
DenseFusion: Large-Scale Online Dense Pointcloud and DSM
Mapping for UAVs

Lin Chen, Yong Zhao, Shibiao Xu*, Shuhui Bu*, Pengcheng Han and Gang Wan

Abstract— With the rapidly developing unmanned aerial
vehicles, the requirements of generating maps efficiently and
quickly are increasing. To realize online mapping, we develop
a real-time dense mapping framework named DenseFusion
which can incrementally generates dense geo-referenced 3D
point cloud, digital orthophoto map (DOM) and digital surface
model (DSM) from sequential aerial images with optional GPS
information. The proposed method works in real-time on stan-
dard CPUs even for processing high resolution images. Based
on the advanced monocular SLAM, our system first estimates
appropriate camera poses and extracts effective keyframes, and
next constructs virtual stereo-pair from consecutive frame to
generate pruned dense 3D point clouds; then a novel real-
time DSM fusion method is proposed which can incrementally
process dense point cloud. Finally, a high efficiency visualization
system is developed to adopt dynamic levels of detail (LoD)
method, which makes it render dense point cloud and DSM
smoothly. The performance of the proposed method is evaluated
through qualitative and quantitative experiments. The results
indicate that compared to traditional structure from motion
based approaches, the presented framework is able to output
both large-scale high-quality DOM and DSM in real-time with
low computational cost.

I. INTRODUCTION

A rapid overview of designated areas has become a grow-
ing demand in some industries, such as agriculture, disaster
monitoring, urban planning, etc. DOM and DSM are efficient
tools for representing the environment. An orthomosaic gives
a two-dimensional overview of the surroundings and it can be
made by stitching multiple undistorted aerial photos together
[1]. However, a true orthophoto requires a three-dimensional
model of the scene. DSM represents the earth’s surface and
includes all objects on it, which is commonly used for three-
dimensional model representation. Through DSM, it’s easy
to map pixels observed by the perspective camera to their
location with respect to the orthographic camera.

The fundamental methods for DSMs and orthomosaics are
mainly based on structure from motion (SfM) at present,
which requires high computing and memory resources. Nor-
mally, it takes hours to get the final results and when it comes
to larger scale scenarios, the computation time increases
unacceptably. In order to resolve the problem, Wang et
al. propose TerrainFusion [2] which incrementally generates
DSM with high efficiency and real-time speed. However, the

Shibiao Xu and Shuhui Bu are the corresponding authors (shib-
iao.xu@nlpr.ia.ac.cn,bushuhui@nwpu.edu.cn).

Lin Chen, Yong Zhao, Shuhui Bu and Pengcheng Han are with North-
western Polytechnical University, 710072 Xi’an, China

Shibiao Xu is with Institute of Automation, Chinese Academy of Sci-
ences, 100190 Beijing, China

Gang Wan is with the School of Aerospace Information, Aerospace
Engineering University, Beijing 101416, China.

Fig. 1. Our method efficiently generates dense maps with high speed. The
top subfigure is dense point cloud; The middle is digital surface model; and
the bottom is reconstructed mesh.

method only deals with sparse point cloud, and the resolution
of the result is relatively low.

To solve above problems, we propose a novel framework
called DenseFusion. With well designed pipeline and opti-
mized algorithm, our framework is capable of processing
high definition images in real-time. A demo reconstruction
example can be found in Fig. 1, and the overall processing
flow is shown in Fig. 2. To achieve real-time speed, SLAM
tech is adopted to estimate camera pose. The speed of
multi view geometry (MVG) based dense point cloud re-
construction methods didn’t meet the real-time requirements,
we therefore constructed virtual stereo-pairs to obtain the
dense depth information, nevertheless, the accuracy of the
original dense point cloud was not enough. Therefore, a
prune algorithm was applied to remove low accuracy points.
Inspired by Terrainfusion [2], we further improved the fusion
algorithm to run at least four times faster, enabling it to
generate DSM and DOM from dense point cloud in real-
time. In summary, contributions are summarized as follows:

• We present a highly modularized framework that incre-
mentally generates dense point cloud, DSM and DOM
in real-time based on monocular SLAM, which is able
to process the sequential aerial images.

• A novel DSM fusion method is proposed which can
process dense point cloud incrementally. In the method,

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 4766

Fig. 2. DenseFusion: Real-time large-scale dense mapping framework with
orthomosaic and digital surface model for UAVs.

efficient filtering and interpolation algorithm ensure
high speed, while the multiband algorithm guarantees
sufficient visual quality.

• Data management system and visualization system are
developed to handle large-scale scenario. Levels of
detail (LoD) ensures smooth rendering of dense point
cloud and DSM, meanwhile the least recently used
(LRU) algorithm makes the scenario scale limit only
related to the hard disk size.

II. RELATED WORKS

In this section, we introduce related works with respect to
three fields: visual SLAM, stereo reconstruction and digital
surface model generation.

A. Visual SLAM

SLAM technology develops rapidly and a variety of
SLAM systems have been proposed in the past years. From
working principle, they are classified as feature-based [3],
direct [4]–[6], and semi-direct [7], [8] methods. In recent
years, with the rising of deep learning, there are some
SLAM frameworks based on it: supervised [9]–[11], and
unsupervised [12], [13] methods.

Some related methods are briefly described. ORB-SLAM2
[3] relies on the well-designed pipeline and efficient ORB
features to achieve accurate localization, in addition it has
a dedicated thread to perform global optimization. As for
direct monocular SLAM, DTAM [14] achieves real-time
dense reconstruction on GPU by using short baseline stereo
matching and a regularization method, which make the depth
estimation of low texture area smoother. LSD-SLAM [4]
tracks depth values only on gradient areas, which makes it
efficient to run direct SLAM in real-time on a CPU.

Considering the camera carried by the UAVs is monocular,
we focus on monocular SLAM approaches in this paper.
As for feature-based monocular SLAM, ORB-SLAM2 [3]
has overall better accuracy and robustness. Therefore, our
method adopts the feature-based method and local optimiza-
tion to realize the pipeline. Furthermore, inspired by ORB-
SLAM2, some ideas and tricks are applied to our method.
However, in order to obtain accurate scale and generate geo-
referenced data at the same time, GPS information guided
joint optimization is also studied.

B. Stereo Reconstruction

Stereo matching for disparity estimation is the function of
finding the pixels in the multi-view that correspond to the
same 3D points in the environment. Because it can provide
fundamental information, it is an active research topic in
computer vision field. Stereo matching algorithms can be
divided into local matching techniques [15]–[17] and global
energy minimization methods [18]–[20].

Usually, local methods deal efficiently with large scale
images, because they restrict the search domain to a small
interval. Bleyer et al. [15] proposed slanted support windows
and computed 3D planes at the level of pixels and projects
the support region onto the local 3D plane. Hirschmüller et
al. [16] proposed semi-global stereo matching (SGM). Only
a small subset of possible interaction paths is considered.
ELAS [17] is a near constant time local stereo matching al-
gorithm. It searches robust matches called supporting points
from rectified stereo images and generates 2D meshes from
them by Delaunay triangulation. Then the algorithm uses
Bayesian inference with the assumption that the disparity of
a pixel is independent of all other pixels on the reference
image given the disparities of the triangle corners it belongs
to. For the pixels inside the triangles the matching is done
in constant time.

C. Digital Surface Model Generation

In recent years, some researches [2], [21], [22] have
attempted to adopt SLAM to photogrammetric survey for
obtaining orthoimage and DSMs. Zienkiewicz et al. [21]
reconstructed surface by performing depth-map and color
fusion directly into a multi-resolution triangular mesh. This
method is implemented on the GPU for achieving real-time
speed, and only reconstructs height field without texture.
Both Hinzmann et al. [22] and Wang et al. [2] implemented
a mapping framework that incrementally generates a geo-
referenced point cloud, a digital surface model and an or-
thomosaic. However, Hinzmann’s method directly projected
the dense point cloud onto the grid to generate the elevation
map, which may result in a slight color deviation around
stitching line. Wang’s method used sparse point cloud as
input data, which leads to poor performance on complex
terrain. Different from above discussed methods, in this
research dense point clouds are adopt to generate DSM.
To realize real-time map generating, feature-based SLAM is
adopted to estimate camera pose and attitude, and then virtual
cameras among consecutive images and stereo matching are

4767

adopt to estimate dense depth. Finally high performance
dense fusion is applied for fusing high quality DSMs.

III. METHODOLOGY

The overall processing flow is shown in Fig. 2. The sys-
tem consists four modules: monocular SLAM, densification,
fusion, and visualization. They are organized in separated
modules and data transfer through message passing.

A. SLAM Framework

A visual SLAM system is used in our framework for
estimating a robust pose for each frame. For the convenience
and extendibility, we implemented a SLAM plugin based on
GSLAM framework [23].

1) Localization: For each frame, a SiftGPU [24] fea-
ture extractor is used to detect key points and calculate
descriptors. Once some effective descriptor matching are
adopted, the relative pose is obtained by singular value
decomposition (SVD) of essential matrix. And then, with
the help of GPS information, the map is transformed to the
Earth-Centered, Earth-Fixed (ECEF) rectangular coordinate.
At the meantime, we can get the 3D map points from the
triangulation of matching pairs. After the map is initialized,
the upcoming frame’s pose is calculated by solving the
perspective n-point (PnP) problem from pairs of 3D map
points and 2D key points.

2) Optimization: GPS information is generally available
in aerial images, which improves the accuracy of poses and
map points while GPS information can be joint optimized.
In addition, GPS information makes the map have real scale
which make the big problem exist in traditional monocular
SLAM become easily resolved.

In this research, the local optimization focused on two
adjacent frames. As illustrated in Fig. 3, the loss function
contains two parts: reprojection error er and GPS error eg .
er represents the sum of the reprojection errors between the
matching point pairs (xi&x

′

i).

er = argmin
ξ

1

2

n∑
i=1

∥∥∥x′

i − x̂i
∥∥∥2
2

(1)

πi is the image plane, x
′

i stands for the corresponding
key point in current frame. x̂i = 1

si
K exp

(
ξ∧
)
P i, K ∈

R3×3 means camera internal parameter matrix, ξ ∈ se(3)
represents the camera pose, which is given as a member of
Lie algebra [25], and P i ∈ R3 means map points, which are
either triangulated by xi and x

′

i, or calculated previously.
The GPS error eg is defined as:

eg = ‖tGPS − tSLAM‖2 . (2)

The form of eg has a simple form, which is a norm of
difference between the displacement provided by SLAM and
observed GPS information.

The overall error function is defined as:

e = er +αeg. (3)

In order to avoid the large difference between er and eg , a
weight coefficient α is applied to GPS error item. For aerial

Fig. 3. Reprojection error and GPS error. For two consecutive frames, the
earlier is the reference frame, and the other is the current frame.

images, through our evaluation experiments α is empirically
set to 100.

In this research, parameters are estimated by using the
nonlinear optimization algorithm the Ceres library. After
localization and optimization, we can publish the frame with
accurate pose information and sparse depth information to
the densification module for dense depth estimation.

B. Densification

Densification step aims to process frames to generate ac-
curate depth map. It contains three parts: denser, cleaner and
pruner. Denser performs stereo rectification and matching.
When the depth information of each pixel is obtained, cleaner
filters the point cloud to reduce inconsistent points and pruner
eliminates redundant points.

1) Denser: normally, the real-time dense point cloud
generation is based on stereo camera. However, the flight
height of aerial surveying and mapping is generally hundreds
or up to thousands meters, so the traditional stereo camera
is not suitable for estimating accurate depth because of the
limited baseline length. Therefore, we construct a virtual
stereo-pair from two consecutive frames and obtain the new
images by stereo rectification. In the proposed framework,
Bouguet’s rectification method [26] is used to maximize the
common area of the left and right views. After rectification,
the poles are at infinity and the optical axes of the two
cameras are parallel. The heights of correspondence points
pair on the left and right images are the same, which greatly
improve the matching efficiency.

To obtain dense disparity maps, we use ELAS [17], which
is a classical approach for fast stereo matching of high
resolution imagery. It builds a prior on the disparities by
forming a triangulation on a set of supporting points which
can be robustly matched. These triangle matching pairs
greatly reduce the disparity search space, yielding accurate
dense reconstructions without global optimization.

After the disparity map is converted to the depth map, the
frame is sent to cleaner module.

2) Cleaner: due to the disparity map is not accurate
enough, there are errors in depth map. We use the consistency
constraints of multiple consecutive images to refine the
depth. In this research, consistency reflects the correlation

4768

Fig. 4. Dense point cloud from images. At the top are original images,
the middle are depth maps and bottom is a fused dense point cloud.

between pixels, when correlation is high, pixel depth has
higher accuracy.

After receiving the depth map, it is inserted to a queue.
When the number of maps in the queue exceeds N (usually
odd), the consistency check is started. We take the middle
frame in the queue as the current frame, convert its depth
map into 3D points and reproject them to each of the N − 1
other views, resulting in a 2D coordinate pi and a depth value
d

′

i. A match is considered consistent if (di − d
′

i)/di ≤ feq ,
where d

′

i represents the depth value in pi and di is declared
as the depth value of 3D points in other perspectives. If
the depth in at least fcon other views is consistent with the
current view, the corresponding pixel is accepted. Otherwise,
it is removed. For all accepted points, the depth is set to the
mean value of the consistent depth in other views to suppress
noise. In this paper, N is 7, the threshold feq is 0.01 and
fcon is 4.

After the consistency check, the last map in queue is
popped out and sent to fusion module to generate DSM and
pruner module to eliminate the redundancy concurrently.

3) Pruner: the purpose of prune is to remove redundant
points in adjacent frames for reducing computation burden
of subsequent map fusion. It contains a queue, like a cleaner,
that starts to prune when the number of frames in the queue
exceeds N . Taking the N/2 frame as the current frame, every
point with a depth greater than 0 is back projected into the
3D space and then reprojected into the depth map of the
other N−1 frames, and the corresponding point depth is set
to zero. At the end, we pop the last frame out of the queue,
and publish its point cloud into visualization system. Figure 4
shows a point cloud result reconstructed from dataset mavic-
island.

C. Local Tiles

In order to improve the processing performance, ortho-
mosaic and DSM are organized by tiles in this paper. The
position of a geo-referenced tile is defined as follows: the
global map is divided into N levels, and Nth level represents
that the world is divided into 2N×2N tiles. Therefore, we can
use (x, y, z) ∈ Z+ to uniquely represent a tile. This three-
dimensional vector represents the tile in column x and row y

Fig. 5. DEM pixel allocation strategy. Different colors of each pixel
represent different triangular patches. Top-left rule ensures that every pixel
can only be assigned once, thus greatly speeding up the interpolation speed.

under the level of z. Our tile numbering scheme is that (0 to
2z−1, 0 to 2z−1) for the range (−180, +85.0511) - (+180,
−85.0511) [27]. Each tile has three layers: depth layer for
digital elevation model (DEM), weight layer for stitching and
color layer for orthomosaic. Each tile has 256×256 pixels. A
tile based coordinate system is a coordinate system that uses
tile pixels to represents the world. In this section, we filter
the dense point, split them into tiles, provide elevations and
weights for these tiles and map texture onto them under level
N = 21 (0.138m/pix). In short, we generate local DSM and
local orthomosaic here.

1) Points Filter: Because we only care about the elevation
information of each location, and in order to speed up the
calculation, we first filter the dense point cloud to filter out
those points with the same location but have higher depth.

2) Mesh Generation: To rapidly generate geo-referenced
3D mesh for each key frame, we start with applying De-
launay triangulation to the 2D points for obtaining the 2D
triangular mesh Mimg on the image plane. Correspondingly,
since the 3D points correspond to the 2D points one by one,
we also get the mesh Mdepth in the 3D space. To make the
fusion more efficient, we convert the irregular 3D triangular
mesh Mdepth from ECEF coordinate system into 3D tile
coordinate system M

′

depth. For generating orthomosaic later,
the elevation information of M

′

depth is discarded to get a 2D
triangular mesh Mortho in 2D tile coordinate system.

3) Local DEM Generation: The depth of the DEM is
calculated by interpolating the meshes in M

′

depth. Because
our point cloud is dense enough, using linear interpolation
can still ensure enough accuracy.

During interpolation process, the central position of a pixel
determines which triangle it is assigned to. Pixels at the edge
of a triangle are assumed to be inside if it passes the top-left
rule. The top-left rule is that a pixel center is defined to lie
inside of a triangle if it lies on the top edge or the left edge
of a triangle. In the method, the definition of edge types are:
1) A top edge, is an edge that is exactly horizontal and is
above the other edges. 2) A left edge, is an edge that is not
exactly horizontal and is on the left side of the triangle. A
triangle can have one or two left edges.

The top-left rule ensures that adjacent triangles are drawn

4769

once. Figure 5 shows examples of pixels that are drawn
because they either lie inside a triangle or follow the top-
left rule.

4) Orthomosaic Generation: Because the depth and po-
sition in image of each point are available, the orthomosaic
generation becomes simple. Basically, it’s a transformation
from perspective to ortho. We can see from Section III-C.2)
that Mimg on the image plane and Mortho are corresponding
one by one, so we just project the texture in Mimg to Mortho

to obtain a orthomosaic.
5) Weight Determine: We assume that depth value es-

timated near the center of the image is more accurate, a
weight mask for following stitching is generate according
the founding. The size of weight map has the same of input
image. It is calculated as follows: the central of weight map
is set to 255, while the four corners are set to 0. As the pixel
distance d is between 0 and dmax, the weight value is set
corresponding to the distance wi = 255× (1− di/dmax).

D. Weighted Multiband Rendering
After the above process, orthomosaic, DEM and weight

map are all settled and divided into rectangular tiles. Con-
sequently, a tile contains several parts including a DEM
patch, an orthomosaic patch, and a weight map patch. Our
framework fuse local tiles into global tiles in an incremental
manner, therefore the global tiles need to be updated after
each local tile. To achieve a high-quality stitching and blend-
ing, a weighted multiband rendering algorithm is purposed
for smooth transition in color and depth.

For each local tile, we can find the corresponding global
tile according to the position. If the global tile is unset-
tled, copy the local tile into it. If it’s not, two laplacian
pyramids are expanded from the DEM, orthomosaic and
a Gaussian pyramid is expanded from weight map. Our
Laplacian pyramid contains 5 levels and each level Ln is
computed through the following steps: 1) compute a 5 levels
Gaussian pyramid G(img). 2) Ln is the difference between
Gn and the upsampling of Gn+1.

Gn+1 = DOWN (Gn ⊗ G5×5)
Ln = Gn − UP (Gn+1)⊗ G5×5

(4)

Here ⊗ is a convolution symbol, G5×5 is a
Gaussian Kernel. The highest level L5 equals to
G5 since there is no higher level G6 computed.
As a result, we have four Laplacian pyramids:
L(DEMl), L(orthol), L(DEMg), L(orthog) and two
Gaussian pyramids: G(weightl), G(weightg).

Then, a mask pyramid is computed by comparing
G(weightl) with G(weightg) at each level. Instead of
directly stitching local tiles into global, we stitch Laplacian
pyramids together according to the mask pyramid. In the end,
the global DEM and orthomosaic are recovered by collapse
the final stitched Laplacian pyramids from low to high:

Gn = Ln + UP (Gn+1)⊗ G5×5 (5)

After the weighted multiband rendering algorithm, the ex-
posure differences height deviation on DEMs are minimized,
and misalignments are reduced.

E. Visualization System

The visualization system is implemented based on
GSLAM visualization module [23]. It can dynamically dis-
play frames, dense point cloud, orthomosaic and DSM.

Our approach follows the philosophy to generate the best
possible individual depth maps, and then merge them into
the global point cloud directly. Nevertheless, each frame’s
depth data are stored separately for better data management
performance. In the visualization system, we use the form
of linked list to upload the point cloud of each frame to
the video random access memory, which manage individual
frame’s data for avoiding repeatedly uploading the whole
point cloud.

For rendering massive terrain data in real-time with high
efficiency, we create 5-layer pyramids for each tile to dy-
namically display different resolution DSM according to the
distance which greatly decreased the workload of graphics
card.

Though above visualization improvements, our system
provides smooth and fluent viewing and operational expe-
rience.

F. Data Management System

In order to handle large-scale scene, a LRU based tile man-
agement system is implemented in our work. For boosting the
tile access speed and memory efficiency, two-level storage
scheme is adopted which contains a fixed length queue and
a hash map. The queue holds the most recently used tiles,
and the hash map keeps the fast access index, where tile
position as key and address of the corresponding queue node
as value. If a given tile is required and it is existed in the
queue, the system will directly return the node pointer of
the tile, otherwise, the system will remove the least recently
seen tile from the queue and hash map, then load it from
disk to queue and hash map. That means the most recently
accessed tile will be at the top of the queue whereas the least
recently used tile will be at the end of the queue. Because
the system only keep given amount of tiles in memory, it
can handle very large scene which only limited by the size
of hard disk.

IV. EXPERIMENTS

We implement a real-time framework for generating dense
point cloud, DSM, and orthomosaic in C++. In order to
evaluate the performance of the proposed method, several
experiments are performed. We first show several results of
our framework, and then demonstrate the speed, performance
and calculation resource consumption on different environ-
ments (city, hill, island, etc.) compared with the state-of-the-
art commercial softwares Pix4DMapper and TerrainFusion.
Since currently available dataset does not contain ground-
truth depth, we use the error between different methods
to analyze the accuracy of proposed method. The results
show that our system achieves high robustness, comparative
quality, and more efficient DSM reconstruction.

All experiments are tested on a desktop PC with an Intel
i7-6700 CPU, a 16 GB RAM, and a GTX 1060 GPU. We

4770

(a) mavic-campus

(b) mavic-garden

(c) mavic-village

Fig. 6. Orthomosaic results comparison between DenseFusion (left) and TerrainFusion (right). TerrainFusion generates acceptable result in low elevation
offset areas but outputs twisted details for buildings. Benefit from the dense reconstruction, details of DenseFusion looks much better.

(a) DenseFusion

(b) TerrainFusion

Fig. 7. Comparison on DSM. The first two columns show the DSM performance between our method (top) and TerrainFusion (down), and the last two
columns show the reason for this difference: our method generates DEM from dense point cloud, which is more detailed than sparse point cloud.

run our approach and TerrainFusion in a 64-bit Linux system,
while Pix4DMapper executes on 64-bit Windows 10.

A. Visual Comparison
The visual effect comparison is shown in Fig. 6 and

Fig. 7. we can clearly see advantages of our approach
4771

TABLE I
TIME STATISTICS IN SECONDS FOR DATASETS NPU-DRONEMAP.

Sequence Images Resolution Height (m) Area (km2) TerrainFusion Pix4D Ours
mavic-campus 293 4000*3000 213 0.974 368.182 4707.0 92.13
mavic-fengniao 109 4000*3000 60 0.073 377.302 3303.0 44.31
mavic-warriors 95 4000*3000 143 0.157 218.324 1623.0 27.11
mavic-yangxian 165 4000*3000 100 0.113 171.719 2935.0 40.89
mavic-factory 359 4000*3000 153 0.545 1003.89 4811.0 106.23
mavic-huangqi 229 4000*3000 188 0.478 809.678 4351.0 74.94
p4r-village 136 4864*3648 250 1.076 288.272 2762.0 61.50
phantom4-mountain 81 4864*3648 300 0.929 173.598 1752.0 39.90
phantom3-olathe 160 4000*3000 122 0.257 161.295 2514.0 67.26

(a) phantom4-mountain (b) mavic-campus

Fig. 8. Error distribution (left) and statistics (right) between our method and Pix4D. In dataset (a), 90% of the dense point cloud of our method is no
more than 1.91 m away from Pix4d’s, and 50% is no more than 0.63 m. In dataset (b), 90% of the dense point cloud of our method is no more than 1.72
m away from Pix4d’s, and 50% is no more than 0.65 m.

over TerrainFusion in generating DSMs. In farmland, hills
and other areas with low inclination, TerrainFusion can
produce good results. But when it applies to villages or
cities, TerrainFusion may not be satisfactory: the walls is
tilted, and small details is smoothed, which is unacceptable
for most applications. Compared with TerrainFusion, our
method could achieve more reasonable results on buildings,
trees. The reason is that our framework keeps the depth
information as much as possible, while TerrainFusion only
uses the depth information at key points, and the weighted
multiband rendering algorithm makes the stitched part of the
result smoother and more natural.

B. Computational Performance

The computation performance of the proposed method
and related methods are compared. Both DenseFusion and
TerrainFusion operate at tile level 21 (the lower computation
time claimed in [2] is due to the lower tile level). The result
demonstrate that our method is much faster than state-of-
the-art commercial software and is able to process about 2-
3 high resolution images in one second. The top-left rule
ensures that every pixel can only be assigned once, which
reduces redundant computing, and well-designed pipeline

deals with a large number of data in parallel. This makes
the proposed method several times faster than TerrianFusion,
while maintaining better performance.

C. Precision Comparison

In precision comparison, some experiments are conducted
with a variety of scenarios. We use point cloud distance
between different methods to evaluate the accuracy of our
methods. Theoretically, the accuracy of Pix4D, which is
based on offline SfM method, is higher than our online
method. Therefore, the comparison with Pix4D can reflect
the accuracy of our method to a certain extent. We use
the method based on least square plane to get the distance
between point clouds. The target point cloud is generated by
our method, and the reference point cloud which generated
by Pix4D.

Figure 8 shows the error distributions and statistics be-
tween our method and Pix4D. Scenario (a) mainly contains
villages, mountains and trees, while scene (b) mainly in-
cludes urban buildings and streets. From statistic charts we
find that in dataset (a), 94.47% points’ errors are less than 2.0
m, and 69.93% are less than 1.0 m; in dataset (b), 94.26%
points’ errors are less than 2.0 m, and 68.77% are less than

4772

1.0 m.
The accuracy is affected by the stereo matching result,

and the selection of a series of reliable supporting points
ensures that the results will not be too bad; what’s more, an
effective filter can filter out outliers and guarantee point cloud
quality.The comparison results demonstrate that the propose
method can output acceptable accuracy for most applications
which require real-time processing.

V. CONCLUSION

In this paper, we present a framework that can incre-
mentally generate DSM, orthomosaic and dense point cloud
at the same time with real-time speed. The framework has
the following advantages: 1) Fast: It can produce real-time
maps at 2-3 frames per second with high resolution, which
is four times faster than TerrainFusion, forty times faster
than Pix4D; 2) Accurate: The accuracy of our method is
close to Pix4D. The point cloud shows the outline of the
building well, and even the street lights. Compared with
TerrainFusion, it has more details and is closer to the real
scene; 3) True orthomosaic: Homography-based orthomosaic
generation is only suited for planar scenery or high flight
altitudes. Our point cloud based orthomosaic renders a true
orthomosaic taking the surface model and optimal viewing
angle into considered and still capable of real-time perfor-
mance.

Although the proposed method achieves better perfor-
mance overall, it still has some limitations. Because the gen-
erated DSM is 2.5D, the reconstruction results of occluded
areas, vertical areas are not satisfactory. In the following
research, several improvements will be considered: 1) Stereo
matching is a relatively time-consuming process and is easy
to parallelize, so we may consider using GPU to speed up the
calculation. 2) Implementing a real-time 3D reconstruction
based on TSDF.

ACKNOWLEDGEMENTS

This work was supported in part by the National
Natural Science Foundation of China (Nos. 61573284,
91646207, 61620106003, 61971418, 61771026 and
61671451), the National Key R&D Program of China
(Grant 2018YFB2100602), and the Research Funds for
Interdisciplinary Subject, NWPU.

REFERENCES

[1] S. Bu, Y. Zhao, G. Wan, and Z. Liu, “Map2dfusion: Real-time
incremental uav image mosaicing based on monocular slam,” in 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2016, pp. 4564–4571.

[2] W. Wang, Y. Zhao, P. Han, P. Zhao, and S. Bu, “Terrainfusion: Real-
time digital surface model reconstruction based on monocular slam,”
in 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2019, pp. 7895–7902.

[3] R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras,” IEEE Transactions
on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[4] J. Engel, T. Schöps, and D. Cremers, “Lsd-slam: Large-scale di-
rect monocular slam,” in European conference on computer vision.
Springer, 2014, pp. 834–849.

[5] J. Engel, J. Sturm, and D. Cremers, “Semi-dense visual odometry
for a monocular camera,” in Proceedings of the IEEE international
conference on computer vision, 2013, pp. 1449–1456.

[6] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” IEEE
transactions on pattern analysis and machine intelligence, vol. 40,
no. 3, pp. 611–625, 2017.

[7] C. Forster, M. Pizzoli, and D. Scaramuzza, “Svo: Fast semi-direct
monocular visual odometry,” in 2014 IEEE international conference
on robotics and automation (ICRA). IEEE, 2014, pp. 15–22.

[8] C. Forster, Z. Zhang, M. Gassner, M. Werlberger, and D. Scaramuzza,
“Svo: Semidirect visual odometry for monocular and multicamera
systems,” IEEE Transactions on Robotics, vol. 33, no. 2, pp. 249–
265, 2016.

[9] S. Wang, R. Clark, H. Wen, and N. Trigoni, “Deepvo: Towards
end-to-end visual odometry with deep recurrent convolutional neural
networks,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2017, pp. 2043–2050.

[10] S. Brahmbhatt, J. Gu, K. Kim, J. Hays, and J. Kautz, “Geometry-aware
learning of maps for camera localization,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp.
2616–2625.

[11] G. L. Oliveira, N. Radwan, W. Burgard, and T. Brox, “Topometric
localization with deep learning,” in Robotics Research. Springer,
2020, pp. 505–520.

[12] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe, “Unsupervised
learning of depth and ego-motion from video,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 1851–1858.

[13] Z. Yin and J. Shi, “Geonet: Unsupervised learning of dense depth,
optical flow and camera pose,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp. 1983–1992.

[14] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison, “Dtam: Dense
tracking and mapping in real-time,” in 2011 international conference
on computer vision. IEEE, 2011, pp. 2320–2327.

[15] M. Bleyer, C. Rhemann, and C. Rother, “Patchmatch stereo-stereo
matching with slanted support windows.” in Bmvc, vol. 11, 2011, pp.
1–11.

[16] H. Hirschmuller, “Stereo processing by semiglobal matching and
mutual information,” IEEE Transactions on pattern analysis and
machine intelligence, vol. 30, no. 2, pp. 328–341, 2007.

[17] A. Geiger, M. Roser, and R. Urtasun, “Efficient large-scale stereo
matching,” in Asian conference on computer vision. Springer, 2010,
pp. 25–38.

[18] D. Scharstein and R. Szeliski, “High-accuracy stereo depth maps
using structured light,” in 2003 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2003. Proceedings., vol. 1.
IEEE, 2003, pp. I–I.

[19] ——, “A taxonomy and evaluation of dense two-frame stereo cor-
respondence algorithms,” International journal of computer vision,
vol. 47, no. 1-3, pp. 7–42, 2002.

[20] H. Hirschmuller and D. Scharstein, “Evaluation of cost functions for
stereo matching,” in 2007 IEEE Conference on Computer Vision and
Pattern Recognition. IEEE, 2007, pp. 1–8.

[21] J. Zienkiewicz, A. Tsiotsios, A. Davison, and S. Leutenegger, “Monoc-
ular, real-time surface reconstruction using dynamic level of detail,”
in 2016 Fourth International Conference on 3D Vision (3DV). IEEE,
2016, pp. 37–46.

[22] T. Hinzmann, J. L. Schönberger, M. Pollefeys, and R. Siegwart,
“Mapping on the fly: real-time 3d dense reconstruction, digital surface
map and incremental orthomosaic generation for unmanned aerial
vehicles,” in Field and Service Robotics. Springer, 2018, pp. 383–396.

[23] Y. Zhao, S. Xu, S. Bu, H. Jiang, and P. Han, “Gslam: A general slam
framework and benchmark,” arXiv preprint arXiv:1902.07995, 2019.

[24] C. Wu, “Siftgpu: A gpu implementation of scale invariant feature
transform (sift)(2007),” URL http://cs. unc. edu/˜ ccwu/siftgpu, 2011.

[25] J. Byrnes and G. Ostheimer, Computational Noncommutative Algebra
and Applications: Proceedings of the NATO Advanced Study Insti-
tute, on Computatoinal Noncommutative Algebra and Applications, Il
Ciocco, Italy, 6-19 July 2003. Springer Science & Business Media,
2006, vol. 136.

[26] J.-Y. Bouguet, “Camera calibration toolbox for matlab (2008),” URL
http://www. vision. caltech. edu/bouguetj/calib doc, vol. 1080, 2008.

[27] J. Schwartz. (2018, Feb.) Bing maps tile system. [Online].
Available: https://docs.microsoft.com/en-us/bingmaps/articles/bing-
maps-tile-system

4773

