
Multi-Robot Joint Visual-Inertial Localization and 3-D
Moving Object Tracking

Pengxiang Zhu and Wei Ren

Abstract— In this paper, we present a novel distributed
algorithm to track a moving object’s state by utilizing a
heterogenous mobile robot network in a three-dimensional
(3-D) environment, wherein the robots’ poses (positions and
orientations) are unknown. Each robot is equipped with a
monocular camera and an inertial measurement unit (IMU),
and has the ability to communicate with its neighbors. Rather
than assuming a known common global frame for all the robots
(which is often the case in the literature regarding multi-robot
systems), we allow each robot to perform motion estimation
locally. For localization, we propose a multi-robot visual-inertial
navigation systems (VINS) where one robot builds a prior map
and then the map is used to bound the long-term drifts of the
visual-inertial odometry (VIO) running on the other robots.
Moreover, a novel distributed Kalman filter is introduced and
employed to cooperatively track the six degree-of-freedom (6-
DoF) motion of the object which is represented as a point cloud.
Further, the object can be totally invisible to some robots during
the tracking period. The proposed algorithm is extensively
validated in Monte-Carlo simulations.

I. INTRODUCTION

Tracking the 6-DoF poses of moving objects in a 3-D
environment is a key component in many applications such as
area surveillance, region monitoring, rescue and autonomous
driving. When mobile robot networks are employed to track
the moving objects, a larger area can be covered and more
observations to the objects can be obtained. Further, each
robot in the networks are allowed to have only occasional
observations of the objects, which makes the tracking system
more robust in complex environments where obstacles might
block some robots’ views to the objects. To achieve suc-
cessful tracking, the robots need to have good knowledge of
their own poses. However, absolute measurements (e.g., GPS
or motion-capture system) might not be available in many
scenarios. In such scenarios, the cheap, lightweight sensor
suite of a monocular camera and an IMU is a popular choice
for motion estimation. Moreover, in multi-robot applications,
it is usually assumed that a common global frame encoding
all the robots’ states is available. Additionally, distributed
algorithms outperform centralized ones in multi-robot appli-
cations due to the strengths in scalability, processing and
communication efficiency, and robustness. As such, we are
interested in simultaneously estimating both the robots’ poses
and the object’s state locally with only the monocular visual-
inertial sensor fixed on each robot in a distributed matter.

The objective of our VINS is to achieve multi-robot local-
ization rather than cooperative mapping [1], [2]. The single

Pengxiang Zhu and Wei Ren are with the Department of Electrical
and Computer Engineering, University of California, Riverside, CA 92521,
USA(pzhu008@ucr.edu, ren@ee.ucr.edu).

robot VINS problem has been studied extensively in recent
years [3]–[7]. Among the proposed algorithms, filtering-
based approaches remain the most popular for resource-
constrained platforms. One of the most favorable filtering
solutions is the multi-state constraint Kalman filter (MSCKF)
[3] based VIO which is efficient yet accurate for real-time
motion estimation. This approach only includes a constant-
size sliding window of IMU poses in the state vector without
storing the features. The MSCKF is extended to solve the
multi-robot localization problem in [8] where the state vector
includes a sliding window of every robot’s IMU poses. Com-
mon environmental features observed over a sliding-window
time horizon are used to add extra constraints. Recently,
cooperative VINS is studied in [9], [10] where they rely on
robot-to-robot camera measurements. But the same as [8], it
inherits the drawback of VIO that the estimator exhibits long-
term navigation drifts. In contrast, visual-inertial SLAM (VI-
SLAM) [4]–[6] enables “loop closure” to provide bounded
navigation errors by building a map of surroundings. How-
ever, cooperative VI-SLAM where each robot runs VI-SLAM
and shares the local maps and states requires expensive
communication, storage and computational cost. An extra
server is used in [11] to handle computationally expensive
and non-time-critical tasks. It is worth noting that the above
mentioned multi-robot VINS algorithms are all centralized
and running in a known common global frame.

Single robot VINS algorithms have been extended to
concurrently estimate a moving object’s state in recent works
[12]–[15]. Ref. [12] addresses the problem of tracking a mov-
ing target using a quadrotor in cluttered environments. The
quadrotor’s state is estimated using a VI-SLAM algorithm
and the target’s trajectory is recovered using polynomial
fitting with relative observations of the target’s position
provided by a camera. In [13], a monocular VINS is built
to track the 6-DoF pose of the target. Camera poses are
estimated with VINS [14], while the object’s state is obtained
by the combination of an object region-based bundle adjust-
ment (BA) and metric scale estimation. A tightly-coupled
estimator for visual-inertial localization and target tracking
is proposed in [15] where the MSCKF is generalized to
incorporate tracking of a 3D object. The target object is
represented as a rigid body built from features and three
motion models are proposed to capture the target’s actual
motion. However, the above mentioned single robot tracking
requires continuous observation of the whole or partial target
body. Multiple cameras are used in [16] and [17] where [16]
jointly estimates the 6-DoF trajectory of a flying object and
the cameras’ poses while [17] propose a spatio-temporal BA

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 11573

to jointly estimate the 3-D trajectories of dynamic points
and camera intrinsics and extrinsics. Both [16] and [17]
are limited by the centralized approaches, the use of static
cameras and the assumption of known motion dynamics
of the target. Distributed Kalman filters (DKF) have been
used to track targets over sensor networks [18]–[21] in 2-D
scenarios. However, the proposed DKF are not suitable for
the quaternion-based 3-D motion tracking, as quaternions are
not valid vector quantities.

There exist several approaches for solving the problem
of multi-robot joint localization and target tracking (JLATT)
in a centralized way [22]–[24] or distributed way [25].
Theses algorithms share the following common limitations:
(1) Only address the problem in 2-D setting, which limits
their applications in many real-world scenarios which re-
quire 3-D motion. (2) The target is represented as a point
particle. But vision algorithms can yield many features on
the target object, which means a great amount of useful
information is discarded. (3) The actual target motion model
is assumed known to the robots implicitly, as they either
directly simulate the target motion using the model adopted
in the estimator design or use the proprioceptive sensor on
the target for prediction in the experiments. As a result,
the performance is not fully tested when there exists model
mismatch. (4) They implicitly assume that the absolute
measurements are available for setting a common global
frame for all the robots.

The above observations motivate us to study the 3-D
multi-robot JLATT problem with the minimal sensor suite
(monocular visual-inertial sensor) mounted on each robot.
As shown in Fig. 1, a robot network is employed to track the
6-DoF motion of a target object whose actual motion model
is unknown. Each robot’s own pose is also unknown and the
robots perform motion estimation locally. Without loss of
generality, we let each robot’s gravity-aligned global frame
have the same origin as each robot’s initial IMU frame. The
proposed distributed algorithm consists of multi-robot VINS
and cooperative target state tracking. In particular, the main
contributions of this work are summarized as follows:

• We formulate the JLATT problem in a more real-
istic scenario with the monocular visual-inertial set-
ting. Specifically, we consider changing communication
topologies and dynamic blind robots (the robots losing
sight of the whole target object), and do not assume a
known common global frame.

• We propose a multi-robot VINS system where one
robot runs the VI-SLAM and builds a prior map using
environmental features to improve the performance of
the VIO running on the other robots.

• We propose a distributed Kalman filter to achieve 6-DoF
target tracking of a moving object cooperatively. The
cooperative tracking algorithm is robust to the changing
blind robots and achieves good performance even if
there is significant mismatch between the adopted target
model and the actual one that is unknown.

Fig. 1: Four Firefly drones equipped with visual-inertial
sensors track a Pelican drone in a corridor: (a) 3D trajectories
for robot 1 (red), robot 2 (green), robot 3 (blue), robot 4
(yellow) and the target (black). The corresponding squares
denote the trajectory starts ; (b) Gazebo environment [26].

II. PRELIMINARIES

A. Notations and Definitions

Let the quantity x represent the true value, x̂ denote
the estimated value and x̃ be the corresponding error. The
superscript l/j associated with x̂ refers to the estimator of
x at timestep l, after processing all the measurements up to
timestep j. We use both the rotation matrix R and the unit
quaternion q̄ [27] to represent a rotation. We denote Gi, Ii
and Ci, respectively, as the global frame, the IMU frame and
the camera frame of robot i. T represents the target’s body
frame. Further, Ii,k, Ci,k and Tk represent the corresponding
frames at timestep k. IiGi

R and Ii
Gi
q̄ describe the same rotation

from Gi to Ii. GivIi and GipIi are the velocity and position
of Ii expressed in Gi. Gipfi and Cipfi are, respectively,
feature i’s position in Gi and Ci. {Ci

Ii
R,Ci pIi} is the set

of camera-IMU extrinsic parameters. We here assume both
the extrinsic and intrinsic parameters of each camera are
known via prior calibration [28]. For the orientation error,
we use the minimal 3-dimensional representation Gi θ̃Ii [29]
which is encoded in Gi. For all the other quantities, x̃ is
defined as the standard additive error x̃ = x − x̂ (e.g.,
Gi p̃Ii = GipIi − Gi p̂Ii). For a vector x = [x y z]T, the
perspective projection function is defined as Π(x) = 1

z [x y]T.

B. Communication Graph

Consider a network of M robots, we define a directed
communication graph Gk = (V, Ek), where V is the robot
set defined as V = {R1, . . . , RM} and the edge set Ek
(Ek ⊆ V × V) stands for the communication links between
robots at time k. We assume that self edge (i, i) ∈ Ek,
∀i ∈ V , exists in the communication graph. If there exists
an edge (j, i) ∈ Ek, where j 6= i, which means that robot
i can receive information from robot j, then robot j is
a communicating neighbor of robot i. The communicating
neighbor set of robot i at time k can be defined as N k

i =
{i|(l, i) ∈ Ek, l ∈ V}. A directed path is a sequence of edges
in a directed graph of the form (i0, i1), (i1, i2), . . ., where
ij ∈ V .

11574

III. MULTI-ROBOT VINS

In this section, we present the proposed multi-robot VINS
framework where one of the robots labeled as robot 1 runs
the extended Kalman filter (EKF) based VI-SLAM. Consider
the fact that when a group of robots is employed to achieve
a task, they usually explore the same area. Then certain
features detected by robot 1 will be detected by another robot
j (j ∈ V , j 6= 1). So we can leverage the prior information
about those common environmental features from robot 1 to
improve the estimation performance of robot j. For robot
j, the received prior map will be tightly fused into the
MSCKF VIO to bound the long-term navigation drifts while
maintaining the computational efficiency.

A. IMU State

For any robot i (i ∈ V), the IMU state represented in Gi

is described by

xIi =
[
Ii
Gi
q̄T bT

ωi

GivT
Ii bT

ai

GipT
Ii

]T
,

where bωi
and bai

are the gyroscope and accelerometer
biases. These biases are modeled as a Gaussian random walk
process. The corresponding IMU error state is defined as

x̃Ii =
[
Gi θ̃TIi b̃T

ωi

Gi ṽT
Ii b̃T

ai

Gi p̃T
Ii

]T
.

With the IMU dynamics [30], each robot can perform the
EKF propagation to evolve the current IMU state and the
covairance matrix according to [29].

B. Update Strategy for Robot 1

1) Localization State Vector: At the imaging timestep k,
the localization state for robot 1 is given by

xk
R1

=
[
xk
I1 xk

C1
xS

]T
,

xk
C1

=
[
I1,k
G1

q̄T G1pT
I1,k
· · · I1,k−m

G1
q̄T G1pT

I1,k−m

]T
,

xS =
[
G1pT

f1 · · ·
G1pT

fn

]T
,

where xk
I1

is robot 1’s IMU state at timestep k, xk
C1

is a
sliding window of m cloned historical IMU poses of robot
1, and xS contains n SLAM features’ positions in G1. We
refer xr1 = [xT

I1
xT
C1

]T as the robot state. The error states
of xk

C1
and xS take the following form

x̃k
C1

=
[
G1 θ̃TI1,k

G1 p̃T
I1,k
· · · G1 θ̃TI1,k−m

G1 p̃T
I1,k−m

]T
,

x̃S =
[
G1 p̃T

f1 · · ·
G1 p̃T

fn

]T
.

2) Localization State Update: Static environmental fea-
tures are captured by robot 1’s onboard camera. The mea-
surements corresponding to the same tracked feature fi
are collected over the sliding window. Each measurement
is associated with the corresponding cloned pose and the
feature’s position. The measurement of fi at timestep k is
given by

zkR1
= Π(C1,kpfi) + nk

1 ,

C1,kpfi =C1

I1
R

I1,k
G1

R
(
G1pfi − G1pI1,k

)
+ C1pI1 ,

(1)

where nk
1 is the zero-mean white Gaussian noise.

Next we briefly describe the adopted VI-SLAM update
strategy presented in [31]. The tracked environmental fea-
tures are divided into two types: (1) SLAM features that can
be tracked beyond the window size m and are kept in xS ;
(2) MSCKF features that can be tracked for a short period of
time or beyond m but not in xS . Both types of features will
be used to update the localization state vector. The SLAM
features in xS enable "loop closure" to limit the long-term
navigation drifts.

For an MSCKF feature fi whose track has been lost or
reached m, we perform the standard MSCKF update [3].
Specifically, we first perform BA to triangulate G1pfi by
using the cloned poses and all the collected measurements
corresponding to fi. We then linearize each measurement to
obtain the Jacobians associated with the robot state and the
feature together with the measurement residual. By stacking
all the values of each measurement, we get

z̃R1
= Hr1 x̃

k/k−1
r1 + Hfi

G1 p̃fi + n1, (2)

where z̃R1
is the stacked measurement residual; Hr1 and

Hfi are the stacked robot state and feature Jacobians. Next,
project z̃R1

onto the left nullspace of Hfi and we get

z̃′R1
= H′r1 x̃

k/k−1
r1 + n′1 = H′R1

x̃
k/k−1
R1

+ n′1, (3)

where z̃′R1
= NTz̃R1

, H′r1 = NTHr1 , n′1 = NTn1,
and H′R1

= [H′r1 03×3n] with NTHfi = 0. Here, (3) is
independent of the feature fi and then can be directly used to
perform the standard EKF update without storing the features
in the localization state.

For a SLAM feature f1 (for notation simplicity, consider
the first feature in xS) that can be tracked longer than m, we
first triangulate its position and initialize it into xS by using
the first m measurements. After initialization, whenever we
obtain a measurement of a SLAM feature, we trigger the
update process. Linearization of the measurement at timestep
k yields the following residual

z̃kR1
= Hk

r1 x̃
k/k−1
r1 + Hk

fi
G1 p̃

k/k−1
f1

+ nk
1 , (4)

which can be further written as

z̃kR1
= Hk

R1
x̃
k/k−1
R1

+ nk
1 , (5)

where Hk
R1

= [Hk
r1 Hk

f1
03×(3n−3)]. We can perform the

standard EKF updates using (5). By observing the fact that
when SLAM features become matured, there will be no
significant updates in their states and covariances, we can
gain computational savings by performing Schmidt EKF
update for those matured features according to [31]. Specif-
ically, we avoid updating the states and covariances of the
matured features, while maintaining and updating their cross-
correlations with the other states in the localization state
vector. By doing this, the computational complexity becomes
linear with respect to the number of SLAM features.

Robot 1 transmits a prior map including xM (xM ⊆
xS) and the corresponding covariance set PM with the
corresponding descriptors to the other robots. When a new

11575

SLAM feature loses its track and the prior map has not
reached the maximum size n, we register it in the prior
map and then transmit it. The descriptors are only sent
once, but the prior map needs to be renewed and transmitted
every transmitting time, as we include xS in the localization
state and the SLAM features’ states are kept being refined.
Moreover, if a SLAM feature become matured, no need to
renew its state and covariance. So when xS is matured, robot
1 can stop transmitting the prior map.

C. Update Strategy for Robot j

1) Localization State Vector: Note that robot j runs in
Gj , which is different from G1 where the prior map is
encoded. To make use of the prior map, we online estimate
the transformation GjFG1 = {Gj

G1
q̄,GjpG1} from G1 to Gj .

Therefore, at the imaging timestep k, the localization state
for robot j is given by

xk
Rj

=
[
xk
Ij xk

Cj

GjFG1

]T
,

xk
Cj

=
[
Ij,k
Gj

q̄T GjpT
Ij,k
· · · Ij,k−m

Gj
q̄T GjpT

Ij,k−m

]T
,

where xk
Ij

and xk
Cj

are the current IMU state and a sliding
window containing m cloned historical IMU poses of robot
j. We also refer xrj = [xT

Ij
xT
Cj

]T as the robot state. The
error state of xk

Cj
is defined the same as xk

C1
and the error

state of GjFG1 is defined as Gj F̃G1 = [G1 θ̃TGj

Gj p̃T
G1

]T.
Note that to estimate GjFG1

, we need an initial guess which
can be obtained with Horn’s method [32] by using the first
few (more than three) detected map features.

2) Localization State Update: We divide the static en-
vironmental features tracked by robot j’s camera into two
types: (1) map features that are inside xM received from
robot 1; (2) MSCKF features that can be tracked for a short
period of time or beyond m but not in xM . Both types of
features will be used to update the localization state. Similar
to (1), the measurements corresponding to the same tracked
MSCKF feature are collected over the sliding window. At
timestep k, the observation model for an MSCKF feature fj
is given by

zkRj
= Π(Cj,kpfj) + nk

j , (6a)
Cj,kpfj =

Cj

Ij
R

Ij,k
Gj

R
(
Gjpfj − GjpIj,k

)
+ CjpIj , (6b)

where nk
j is the zero-mean white Gaussian noise with covari-

ance Qk
j . The standard MSCKF update can be performed for

the MSCKF feature as described in Section III-B by using
the cloned poses and the collected measurements.

Unlike the MSCKF feature, whenever we obtain a mea-
surement of a map feature, we trigger the update process.
For the observation model of a map feature fj , we replace
(6b) with

Cj,kpfj =
Cj

Ij
R

Ij,k
Gj

R(
Gj

G1
RG1pfj + GjpG1

− GjpIj,k

)
+ CjpIj .

(7)

Note that (7) provides not only the constraints of the IMU
pose, but also the constraints of the transformation between

two global frames. Linearizaton of (6a), (7) yields the
following residual

z̃kRj
= Hk

Rj
x̃
k/k−1
Rj

+ Hk
fj

G1 p̃fj + nk
j , (8)

where Hk
Rj

and Hk
fj

are the corresponding Jacobians. Unlike
(2) and (5), here G1pfj is known from the prior map xM

with the covariance Pfj ∈ PM . Define ñk
j = Hk

fj
G1 p̃fj +nk

j

with the covariance Q̃k
j = Hk

fj
Pfj (Hk

fj
)T + Qk

j . Then (8)
turns into

z̃kRj
= Hk

Rj
x̃
k/k−1
Rj

+ ñk
j . (9)

Equation (9) can be used to update the localization state
directly with the standard EKF update. Note that we have
taken into account the prior map’s uncertainty in (9) which
further improves the accuracy.

The size of robot j’s state vector is (16 + 6m+ 6) which
is comparable to that of a standard MSCKF (16 + 6m) [3],
but much smaller than that of the VI-SLAM (16+6m+3n),
especially for a large-scale environment (n� m). So robot
j maintains the computationally efficiency of MSCKF while
avoiding long-term drift with the aid of the prior map built
by robot 1.

IV. COOPERATIVE TARGET STATE TRACKING

In this section, we present the proposed cooperative target
state tracking approach that is based on a novel distributed
Kalman filter. In our setting, each robot maintains an estima-
tor of the common target’s state in addition to its own pose
estimator.

A. Tracking State Vector

As we do not assume a known common global frame,
the target’s state would express different values in different
global frames. However, a prerequisite for using a neighbor-
ing robot’s information is that this information is encoded in
the same frame. So each robot tracks the target in its own
global frame independently before initializing the transfor-
mations between the global frames. After initialization, we
can convert the estimated target state of robot j (j ∈ V ,
j 6= 1) from Gj to G1 with the estimated value of GjFG1

.
After initialization of the transformation, the target state is
encoded in G1. We define the target state as [15]

xT =
[
T
G1
q̄
T G1pT

T Tω
T G1vT

T
]T
,

where T
G1
q̄ describes the rotation from G1 to T , G1pT is the

position of T in G1, G1vT is target’s global linear velocity
and Tω is the target’s local angular velocity. Both G1vT and
Tω are treated as continuous-time random walks driven by
noises nv and nω , respectively.

Like [15], we represent the 3D rigid-body target as a point
cloud consisting of corner features that can be tracked by
the robots’ cameras. One of these target features is chosen
as the representative point where the pose of the target is
defined while the other features are the non-representative
features that provide additional observations. Note that none

11576

of the target features is required to be reliably tracked by each
robot over time. It could be the case that the target is totally
invisible to some of the robots in the group. A sparse feature
set of the target is extracted and tracked. As we employ
multiple robots, more observations and constraints can be
obtained for every target feature. This makes it possible
to limit the number of tracked features for a successful
tracking. So unlike [15], instead of maintaining a sliding
window of cloned historical target poses to triangulate none-
representative features’ positions, we add these features’ rel-
ative positions in the target’s body frame to our tracking state
to provide reobservation constraints. Therefore, at timestep
k, the tracking state for each robot is given by

xk
O =

[
xk
T

Tpt

]T
, Tpt =

[
TpT

t1 · · ·
TpT

ts

]T
,

where xk
T is the target state at timestep k, and Tpt contains

s non-representative features’ positions in T . Note that Tpt

does not evolve over time as we assume a rigid-body target.
Robot i (i ∈ V) maintains an estimator x̂Oi of xO and the
corresponding error state is given by

x̃Oi
=
[
x̃Ti

Ti p̃t

]T
, Ti p̃t =

[
Ti p̃T

t1 · · ·
Ti p̃T

ts

]T
,

x̃Ti =
[
G1 θ̃TTi

G1 p̃T
Ti

Tiω̃T G1 ṽT
Ti

]T
,

where the orientation error G1 θ̃Ti
is expressed in G1 and the

subscript i associated with T denotes the quantity obtained
by robot i.

B. Target Measurements

Like the static environmental features, the target features
are captured by the robots’ cameras. For robot 1, the mea-
surements of the representative features take the form

zkT1
= Π(C1,kpTk

) + nk
1 , (10)

C1,kpTk
= C1

I1
R

I1,k
G1

R
(
G1pTk

− G1pI1,k

)
+ C1pI1 . (11)

While for a non-representative feature Tptj , (11) is replaced
with

C1,kpTk
=C1

I1
R

I1,k
G1

R(
Tk

G1
RTTptj + G1pTk

− G1pI1,k

)
+ C1pI1 .

(12)

For robot j (j 6= 1), as we encode the target state in G1, the
measurements of the representative feature is given by

zkTj
=Π(Cj,kpT) + nk

j , (13)

Cj,kpT =
Cj

Ij
R

Ij,k
Gj

R(
Gj

G1
RG1pTk

+ GjpG1
− GjpIj,k

)
+ CjpIj .

(14)

While for a non-representative feature Tptj , we replace (14)
with
Cj,kpT =

Cj

Ij
R

Ij,k
Gj

R[
Gj

G1
R(Tk

G1
RTTptj + G1pTk

) + GjpG1
− GjpIj,k

]
+ CjpIj .

(15)

The linearization residuals of these measurements take the
following compatible form for notation simplicity

z̃kTi
= Ȟk

Oi
x̃
k/k−1
Oi

+ Ȟk
Ri

x̃
k/k−1
Ri

+ nk
i . (16)

Here, for robot 1, equation (16) is computed using (10), (11)
and (12). While for robot j, equation (16) is computed using
(13), (14) and (15). Ȟk

Oi
and Ȟk

Ri
are the corresponding

localization and tracking state Jacobians.

C. Distributed Kalman Filter For Tracking

Unlike the robots whose onboard IMU measurements
provide the propagations for the states, we do not have access
to any sensor measuring the target’s actual motion. In other
words, we do not assume that the actual target motion model
is available to the robots. We adopt the following constant
linear global velocity dynamics given by [15]

T
G1

˙̄q =
1

2
Ω(Tω)TG1

q̄, G1 ṗT = G1vT ,

G1 v̇T = nv,
T ω̇ = nω,

(17)

to propagate the target’s state. Here, G1vT and Tω are
treated as random walk driven by the noise nv and nω .
By linearization and discretization of (17), each robot i can
perform the EKF propagation to evolve the target state and
the tracking state covariance.

To avoid degradation of the localization part caused by the
poorly modeling of the target’s actual motion. We decouple
the localization and tacking systems by not updating the
cross-covariances between them (set the cross-covariances to
zero). Further, to avoid information double-counting, we do
not use the target measurements to update the localization
states. For any robot i at timestep k, we define n̄k

i =

Ȟk
Ri

x̃
k/k−1
Ri

+nk
i . The corresponding covariance is given by

Q̄k
Ti

= Ȟk
Ri

P
k/k−1
Ri

(Ȟk
Ri

)T + Qk
Ti
, (18)

which takes account of the localization states’ uncertainties.
Then, the measurement residuals (16) turn into

z̃kTi
= Ȟk

Oi
x̃
k/k−1
Oi

+ n̄k
i . (19)

Further, we define two correction terms as

ski = (Ȟk
Oi

)T(Q̄k
Ti

)−1Ȟk
Oi
,

yk
i = (Ȟk

Oi
)T(Q̄k

Ti
)−1z̃kTi

,
(20)

where we consider the uncertainties of the localization states.
Then, a large uncertainty P

k/k−1
Rl

in robot l’s localization
state will lead to a large Q̄k

Tl
, which makes the corresponding

correction terms small. Note that by using Q̄k
Tl

in the
correction terms, the resulting estimator is more accurate
than the one obtained by simply setting Ȟk

Ri
to zero.

Next, we present the distributed update procedure run-
ning on each robot i. Recall that every robot maintains an
estimator of the target. After propagation, robot i receives
{x̂k/k−1

Ol
,P

k/k−1
Ol

, skl ,y
k
l } (sends {x̂k/k−1

Oi
,P

k/k−1
Oi

, ski ,y
k
i })

from (to) robot l, ∀l ∈ N k
i . We first “weighted average”

the prior estimators among the communicating neighbor set
N k

i to reduce its uncertainty. In order to find the average

11577

orientation, we employ the following method [33] which
finds a quaternion that minimizes the weighed sum of the
orientation errors estimated by each robot.

Ti,k

G1
ˇ̄q = arg max

q̄∈S3
q̄TMq̄,

M =
∑
l∈Nk

i

πk
l (

Tl,k/k−1

G1
ˆ̄q)T

Tl,k/k−1

G1
ˆ̄q,

(21)

where S3 denotes the unit 3-sphere. For the remaining
quantities in x̂

k/k−1
Oi

, we compute x̌k
Vi

=
∑

l∈Nk
i
πk
l x̂

k/k−1
Vl

,

where x̂Vl
=
[
G1 p̂T

Tl

Tlω̂T G1 v̂T
Tl

Tl p̂T
tf

]T
. We define

a compatible symbol ⊗ for computing the averaged state and
then we have

∑
l∈Nk

i
πk
l ⊗x̂

k/k−1
Ol

. As for the covariance, we

can directly compute
∑

l∈Nk
i
πk
l (P

k/k−1
Ol

), since all errors
are represented by valid vector quantities. Then, we update
the estimator according to the following novel distributed
update equations

P
k/k
Oi

=

∑

l∈Nk
i

πk
l P

k/k−1
Ol

−1

+
∑
l∈Nk

i

skl

−1

,

x̂
k/k
Oi

=
∑
l∈Nk

i

πk
l ⊗ x̂

k/k−1
Ol

+ P
k/k
Oi

∑
l∈Nk

i

yk
l ,

(22)

where the weight πk
l subject to πk

l ∈ [0, 1] and
∑

l∈Nk
i
πk
l =

1 is selected to minimize the determinant or the trace of
P

k/k
Oi

. The detailed derivation of (22) can be found in [34].
In (22), the prior estimators are “weighted averaged” over the
neighborhood and the target measurements from the neigh-
boring robots are used. Therefore, a robot directly detect the
target can affect the other robots through the communication
topology. The target state is thus cooperatively estimated by
the robots, even if certain robots cannot capture any of the
target features over a time interval.

V. RESULTS

In this section, we present the results of the Monte-
Carlo simulations that demonstrate the effectiveness of the
proposed algorithm. The Gazebo MAV simulator RotorS [35]
is used to create the tracking scenario where four Firefly
drones (tracking robots) and a Pelican drone (the target) fly
following 3D trajectories in a corridor and the approximate
loop period is 75 seconds. The non-representative target fea-
tures are generated around the target’s body frame while the
static environment features are simulated on the walls. Each
tracking robot is equipped with an visual-inertial sensor and
has the ability to communicate with the neighboring robots.
The resolution of the camera is [752, 480] while its maximum
sensing distance is purposely set to 5m. The groundtruth of
the IMU and the image measurements obtained by each robot
are corrupted by the realistic sensor characteristics as shown
in Table I. The sliding window sizes m for all the robots are
set to the same value 15 and robot 1’s SLAM feature number
n is 200. Then we perform 45 Monte-Carlo simulations and
the results are quantified by the root mean squared error
(RMSE).

TABLE I: Sensor parameters in simulation.

Parameter Value
IMU rate 100 (Hz)
Gyroscope noise density 1.6968e-4 (rad/s/

√
Hz)

Gyroscope random walk 1.9393e-5 (rad/s2/
√

Hz)
Accelerometer noise density 2.0000e-3 (m/s2/

√
Hz)

Accelerometer random walk 3.0000e-3 (m/s3/
√

Hz)
Camera rate 10 (Hz)
Image noise 1 (pixel)

A. Localization

To validate the performance, we compare the proposed
multi-robot VINS (MR-VINS) approach to the case where
robot j (j = 2, 3, 4) works independently with the standard
MSCKF-VIO. The averaged RMSE results of the robots’
poses over all Monte-Carlo trials are shown in Fig. 2 and Fig.
3, while Table II provides the results over all Monte-Carlo
trials and all timesteps for the estimated transformations
of the global frames. As expected, in both the position
and orientation, running independently with MSCKF-VIO
exhibits accumulated long-term drift while the MR-VINS
provides much smaller and bounded errors without long term
drift. In addition, robot j’s (j = 2, 3, 4) pose estimator is
less accurate than the one of robot 1. It is mainly caused
by two reasons: (1) SLAM features included in xS are not
all captured by robot j; (2) The cross-correlations with xS

maintained by robot 1 are used to update the localization
state and covariances. However, robot j gains significant
computational savings and is as efficient as MSCKF-VIO.
As is evident from Table II, the estimated transformation
from Gj to G1 is very accurate.

0 100 200 300

Time (sec)

0

0.05

0.1

0.15

0.2

0.25

P
o
s
it
io

n
 R

M
S

E
 (

m
)

Robot 1

VI-SLAM

0 100 200 300

Time (sec)

0

0.1

0.2

0.3

P
o
s
it
io

n
 R

M
S

E
 (

m
)

Robot 2

MR-VINS

MSCKF-VIO

0 100 200 300

Time (sec)

0

0.1

0.2

0.3

0.4

P
o
s
it
io

n
 R

M
S

E
 (

m
)

Robot 3

MR-VINS

MSCKF-VIO

0 100 200 300

Time (sec)

0

0.1

0.2

0.3

0.4

P
o
s
it
io

n
 R

M
S

E
 (

m
)

Robot 4

MR-VINS

MSCKF-VIO

Fig. 2: Averaged RMSE for the estimated robots’ positions.

B. Tracking

To show the benefits of cooperative tracking, we assume
that each robot can communicate with the other robots with
certain percentages. For example, 50% means that each robot
communicates with the other robots with the probability of
50% at every timestep. The communication graph is time

11578

0 100 200 300

Time (sec)

0

0.1

0.2

0.3

0.4

0.5

0.6

O
ri
e

n
ta

ti
o

n
 R

M
S

E
 (

d
e

g
)

Robot 1

VI-SLAM

0 100 200 300

Time (sec)

0

0.2

0.4

0.6

0.8

O
ri
e

n
ta

ti
o

n
 R

M
S

E
 (

d
e

g
)

Robot 2

MR-VINS

MSCKF-VIO

0 100 200 300

Time (sec)

0

0.2

0.4

0.6

0.8

1

O
ri
e

n
ta

ti
o

n
 R

M
S

E
 (

d
e

g
)

Robot 3

MR-VINS

MSCKF-VIO

0 100 200 300

Time (sec)

0

0.2

0.4

0.6

0.8

1

O
ri
e

n
ta

ti
o

n
 R

M
S

E
 (

d
e

g
)

Robot 4

MR-VINS

MSCKF-VIO

Fig. 3: Averaged RMSE for the estimated robots’ orienta-
tions.

TABLE II: Averaged RMSE for the estimated global frame
transformations.

Time (sec) Initial 50 100

G2FG1

G2
G1

q̄ (deg) 4.191 0.150 0.149
G2pG1 (cm) 24.253 2.981 2.506

G3FG1

G3
G1

q̄ (deg) 2.564 0.144 0.138
G3pG1

(cm) 18.564 3.86. 3.692

G4FG1

G4
G1

q̄ (deg) 2.186 0.200 0.193
G4pG1 (cm) 15.001 3.442 3.211

varying. Table III provides the averaged RMSE for the
estimated target’s pose over all Monte-Carlo trials and all
timesteps for different communication percentages. It be-
comes clear that as the communication probability increases,
the estimation errors reduce significantly for all the robots
in both the positions and orientations. The errors of the
estimated target’s pose for all the robots are very large when
the communication percentage is 0 (no collaboration between
robots in tracking). This is because we simulate a realistic
scenario where each robot can become a blind robot during
different time intervals.

Further, Fig. 4 shows the averaged RMSE results for the
estimated target’s pose over all trials with 25% and 50%
communications. It is interesting to point out that the results
are not as smooth as those for the robots’ poses. This is most
likely due to the fact that the actual simulated target motion
does not follow the model (17) or exhibits constant global
velocity. In particular, when the communication percentage
is 50%, several peaks appear periodically. This is caused by
the larger motion modelling error around the corners where
the target’s actual velocities change quickly. However, as we
increase the communication percentage to 50%, the RMSE
values become smaller especially for the values around
the corners. This demonstrates the strength of cooperative
tracking. Additionally, the larger errors at the beginning are
caused by the fact that the robots work independently before

initializing the global frame transformations. It is clear that
all the robots can well track the target’s 6-DOF motion over
a long time period with 50% communication.

0 50 100 150 200 250 300

Time (sec)

0

0.2

0.4

0.6

0.8

T
a

rg
e

t
P

o
s
it
io

n
 R

M
S

E
 (

m
) Robot 1 (25%)

Robot 2 (25%)

Robot 3 (25%)

Robot 4 (25%)

0 50 100 150 200 250 300

Time (sec)

0

10

20

30

40

T
a

rg
e

t
O

ri
e

n
ta

ti
o

n
 R

M
S

E
 (

d
e

g
)

Robot 1 (50%)

Robot 2 (50%)

Robot 3 (50%)

Robot 4 (50%)

Fig. 4: Averaged RMSE for the estimated target’s poses
obtained by the four robots when the communication per-
centages are 25% and 50%.

TABLE III: Averaged RMSE for the estimated target pose
obtained by the robots with different communication percent-
ages.

communication 0 % 25 % 50% 80%

Robot1
T
G1

q̄ (deg) 45.530 12.553 5.404 2.153
G1pT (m) 3.032 0.206 0.127 0.070

Robot2
T
G1

q̄ (deg) 38.598 12.799 5.542 2.167
G1pT (m) 3.560 0.208 0.122 0.072

Robot3
T
G1

q̄ (deg) 29.908 12.273 5.516 2.150
G1pT (m) 1.831 0.201 0.124 0.074

Robot4
T
G1

q̄ (deg) 32.355 11.867 5.463 2.158
G1pT (m) 1.965 0.204 0.126 0.076

VI. CONCLUSION

In this paper, we propose a distributed filtering algorithm
that cooperatively estimates the 6-DoF poses of a moving
object and networked robots with onboard visual-inertial
sensors. By using the information from neighboring robots,
each robot performs a more accurate and robust tracking
of the target object even if it fails to see the target. Com-
mon environmental features are exploited to provide prior
information which is used to bound the long-term errors of
the VIO. Further, we get rid of the pre-designed common
global frame which is widely used in the literature regarding
multi-robot applications. The communication graph can be
time varying with the only requirement that robot 1 should
have a directed path to the other robots in the union graph
over a time period for transmitting the prior map. When
robot 1 stops renewing the prior map, the communication
graph can be fully distributed that each robot only needs
to communicate with its one-hop neighbors that might be

11579

changing over time in the estimators’ update steps. The
performance of the proposed algorithm has been evaluated
by Monte-Carlo simulations.

REFERENCES

[1] C. X. Guo, K. Sartipi, R. C. DuToit, G. A. Georgiou, R. Li, J. O’Leary,
E. D. Nerurkar, J. A. Hesch, and S. I. Roumeliotis, “Large-scale
cooperative 3d visual-inertial mapping in a manhattan world,” in
Proceedings of the IEEE International Conference on Robotics and
Automation. IEEE, 2016, pp. 1071–1078.

[2] C. X. Guo, K. Sartipi, R. C. DuToit, G. A. Georgiou, R. Li, J. O’Leary,
E. D. Nerurkar, J. A. Hesch, and S. I. Roumeliotis, “Resource-aware
large-scale cooperative three-dimensional mapping using multiple mo-
bile devices,” IEEE Transactions on Robotics, vol. 34, no. 5, pp. 1349–
1369, 2018.

[3] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint kalman
filter for vision-aided inertial navigation,” in Proceedings of the IEEE
International Conference on Robotics and Automation. IEEE, 2007,
pp. 3565–3572.

[4] S. Leutenegger, P. Furgale, V. Rabaud, M. Chli, K. Konolige, and
R. Siegwart, “Keyframe-based visual-inertial slam using nonlinear
optimization,” Proceedings of Robotis Science and Systems, 2013.

[5] T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile monoc-
ular visual-inertial state estimator,” IEEE Transactions on Robotics,
vol. 34, no. 4, pp. 1004–1020, 2018.

[6] R. Mur-Artal and J. D. Tardós, “Visual-inertial monocular slam with
map reuse,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp.
796–803, 2017.

[7] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-manifold
preintegration for real-time visual–inertial odometry,” IEEE Transac-
tions on Robotics, vol. 33, no. 1, pp. 1–21, 2016.

[8] I. V. Melnyk, J. A. Hesch, and S. I. Roumeliotis, “Cooperative vision-
aided inertial navigation using overlapping views,” in Proceedings
of the IEEE International Conference on Robotics and Automation.
IEEE, 2012, pp. 936–943.

[9] A. Martinelli, A. Oliva, and B. Mourrain, “Cooperative visual-inertial
sensor fusion: the analytic solution,” IEEE Robotics and Automation
Letters, vol. 4, no. 2, pp. 453–460, 2019.

[10] A. Martinelli, A. Renzaglia, and A. Oliva, “Cooperative visual-
inertial sensor fusion: fundamental equations and state determination
in closed-form,” Autonomous Robots, pp. 1–19, 2019.

[11] M. Karrer, P. Schmuck, and M. Chli, “Cvi-slam—collaborative visual-
inertial slam,” IEEE Robotics and Automation Letters, vol. 3, no. 4,
pp. 2762–2769, 2018.

[12] J. Chen, T. Liu, and S. Shen, “Tracking a moving target in cluttered
environments using a quadrotor,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE,
2016, pp. 446–453.

[13] K. Qiu, T. Qin, W. Gao, and S. Shen, “Tracking 3-d motion of dynamic
objects using monocular visual-inertial sensing,” IEEE Transactions on
Robotics, vol. 35, no. 4, pp. 799–816, 2019.

[14] T. Qin and S. Shen, “Robust initialization of monocular visual-
inertial estimation on aerial robots,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE,
2017, pp. 4225–4232.

[15] K. Eckenhoff, Y. Yang, P. Geneva, and G. Huang, “Tightly-coupled
visual-inertial localization and 3-d rigid-body target tracking,” IEEE
Robotics and Automation Letters, vol. 4, no. 2, pp. 1541–1548, 2019.

[16] A. Rozantsev, S. N. Sinha, D. Dey, and P. Fua, “Flight dynamics-based
recovery of a uav trajectory using ground cameras,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 6030–6039.

[17] M. Vo, S. G. Narasimhan, and Y. Sheikh, “Spatiotemporal bundle
adjustment for dynamic 3d reconstruction,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp.
1710–1718.

[18] R. Olfati-Saber, “Distributed kalman filtering for sensor networks,” in
Proceedings of the IEEE Conference on Decision and Control. IEEE,
2007, pp. 5492–5498.

[19] A. T. Kamal, J. A. Farrell, and A. K. Roy-Chowdhury, “Information
weighted consensus filters and their application in distributed camera
networks,” IEEE Transactions on Automatic Control, vol. 58, no. 12,
pp. 3112–3125, 2013.

[20] G. Battistelli, L. Chisci, G. Mugnai, A. Farina, and A. Graziano,
“Consensus-based linear and nonlinear filtering,” IEEE Transactions
on Automatic Control, vol. 60, no. 5, pp. 1410–1415, 2014.

[21] J. Hu, L. Xie, and C. Zhang, “Diffusion Kalman filtering based on
covariance intersection,” IEEE Transactions on Signal Processing,
vol. 60, no. 2, pp. 891–902, 2011.

[22] G. Huang, M. Kaess, and J. J. Leonard, “Consistent unscented
incremental smoothing for multi-robot cooperative target tracking,”
Robotics and Autonomous Systems, vol. 69, pp. 52–67, 2015.

[23] A. Ahmad, G. D. Tipaldi, P. Lima, and W. Burgard, “Cooperative robot
localization and target tracking based on least squares minimization,”
in Proceedings of the IEEE International Conference on Robotics and
Automation, 2013, pp. 5696–5701.

[24] F. M. Mirzaei, A. I. Mourikis, and S. I. Roumeliotis, “On the
performance of multi-robot target tracking,” in Proceedings of the
IEEE International Conference on Robotics and Automation. IEEE,
2007, pp. 3482–3489.

[25] P. Zhu and W. Ren, “Multi-robot joint localization and target tracking
with local sensing and communication,” in Proceedings of the Amer-
ican Control Conference. IEEE, 2019, pp. 3261–3266.

[26] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, vol. 3.
IEEE, 2004, pp. 2149–2154.

[27] W. Breckenridge, “Quaternions proposed standard conventions,” Jet
Propulsion Laboratory, Pasadena, CA, Interoffice Memorandum IOM,
pp. 343–79, 1999.

[28] P. Furgale, J. Rehder, and R. Siegwart, “Unified temporal and spatial
calibration for multi-sensor systems,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE,
2013, pp. 1280–1286.

[29] M. Li and A. I. Mourikis, “High-precision, consistent ekf-based visual-
inertial odometry,” The International Journal of Robotics Research,
vol. 32, no. 6, pp. 690–711, 2013.

[30] A. B. Chatfield, Fundamentals of high accuracy inertial navigation.
American Institute of Aeronautics and Astronautics, 1997.

[31] P. Geneva, J. Maley, and G. Huang, “An efficient schmidt-ekf for
3d visual-inertial slam,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2019, pp. 12 105–12 115.

[32] B. K. Horn, “Closed-form solution of absolute orientation using unit
quaternions,” Journal of the Optical Society of America, vol. 4, no. 4,
pp. 629–642, 1987.

[33] F. L. Markley, Y. Cheng, J. L. Crassidis, and Y. Oshman, “Averaging
quaternions,” Journal of Guidance, Control, and Dynamics, vol. 30,
no. 4, pp. 1193–1197, 2007.

[34] P. Zhu and W. Ren, “Distributed kalman filter for 3-d moving object
tracking over sensor networks,” in Proceedings of the IEEE Conference
on Decision and Control. IEEE, 2020.

[35] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, “Rotors—a modular
gazebo mav simulator framework,” in Robot Operating System (ROS).
Springer, 2016, pp. 595–625.

11580

