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Abstract— Mobile robotic platforms require a precise under-
standing about other agents in their surroundings as well as
their respective motion in order to operate safely. Scene flow
in combination with object detection can be used to achieve
this understanding. Together, they provide valuable cues for
behavior prediction of other agents and thus ultimately are a
good basis for the ego-vehicle’s behavior planning algorithms.
Traditionally, scene flow estimation and object detection are
handled by separate deep networks requiring immense com-
putational resources. In this work, we propose PillarFlowNet,
a novel method for simultaneous LiDAR scene flow estimation
and object detection with low latency and high precision based
on a single network. In our experiments on the KITTI dataset,
PillarFlowNet achieves a 16.3 percentage points higher average
precision score as well as a 21.4% reduction in average
endpoint error for scene flow compared to the state-of-the-art
in multitask LiDAR object detection and scene flow estimation.
Furthermore, our method is significantly faster than previous
methods, making it the first to be applicable for real-time
systems.

I. INTRODUCTION

This paper targets the problem of multitask learning for 3D

object detection and scene flow estimation using LiDAR data

in a single deep network as depicted in Figure 1. 3D scene

flow associates a displacement vector to each point in a point

cloud, propagating it forward to its corresponding location

in the consecutive point cloud. Estimating 3D scene flow

using LiDAR data is no trivial task: The inherent sparsity

of measured points in 3D space renders the problem of

scene flow estimation ill-posed, as there are practically no

pointwise one-to-one correspondences present in two consec-

utive point clouds. Instead, scene flow must be inferred from

the underlying motion of objects in a scene, irrespective of

whether a displacement between two point clouds is caused

by the sensor’s ego motion or whether it is caused by a

moving agent.

Recently, the research community’s interest in LiDAR

object detection and LiDAR scene flow estimation has grown

but little work has been conducted towards unifying those

tasks, i.e. solving them with a single network. To the best

of our knowledge, there exists only one previous method

for multitask learning for these tasks using LiDAR data,

i.e. the work by Behl et al. [1]. Their network relies on

computationally expensive 3D convolutions in order to find

correspondences over the space and time domain, rendering

their network architecture too slow for real-time applications.
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Fig. 1. PillarFlowNet detects objects and predicts scene flow at the same
time using LiDAR data only. This scene shows the ego vehicle performing
a sharp right turn. For color coding, the predicted flow vectors are projected
onto the ground plane and colored according to the standard HSV wheel on
the left.

We propose a novel network utilizing a different represen-

tation, which is not only significantly faster but also much

more accurate in both tasks, outperforming their network in

predicting LiDAR scene flow and objects at the same time. It

relies on a pillar feature representation in combination with

efficient 2D convolutions. This gain in speed makes it the first

LiDAR object detection and scene flow multitask network

suitable for systems with real-time constraints.

Pointwise scene flow in combination with object detection

is more generic than object tracking approaches, as motion

of objects that were not explicitly detected can still be rea-

soned about. Traditional approaches using object detection in

combination with tracking have advantages when it comes to

stability of detections and vehicle tracks. However, tracking

cannot capture motion in cases where no vehicle has been

detected. Additionally, tracking frameworks need time to

initialize and update their motion model in order to predict

a meaningful state of a tracked object. In contrast to that,

our network computes meaningful motion estimates even for

objects it has not been specifically trained for as shown in

Figure 2.
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Fig. 2. PillarFlowNet manages to capture motion at a very detailed level.
Color-coding the predicted flow vectors by length makes pedestrians and
cyclists easily distinguishable from vehicles and static objects.

Our main contributions are:

• We propose PillarFlowNet, a novel end-to-end trainable

network for simultaneous LiDAR object detection and

scene flow estimation.

• Our method significantly improves multitask LiDAR

scene flow estimation and object detection accuracy

compared to the state-of-the-art.

• PillarFlowNet is the first multitask LiDAR scene flow

and object detection network to achieve real-time per-

formance.

II. RELATED WORK

Our method lies at the intersection of multitask learning,

LiDAR object detection, and scene flow estimation. The

following paragraphs present relevant literature for all three

categories.

A. LiDAR Scene Flow

Over the years, multiple suitable data representations have

been established for LiDAR scene flow estimation.

Point set based methods: FlowNet3D by Liu et al. [2]

operates on pre-filtered sets of points, MeteorNet by Liu et

al. [3] uses MeteorModules computing pointwise features

for points and their neighbors. Features and spatiotemporal

differences of neighboring points are passed into a feature

encoder inspired by PointNet [4], aggregated recursively, and

shared using max pooling and feature concatenation.

Graph-based methods: Dewan et al. [5] were among the

first to research estimating LiDAR scene flow using energy

minimization on a factor graph representation of consecutive

point clouds. Very recently, Gu et al. proposed HPLFlowNet

[6], capable of estimating LiDAR scene flow on up to 86k

points.

Point set based and graph-based methods have in common

that they tend to work well on small point sets. The largest

point cloud any of these approaches report to have success-

fully processed is [6] with 86k points, while Liu et al. [2]

stop reporting runtimes after 8k points (325ms), which is

significantly smaller than a real point cloud recorded from a

common LiDAR sensor: A Velodyne HDL64 LiDAR records

128k points per revolution at 10Hz. All of these methods

circumvent this problem by removing ground points in a

preprocessing step, which has several disadvantages: Besides

costing precious runtime, information is lost which can be

fatal, especially in cases where the ground segmentation

gives false results.

Grid-based methods: Ushani et al. [7], [8] were the first

to apply machine learning to LiDAR scene flow estimation,

inserting point clouds with removed static background into

3D occupancy grids. Scene flow is estimated using binary

classifiers in order to find matches of feature columns

between consecutive occupancy grids. More recent work

tackles LiDAR scene flow estimation using Deep Learning.

Vaquero et al. [9] and Baur et al. [10] use range images

as data representation, projecting point clouds into 2D grids

and applying 2D convolutions to estimate flow. Wang et

al. [11] use a ResNet-50 architecture [12] applying 3D

convolutions on an occupancy grid predicting a voxel flow

map. They introduced Deep Parametric Continuous Convo-

lutional (DPCC) layers which are then used as refinement

on the 3D occupancy flow map. DPCC layers employ the

Euclidean space directly as support domain with multilayer

perceptrons (MLPs) as kernel functions. Compared to other

publications such as [1], [3], [2], [6], [9], [10], [13] they

report exceptionally good scene flow precision, which is

why we chose to implement their approach as a baseline

in section VI.

B. LiDAR Object Detection

For an excellent survey over LiDAR object detection

methods the interested reader is referred to [14]. Most

relevant for this work are grid-based methods. Zhou et al.

introduced VoxelNet [15] which first subdivides the point

cloud into voxels and then applies Voxel Feature Encoding

(VFE) (based on PointNet [4]) to each voxel, performing

hierarchical feature encoding, the result of which is then

aggregated to a 3D tensor. After some middle convolutional

layers the resulting tensors are ultimately fed into a Re-

gion Proposal Network (RPN) [16] which outputs a map

of objectness probability scores and a regression map for

bounding box parameters. Based on VoxelNet [15], Yan et

al. introduced more efficient sparse convolutions in their

network SECOND [17].

Most relevant for this paper in terms of object detection

is the work conducted by Lang et al. [18], who proposed

PointPillars, a novel deep neural network based on SECOND

[17]. PointPillars splits the input point cloud into vertical 3D

columns (pillars) and utilizes PointNet [4] to learn features

from each pillar with its points. The features are encoded

in a pseudo image enabling the use of an efficient 2D

object detection backbone network without requiring 3D

convolutions. This allows PointPillars to predict 3D bounding

boxes at very high speed.

10735



Detection Head

LiDAR Point Cloud 𝑡0 3D Object Detection

Scene Flow

Backbone 

Network

Feature Encoding 

Network

LiDAR Point Cloud 𝑡1
Scene Flow 

Head

Feature Encoding 

Network

Fig. 3. Structure of our proposed multitask architecture PillarFlowNet. The network works directly on two consecutive raw point clouds and predicts
3D bounding boxes as well as scene flow for all points in the scene.

C. Multitask Learning

Multitask learning attempts to learn multiple tasks simul-

taneously with the goal of obtaining more general models.

While there is a multitude of works that deal with multitask

learning in general [19], [20], [21], [22], [23] or multitask

learning specifically for LiDAR applications [24], [4], [25],

[26] there exists only one paper that deals with simultaneous

scene flow estimation and object detection using LiDAR

point clouds: PointFlowNet by Behl et al. [1] subdivides two

point clouds into separate voxel grids and uses Siamese VFE

layers [15] as feature encoder to compute independent feature

maps for each one of the consecutive point clouds. These two

feature maps are then stacked and fed into a context encoder,

which applies vertical downsampling using three strided 3D

convolution layers, enforcing a common data representation

for all tasks. After this, the network is split into different

branches, predicting 3D scene flow for each voxel, ego

motion, and object classification scores along with residuals

for the box proposals. They evaluate scene flow accuracy

of their network on a subset of the KITTI object detection

dataset [27], comparing it to multiple baseline methods.

The advantages of our method over the method by Behl et

al. [1] are mainly twofold: First, our network is significantly

more accurate in both object detection and scene flow

estimation. Second, our network is more than twice as fast

as theirs, making it the first LiDAR scene flow and object

detection multitask network capable of running in real-time.

This is mainly due to using a different, more efficient data

representation, enabling us to rely on 2D convolutions instead

of computationally expensive 3D convolutions.

III. PILLARFLOWNET ARCHITECTURE

PillarFlowNet takes two consecutively recorded LiDAR

point clouds (each accumulated over 360◦) and predicts

oriented 3D bounding boxes for cars and vans as well as a

3D scene flow vector for each point in the first point cloud.

Figure 3 shows the overall structure of the network. The

architecture is subdivided into three parts: (A.) two feature

encoding networks for creating representations of the two

input point clouds, (B.) a convolutional backbone network

that learns a shared representation, and (C.) two output heads

for 3D bounding box classification and regression as well as

scene flow estimation.

A. Feature Encoding Network

In order to encode both input point clouds to be processed

efficiently, we use two identical learning-based feature en-

coding networks whose structure is illustrated in Figure 4. It

is based on the pillar feature network introduced in PointPil-

lars by Lang et al. [18]. The feature encoder subdivides the

input point cloud into equally spaced pillars. Empty pillars

are discarded, so that a variable number of pillars P is

further processed. If a pillar comprises more than T = 100
points, a random subset is kept. All remaining points in each

pillar are augmented using Cartesian coordinates relative

to the pillar’s centroid and relative to the pillar’s center,

creating a tensor with D = 9 dimensions as described in

[18]. Using a linear layer, a batch normalization layer, and a

rectified linear activation function (ReLU), a representation

of the augmented point cloud tensor is learned. A maximum

operation is applied to the point features in each pillar

in order to extract only the most dominant features. The

elements of the resulting tensor are scattered into a 3D tensor

at their original pillar locations.

B. Backbone Network

The two pseudo images of the feature encoders are further

processed by a convolutional backbone network (Figure 5).

The backbone network concatenates the pseudo images and

applies strided 2D convolutions to create a compact shared

representation. Features from differently sized tensors are

upsampled using transposed 2D convolutional layers, com-

bining high resolution local features with coarser, more glob-

ally aggregated features in a subsequent concatenation. This

combines semantic with positional information. While the

full pillar resolution is maintained for scene flow estimation,

for object detection only half of the resolution proved to be

sufficient. For more details regarding number of layers and

tensor sizes refer to Figure 5.

C. Output Heads

The concatenated feature tensors are further processed

by 2D convolutions for object classification, bounding box

regression, and 3D scene flow estimation as shown on the

right side of Figure 5. For scene flow estimation, a 3D

velocity vector is regressed for each pillar directly. For 3D

object detection, a region proposal network with fixed size

anchor boxes of two orientations as in [15] is applied. For
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Fig. 4. Feature encoding network. Given a raw point cloud it learns a representation that can be further processed efficiently without 3D convolutions.

each anchor box, the regression head predicts the probability

that an object is located within it. The regression head

predicts the deviations for each anchor box to the actual

object using the same encoding as [15], [17]:

b = (∆xp,∆yp,∆zp,∆lp,∆wp,∆hp,∆θp) ∈ R
7. (1)

IV. IMPLEMENTATION DETAILS

In this section, we present details about our implementa-

tion, such as hyperparameters and the loss function.

A. Network Details

For object detection, we use anchor boxes with 3.9m in

length, 1.6m in width, and 1.56m in height centered at z =
−1m. We use pillars with a square base of 0.2m in width

and a maximum number of points within a pillar of T = 100.

The linear layer of our feature encoding network has C = 64
units. We train our network on a single GPU with a mini-

batch size of one. We use an Adam optimizer [28] with initial

learning rate 1× 10−3 and an exponential decay factor of

0.85 applied every ten epochs.

B. Loss

The proposed network is end-to-end trainable using a

multitask loss function based on [23] that considers the

homoscedastic (task-dependent) uncertainties:

L =
1

2σ2

OD

LOD +
1

2σ2

SF

LSF + log σ2

ODσ
2

SF. (2)

σOD and σSF are learnable parameters for object detection

(OD) and scene flow (SF) respectively which are initialized

with one.

Object Detection Loss: The object detection loss LOD is

comprised of a classification loss Lcls and a bounding box

regression loss Lreg:

LOD = λclsLcls + λregLreg. (3)

λcls and λreg are manually chosen weighting factors, which

we set to λcls = 1 and λreg = 2.

For classification, the focal loss [29] is used, whereby all

anchor boxes are declared as positive or negative like in

Faster R-CNN [16] with positive and negative IoU thresholds

of 0.6 and 0.45 respectively:

Lcls = −
λ

pos
cls

N pos

∑

i

(1− p
pos
i )γ log(ppos

i )

−
1− λ

pos
cls

N neg

∑

i

(pneg
i )γ log(1− p

neg
i ). (4)

λ
pos
cls is the balancing factor and γ the focusing parameter.

We set them to λ
pos
cls = 0.25 and γ = 2. p

pos
i and p

neg
i are the

classification probabilities of the i-th positive and negative

anchor box respectively. N pos and N neg are the numbers of

positive and negative anchor boxes respectively.

For bounding box regression, the smooth L1 loss of

Girshick et al. [30] and the angle loss of Yan et al. [17]

are combined:

Lreg =
1

N pos

(

L1, smooth(sin(∆θg
−∆θp))

+
∑

i∈{x,y,z,l,w,h}

L1, smooth(∆ig
−∆ip)

)

(5)

Scene Flow Loss: As most points are static in the world,

there usually is an imbalance between static and dynamic

points in real-world datasets. This imbalance impairs the net-

work to generalize well for both types of points. Therefore,

we use a weighted L1 loss for scene flow estimation:

LSF =
1

K

K
∑

k=1

δk
∥

∥f
g

k − f
p

k

∥

∥

1
, (6)

where f
g

k and f
p

k are the k-th ground truth and the corre-

sponding predicted flow vector respectively. δk is a weighting

factor for dynamic points.

V. EXPERIMENTAL SETUP

We conducted extensive experiments which are explained

and presented in the following.

A. Dataset

The experiments are performed on the KITTI object

tracking dataset [27], which was recorded using a Velodyne

HDL64 LiDAR sensor at a frame rate of 10Hz. We used

the ego-vehicle’s odometry to annotate static points with

ground truth LiDAR scene flow labels by applying its inverse

transformation to every point.
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Fig. 5. Convolutional backbone network with output heads. Given the learned 3D representations of both input point clouds, the backbone network
initially creates shared feature tensors applying only 2D convolutions. Using transposed convolutions, features from different aggregation stages are taken
into account to finally predict 3D bounding boxes with detection probabilities and 3D scene flow vectors.

For dynamic objects, point-wise LiDAR scene flow ground

truth is computed using the annotated bounding boxes

and their corresponding transformation between consecutive

frames. To cope with the high imbalance between static and

dynamic points in the KITTI dataset, we set the scene flow

loss weighting factor δk = 1 for static points and δk = 10
for dynamic ones.

For training and testing, we split the KITTI object tracking

dataset into two sets according to Table I. The sequences

are selected in such a way that both sets have on average a

similar number of static and dynamic points.

TABLE I

TRAIN/TEST SPLIT OF THE KITTI OBJECT TRACKING DATASET.

Training Test

Selected Sequences 0 – 2, 4, 5, 7, 8, 10, 11,
13 – 18, 20

3, 6, 9, 12, 19

Number of frames 5 633 2 349
Total ratio 70.6% 29.4%

B. Data Preprocessing and Augmentation

Before cropping the point clouds from the KITTI object

tracking dataset to [0, 70.4]m × [−40, 40]m × [−3, 1]m for

x, y, and z respectively, multiple augmentations are applied.

Firstly, we mirror the given training data sample with a

50% chance across the xz-plane. Secondly, we rotate the

data around the z-axis by an angle drawn from the uniform

distribution [−45◦, 45◦]. Thirdly, we insert five additional

moving objects sampled from the training set into each

training frame as the dataset only contains annotations for

dynamic objects in the camera field of view.

C. Evaluation Metrics

We evaluate our network and the benchmarks on the KITTI

object tracking test set presented in Table I. For object

detection, we use the average precision (AP ) score at 70%
intersection over union. For scene flow estimation, we use

the average endpoint error (AEE), a modified version of the

average cosine distance (ACD), the percentage of inliers

(endpoint error EE < 10 cm), and the percentage of outliers

(EE > 30 cm).

Since static objects dominate the scene in most au-

tonomous driving scenarios, the accuracy of scene flow

vectors belonging to moving objects has only a small impact

on metrics that consider all points equally. This diminishing

effect on metrics is in stark contrast to the actual relevance

of correctly estimating dynamic objects motions on the

safety of operation for an autonomous vehicle. Therefore,

we additionally report each metric for dynamic and static

points separately in the scene. We define dynamic points as

all points in the first point cloud which are inside ground

truth bounding boxes.

Regarding the average cosine distance, we propose an

adaption which does not penalize the prediction of small

scene flow vectors where the direction of the ground truth can

be noisy. This is achieved by averaging the cosine distance

of Kǫ ground truth flow vectors, where
∥

∥f
g

k

∥

∥

2
> ǫ:

ACD =
1

Kǫ

Kǫ
∑

k=1

1− Sc(f
g

k ,f
p

k) (7)

Sc is the cosine similarity

Sc(f
g

k ,f
p

k) =
f

g

kf
p

k
∥

∥f
g

k

∥

∥

2

∥

∥f
p

k

∥

∥

2

(8)

We set ǫ = 0.05 as threshold.

D. Baseline Methods

We compare the performance of our proposed method to

multiple baseline methods:

For simultaneous scene flow & object detection we use

PointFlowNet by Behl et al. [1] as baseline.
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TABLE II

RESULTS FOR SCENE FLOW ESTIMATION

average endpoint error average cosine distance inliers outliers
Mode Aug all static dynamic all static dynamic all static dynamic all static dynamic

PointFlowNet [1] MT X 11.7 cm 11.2 cm 39.2 cm 0.267 0.079 0.571 58.3% 59.2% 34.2% 5.4% 4.8% 19.2%

Ours MT X 9.2 cm 8.7 cm 29.9 cm 0.216 0.054 0.451 79.4% 80.4% 52.5% 4.9% 4.4% 18.4%

PointFlowNet [1] ST × 10.4 cm 10.1 cm 21.4 cm 0.145 0.090 0.245 73.0% 73.5% 60.2% 5.6% 5.3% 14.0%

DPCCN [11] ST × 9.2 cm 8.6 cm 48.0 cm 0.275 0.049 0.641 70.4% 71.4% 42.6% 2.6% 2.0% 18.2%

Ours ST × 6.9cm 6.7cm 17.9cm 0.091 0.046 0.186 81.2% 81.7% 68.7% 1.5% 1.1% 12.1%

For scene flow, we chose the Deep Parametric Continuous

Convolutional Network (DPCCN) as proposed by Wang et

al. [11] as baseline. In their study conducted on their non-

public dataset, they have reported an exceptionally small

average endpoint error of just 7.8 cm. However, for adapting

their network to our experimental setup, we exchanged the

ResNet-50 with a ResNet-34 which improved the generaliza-

tion on the KITTI object tracking dataset significantly. Due to

its excessive memory requirements, it was not possible to use

FlowNet3D [2] for the full KITTI point clouds. Additionally,

we trained PointFlowNet [1] focused on scene flow, i.e. with

the object detection loss set to zero.

For object detection, we use PointPillars [18] as baseline,

as it represents the state of the art in single shot LiDAR 3D

object detection. In order to get the best possible object de-

tection performance, we did not limit the maximum number

of pillars. Additionally, we trained PointFlowNet [1] focused

on object detection, i.e. with the scene flow loss set to zero.

Since the baseline methods as reported in their correspond-

ing papers were not adapted to the KITTI object tracking

dataset, we performed an extensive parameter search in order

to find the best suited hyperparameters and report only the

best results achieved by each method. For all object detection

approaches, the data augmentation methods as described in

subsection V-B were used. For pure scene flow estimation,

augmentation was not necessary to achieve improved results.

VI. RESULTS

The results of the experiments described in section V are

presented and discussed in the following. The results for

scene flow estimation are shown in Table II and the object

detection results in Table III . Results achieved in a multitask

setting (i.e. simultaneous object detection and scene flow

prediction) are labeled as MT, results achieved in a single

task setup, i.e. object detection or scene flow estimation are

labeled as ST in the tables.

A. Multitask Performance (MT)

While the object detection performance of PillarFlowNet

does not reach the object detection performance of the single

task network PointPillars [18], it outperforms the multitask

baseline PointFlowNet [1] for object detection significantly.

In terms of scene flow, PillarFlowNet’s average endpoint

errors are significantly lower than PointFlowNet’s. Inlier

rates for both static and dynamic points are on average 20

percent points higher than PointFlowNet’s. Also regarding

outlier rates, PillarFlowNet is slightly better than Point-

FlowNet. Remarkably, PillarFlowNet trained in a multitask

setup matches the state-of-the-art DPCCN [11] for scene flow

estimation in terms of average endpoint error for static points

while being over 37.7% more accurate on dynamic points.

Qualitative results, i.e. simultaneous predictions of objects

and scene flow of PillarFlowNet are shown in Figure 6.

TABLE III

RESULTS FOR OBJECT DETECTION

Method Mode AP@0.7

PointFlowNet [1] MT 38.4%

Ours MT 54.7%

PointFlowNet [1] ST 45.3%

PointPillars [18] ST 66.3%

Ours ST 65.4%

It is known that certain tasks in certain scenarios can have

synergetic relationships [21]. In order to investigate synergy

effects when performing multitask learning, we additionally

trained PointFlowNet [1] and our PillarFlowNet for both

tasks individually by setting either the scene flow loss or

the object detection loss to zero.

B. Singletask Performance (ST)

Our experiments suggest that for both PillarFlowNet and

PointFlowNet [1] the synergetic effects from training two

seemingly supportive tasks are smaller than the effects from

training on a single task individually. Both networks perform

better in either object detection or scene flow estimation

when being trained to perform a single task exclusively.

This demonstrates that for this combination of architectures

and tasks, the beneficial effect of focusing on a single task

outweighs the synergetic effects that may exist for scene flow

and object detection.

Scene Flow: As can be seen in table Table II, in a

single task setting, PillarFlowNet surpasses state-of-the-art

scene flow estimation baselines. PillarFlowNet is also much

more robust than previous approaches, achieving signifi-

cantly higher inlier rates and significantly lower outlier rates

than the baseline methods. As it is to be expected, all

methods perform much better on static points than on points

belonging to dynamic objects. This underlines the need of

evaluating the performance for static and dynamic objects

separately.
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Fig. 6. The first column of images shows PillarFlowNet’s object detection prediction (blue) overlayed with ground truth objects (green). Note that
PillarFlowNet detects objects outside of the space that objects were labeled in. The KITTI object tracking dataset only contains annotations for objects in
the cameras field of view. In the middle column, scene flow and object ground truth is shown. In the right image column, PillarFlowNet’s predicted scene
flow and objects are shown. Flow vectors are HSV color-coded according to their direction.

Object Detection: LiDAR object detection is a more

thoroughly researched field compared to LiDAR scene flow

estimation. The dedicated object detection network outper-

forms our architecture that is designed to perform well

on multiple tasks. Noticeably, the performance gap of our

multitask network PillarFlowNet towards the state-of-the-art

network PointPillars [18] is much smaller than the gap of

PointFlowNet [1] towards PointPillars.

C. Runtime

The runtimes were evaluated on a desktop computer with

an AMD Ryzen 9 3900X CPU with 3.8GHz and an NVIDIA

GeForce RTX 2080 Ti GPU using a TensorFlow [31] im-

plementation. The inference of our multitask network takes

87.6ms. Object detection without scene flow estimation

takes 71.7ms and scene flow estimation with deactivated

object detection takes 86.6ms. In comparison, PointFlowNet

[1] requires with 197.8ms 2.3 times more for the same

inference.

VII. CONCLUSION

This paper introduced PillarFlowNet, a novel end-to-end

trainable network for simultaneous LiDAR object detection

and scene flow estimation capable of real-time performance.

In extensive experiments on the KITTI dataset, we compared

PillarFlowNet to multiple strong baselines and demonstrated

that for simultaneous LiDAR object detection and scene flow

estimation it significantly outperforms the state-of-the-art,

increasing the average precision score by 16.3 percentage

points and reducing the average endpoint error by 21.4%.

Furthermore, we showed that in a single task scene flow

training setup PillarFlowNet outperforms the current state-

of-the-art by a large margin in terms of endpoint error, while

achieving both significantly higher inlier rates as well as

significantly lower outlier rates.
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