel pk,ln ′ is matched

to the current pixel coordinate p̃k,ln ′ := nnRc,l
i

(
pk,ln ′

)
by the

NNS function. The flow vector of two pixels is defined as,

Fln := pk,ln
′ − p̃k,ln

′ ∈ R2. (6)

A scalar value formed by Fln projected onto a unit gradient
vector gc,l

(
p̃k,ln ′

)
can be used as a signed residual dln ∈ R,

dln = gc,l
(

p̃k,ln
′
)T
· Fln. (7)

To make use of the absolute scale of the fixed stereo
position, we define an additional residual term induced by
the current right image. Analogous to the left case, a warped
point onto the right current image of the query point pk,ln
is denoted by pk,ln ′′ = w

(
pk,ln , ξlc,k ⊕ ξll,r

)
, and its matched

right current pixel is represented by p̃k,ln ′′ := nnRc,r
i

(
pk,ln ′′

)
.

We also define a flow vector on the right current image,

Frn := pk,ln
′′ − p̃k,ln

′′, (8)

and the right residual term can be written as,

drn = gc,r
(

p̃k,ln
′′
)T
· Frn. (9)

Fig. 7: An illustration of a point-to-edge normal distance induced by a
matched pair of points.

By arranging total Np pairs of residuals into one column
vector, the residual vector can be formulated as,

r =
[
dl1, ..., d

l
Np
, dr1, ..., d

r
Np

]T
∈ R2Np . (10)

The optimal motion can be estimated by minimizing the
weighted sum of squared residuals,

ξ∗c,k = argmin
ξlc,k∈se(3)

rTWr (11)

where W is a weighting matrix. The motion update δξ ∈
se (3) can be calculated by the second-order Gauss-Newton
method as,

δξ = −
(
JTWJ

)−1
JTWr, (12)

with the Jacobian matrix J = ∂r
∂ξ ∈ R2Np×6. The motion

update is iteratively implemented until convergence,

ξlc,k ← ξlc,k ⊕ δξ. (13)

To suppress inevitably occurring wrong match pairs, we
use a t-distribution weighting scheme [25] for W and recalcu-
late it by the current residual distribution at every iteration.
If the matching results are correct in both stereo images,
two gradient vectors on the matched pixels should have
a consistent direction. From this, we can detect additional
outliers by testing whether their inner product is under a
certain margin or not,

gc,l
(
pk,ln
′)T · gc,r (pk,ln ′′) < η (14)

where a threshold value η is empirically set to 0.99 in this
work, corresponding to about ten degrees angular difference.

B. Edge Inverse Depth Reconstruction and Propagation

As reported in [6], a laterally-fixed stereo can yield reliable
3-D information only for vertical edges because horizontal
features cannot be distinguished by the static stereo. For
the sake of complete 3-D depth maps in all directions, we
follow the static and temporal stereo inverse depth estimation
scheme [6]. The depth reconstruction procedure consists of
four steps as illustrated in Fig. 8.

For probabilistic updates, we assume that an inverse depth
observation ρ follows the normal distribution with the stan-
dard deviation σ around itself. We use the geometry error
model to compute σ proposed in [13]. Note that the disparity
is searched by evaluating the normalized cross correlation
(NCC) with a 5×9 patch along an epipolar line, and we refine
the sub-pixel disparity by using the parabolic interpolation.
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Fig. 8: Static and temporal stereo configurations.

Using the static stereo of the key frame, we first find the
initial inverse depth ρk with σk. In this step, only vertical
edges can be reliably reconstructed (step 1© of Fig. 8).

Then, the previous observation ρk is warped to the left
current image for temporal stereo update. In Fig. 8, by the
static stereo configuration between current and key frames,
horizontal edges can now be recovered and ρk can be updated
if a red generalized epipolar line for each observation is
almost perpendicular to the edge profile as depicted in Fig.
8 (steps 2© and 3©).

The inverse depth value ρc with σc detected by the
temporal stereo is re-projected back, and updated with ρk
to find an optimal estimation ρ∗k,

ρ∗k =
σ2
kρc + σ2

cρk
σ2
k + σ2

c

, σ∗k
2 =

σ2
kσ

2
c

σ2
k + σ2

c

, (15)

where σ∗k is the fused standard deviation (step 4© of Fig. 8).
The inverse depth values are consecutively updated by this

procedure for every incoming image, and if the new key
frame is received, inverse depth values are propagated to the
new key frame like [6].

VI. PERFORMANCE ANALYSIS

We found that the overall VO performance is affected by
three dominant factors: 1) usage of multiple quadtrees, 2)
storing matched nodes, and 3) the edge culling method with
the minimum length lmin for edgelets. In this section, we
evaluate the benefits of each factor with extensive variations
of parameter settings. All computations are conducted in C++
with -O2 compiler flag on AMD Ryzen 5 3.6 GHz CPU.

A. Analysis 1: normal quadtree vs. multiple quadtrees

In this analysis, we demonstrate the enhanced performance
of the matching process by using the proposed multiple
quadtrees. We consider two settings: a normal quadtree and
multiple quadtrees without storing the visited nodes. To
separately evaluate each part, we only use labeled raw edges
without the edge culling method in this analysis.

In the beginning, for an intuitive example, we show
matching results on the polyhedron image with the 15
degrees of the camera roll in Fig. 9. The result of using the
proposed quadtrees shows the more robustness to rotations
and qualitatively desirable matching tendencies.

To evaluate quantitatively, we warp the monotonous and
cluttered images in Fig. 10 along u, v, and camera roll axes
and compare the iterations and elapsed times required for the
matching sequences of the ICP algorithm to converge. We
apply 15 pixel deviations along u and v axes, and 10 degrees
rotations with respect to the roll axis.

Fig. 9: (a) a polyhedron model, (b) a matching result using the normal
quadtree, (c) a matching result using the multiple oriented quadtrees. Key
and current edges are in green and red, respectively. Black lines connect
matched pairs.

Fig. 10: The selected two images on the EuRoC V1 01 dataset for
quantitative evaluations. (a) a simple image and (b) a cluttered image.

According to the results on the monotonous image de-
scribed in Figs. 11(a-c), the number of iterations slightly
decreases by using the multiple quadtrees. In contrast, the
improvements by the multiple quadtrees on the cluttered
image are more prominent in regions with large displacement
as shown in Figs. 12(a-c). Note that the time consumption of
the multiple quadtrees decreases by about 30 % on average
compared to the normal one. We notice that the number of
calculations for the NNS function is considerably reduced
because a query point is compared to a fraction of reference
points only within its related tree out of eight trees.

For the rolling motions larger than ±5 degrees, iterations
are saturated as in Fig. 12(c), which means that the ICP
algorithm falls into local minima. In our experiences, some
very cluttered regions in Fig. 10(b) yield a lot of wrong
matches and the estimation fails in this case. We will address
it in Section VI-C.

B. Analysis 2: effect of storing the previously matched nodes

We demonstrate further improvements on the matching
speed by storing the previously matched nodes. In this
analysis, we use the same simulation settings in the previous
section and only switch on the node storage functionality.

As can be seen in Figs. 11 and 12, the number of iterations
remains almost the same with the pure multiple quadtrees
because the result of starting from the stored nodes is
theoretically identical to starting from the root node. Thanks
to the warm-start from the stored nodes, the number of nodes
traverse considerably decreases as depicted in Fig. 6, and
consequently, the time consumption is further reduced up to
70 % compared to the normal quadtree in most cases.

C. Analysis 3: effect of the edge culling method

We now evaluate the effect of the edge culling method on
the efficiency and robustness of the ICP process by changing
lmin. In this analysis, we fix lmax to 30 and use lmin =
{5, 15, 25}. Compared to the previous simulation setting, the
only difference is to replace raw edges with the culled edges.
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Fig. 11: ICP iterations and time consumption to align the simple
image in Fig. 10(a). (a-c) ICP iterations versus camera motions, (d-f) time
consumption versus camera motions. Overall 9,031 query points are used.

Fig. 12: ICP iterations and time consumption to align the cluttered
image in Fig. 10(b). (a-c) ICP iterations versus camera motions, (d-f) time
consumption versus camera motions. Overall 33,602 query points are used.

The edge culling results with the three lmin values are
reported in Fig. 14. The cluttered responses on the floor and
false responses on the wall are effectively suppressed by the
increasing lmin while the prominent edgelets remain.

Fig. 13 presents the comparison results. The results of
lmin = 5 case are similar to the result of the setting
without the edge culling method because many complex
responses still exist in the left image like Fig. 14. For higher
values of lmin, the number of iterations and the calculation
time significantly decrease despite large motions thanks to
the reduced cluttered edges as depicted in the right two
images of Fig. 14. From these results, we can conclude
that the edge culling method considerably enhances both the
robustness and efficiency of the proposed edge-based ICP
motion estimation.

VII. IMPLEMENTATION RESULTS

We evaluate the overall performance of our method using
EuRoC stereo datasets [26]. To verify the practical usability,
we additionally demonstrate our method on author-collected
datasets gathered in the low-textured indoor situations. We
compare the proposed method with two state-of-the-art stereo
VO algorithms: stereo ORB-SLAM2 [3] and stereo DSO
[27]. To compare in terms of pure VO, the SLAM function-
ality of the ORB-SLAM is switched off. For the quantitative
comparison of VO performance, we use the relative pose
error (RPE) proposed in [28]. We publicly share our datasets
used in the paper at https://chkim.net/iros2020.

A. EuRoC datasets

To show the robustness to the illumination changing, we
additionally implement the previously proposed illumination
changing model used in [15], and the modified datasets are
distinguished by suffix of change. V1 01 contains moderated

Fig. 13: ICP iterations and time consumption by using the edge culling
method to align the cluttered image in Fig. 10(b). (a-c) ICP iterations
versus camera motions, (d-f) time consumption versus camera motions.

Fig. 14: The results of the edge culling method with lmin = {5, 15, 25}.

Fig. 15: Calculation times of four implementations on EuRoC datasets.
TABLE I: Performance comparison on EuRoC datasets. Bold denotes the
best performance for each dataset.

Relative pose errors (RPE) [m/s]

Dataset Ours ORB(stereo)
[3]

stereo-DSO
[27]

V1 01 0.038 0.031 0.024
V1 03 0.046 0.052 fail

V1 01(change) 0.031 0.055 fail
V1 03(change) 0.055 0.068 fail

motions and illuminations with abundant textures, and V1 03
has severe blurs from aggressive motions and illumination
changes induced by the auto exposure control. The com-
parison results are shown in Table. I. According to the
results, the proposed method shows comparative performance
with the others in the normal V1 01. In V1 03, due to the
high illumination, DSO fails to operate when auto expo-
sure control excessively intervenes. ORB-VO continues to
track motions for all datasets, however, the performances
on datasets with changed illuminations are significantly
degraded. Nevertheless, the proposed VO shows robust and
accurate performance throughout the datasets. The average
calculation times per stereo frame are about 50-60 ms for
EuRoC datasets as seen in Fig. 15.
B. Author-collected datasets

To verify the real-world applicability of the proposed
method, we collected challenging man-made scenes that in-
clude few free-formed edges only. Because there is no ground
truth trajectory, we carefully move a camera to maintain the
same height throughout the loop, and intentionally set the
starting and end positions identical to check whether the
results are consistent. As depicted in Fig. 16, the rectangular
skeleton of the corridor is accurately recovered. Moreover,
our method maintains the stable height estimate and exactly
returns back to the starting point blue circle without any help
of re-localization ability like SLAM.
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Fig. 16: VO and 3-D reconstruction results on the author-collected dataset. The estimated trajectory is in magenta, ranging 7 m×12 m.

VIII. CONCLUSIONS

In this paper, we proposed an efficient edge-based stereo
visual odometry using the efficient multiple-quadtree struc-
ture. Extracted edges were classified into eight overlapped
subsets with respect to their image gradient directions. To
mitigate high ambiguity on matching edges, we segmented
them into eight orientation bins with shared regions between
neighboring bins. In addition, the matching procedure was
accelerated by multiple-quadtree structures memorizing vis-
ited nodes. To effectively reduce a large number of edge
pixels observed in an image, we only culled hundreds of
well distributed prominent edgelets. Camera motions were
estimated by minimizing stereo edge divergences, and our
method simultaneously updated edge inverse depths by the
static and temporal stereo. We demonstrated the robust
and accurate performance of our method by using EuRoC
datasets and author-collected datasets with almost no texture
and severe brightness changes.
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