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Abstract— Neural networks have recently achieved impres-
sive success in semantic and instance segmentation on 2D
images. However, their capabilities have not been fully explored
to address semantic instance segmentation on unstructured
3D point cloud data. Digging into the regional feature rep-
resentation to boost point cloud comprehension, we propose
a region-feature-enhanced structure consisting of adaptive re-
gional feature complementary (ARFC) module and affinity-
based regional relational reasoning (AR3) module. The ARFC
module aims to complement low-level features of sparse regions
adaptively. The AR3 module emphasizes on mining the potential
reasoning relationships between high-level features based on
affinity. Both the ARFC and AR3 modules are plug-and-play.
Besides, a novel dual spatial-aware discriminative loss is pro-
posed to improve the discrimination of instance embedding. Our
proposal-free point cloud instance segmentation network (Re-
gionNet) equipped with the region-feature-enhanced structure
and dual spatial-aware discriminative loss achieves state-of-the-
art performance on S3DIS dataset and ScanNet-v2 dataset.

I. INTRODUCTION

3D scene understanding plays a critical role in many
robotics applications, such as outdoor autonomous navigation
and indoor service robots. However, 3D point cloud data is
sparse, non-uniform and unordered. It remains some chal-
lenges on the point cloud semantic instance segmentation,
which is an important task of scene understanding.

Point cloud semantic instance segmentation includes se-
mantic segmentation and instance segmentation tasks. Se-
mantic segmentation labels each point with an object cat-
egory which it belongs to, while instance segmentation
distinguishes each object. Effective feature extraction acts
a vital part in the two segmentation tasks. Nowadays feature
extraction methods can be roughly categorized into voxel-
based approaches [1], [2], which bring high computational
and memory costs, and point-based approaches, which are
flexible and efficient. PointNet [3] is the pioneer work of
point-based methods, which learns the point-level feature
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embedding on unordered point clouds directly and exploit
max pooling to aggregate the point features. As thus, Point-
Net fails to capture local structures represented by neighbor-
ing points. Many methods [4], [5], [6], [7], [8], [9], [10] have
been proposed to solve this problem. PointNet++ [4] is the
most representative among them. It hierarchically processes
a set of points sampled (centroids) to capture local structures.
However, [4] has two limitations that restrict its performance.
For one thing, ball query adopted in [4] neglects the density
non-uniformity of point clouds, which is not conducive to the
presentation of low-level features. The multi-scale or multi-
resolution strategies slightly alleviate the problem at high
computational cost. For another, regional relational reasoning
plays a key role in accurate 3D scene understanding for
humans. Relational reasoning aims at explaining the interac-
tions between local regions. For instance, the legs of tables
are symmetrical, and tables are usually near chairs. Due to
inadequate mining of relational reasoning in [4], it is easy to
cause part or instance confusion leading to low segmentation
accuracy in segmentation tasks.

Aiming at the first problem, we propose a lightweight
adaptive regional feature complementary module to comple-
ment low-level features in sparse regions by combining the
max-relative features of their kNN regions. With regard to
the second problem, inspired by relational networks [11],
[12], [13], we propose an affinity-based regional relational
reasoning module to mine potential reasoning relationships
between high-level regional features.

In addition, instance segmentation is more challenging
than semantic segmentation. Proposal-free methods [14],
[15], [16], [17], [18] generate point-level feature embedding
and then apply a cluster algorithm to group points to segment
3D instances. They can avoid the expensive non-maximum
suppression to prune dense object proposals of proposal-
based methods [19], [20]. Thus, we design a proposal-free
network for 3D semantic instance segmentation. Generating
discriminative instance embedding is a key to boosting
instance segmentation performance. Intuitively, adjacent in-
stances in space are grouped into one instance due to similar
feature embedding more easily than nonadjacent instances.
The idea is important, but ignored by existing methods.
Accordingly, we design a dual spatial-aware discriminative
loss to learn more discriminative instance embedding. To
sum up, our main contributions are as follows:
• A novel region-feature-enhanced structure including

ARFC and AR3 modules is proposed. The structure
boosts low and high level regional features by ARFC
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and AR3 modules, respectively. The former comple-
ments the low-level features of shallow sparse regions
and the later reasons about the relationships between
high-level regional features based on affinity. The two
modules are plug-and-play, which can be directly em-
bedded into other point-based architectures.

• The dual spatial awareness for discriminative loss is
presented, which aims to narrow the intra-instance gap
and enlarge the inter-instance margin by leveraging intra
and inter location space knowledge.

• A proposal-free point cloud instance segmentation
framework (RegionNet) equipped with region-feature-
enhanced structure and dual spatial-aware discrimina-
tive loss is designed. The RegionNet achieves state-of-
the-art performance on S3DIS and ScanNet-v2 datasets.

II. RELATED WORK

A. Deep Learning on Point Clouds

The recent availability of indoor scene datasets has sparked
research in point clouds by deep learning. One of popular
research methods is voxel-based methods [1], [2], which
convert point clouds into regular volumetric occupancy grids
and perform voxel-level predictions via 3D convolutional
neural networks. However, voxel-based methods have the
disadvantages of high complexity and storage redundancy,
which make them difficult to address large-scale 3D scenes.
Some methods [3], [4], [5], [6], [7], [8], [9], [21] have
been designed to process point clouds directly. PointNet [3]
and PointNet++ [4] are widely used in point cloud feature
extraction. Recurrent Neural Networks (RNNs) and Graph
Convolutional Networks (GCNs) are two extended pipelines
following the spirt of PointNet. RNNs-based methods [5], [6]
and GCNs-based methods [7], [8], [22] focus on exploring
long-range spatial dependencies and construction of graph.
The most above-mentioned methods determine the local
regions by ball query or kNN searching ignoring density
non-uniformity of point clouds. [4] designed multi-scale and
multi-resolution strategies to alleviate the problem at high
computational cost. Our lightweight ARFC module exploits
max-relative features of kNN regions to complement low-
level features to solve density non-uniformity of point clouds.

B. Relational Reasoning

Relational modules have been designed to solve some
problems [23], [12], [24], [11]. Santoro et al. [23] present
a relational network (RN) for a visual question answering
task. Zhou et al. [12] propose a temporal relational network
to explain the interactions between frames of videos. Inspired
by the success of these methods, relational reasoning on 3D
data has only started to be tackled in the literature [13], [25],
[26]. More recently, [25] proposes clustering the local region
features and point coordinates for learning the relationships
between regions. Duan et al. [13] design a structural relation-
al reasoning module for 3D semantic segmentation, which is
the most relevant work to ours. However, simple concatena-
tion makes half of the feature channels remain unchanged,

which limits the representation of the relationship in [13].
Our AR3 module learn the relationships based on affinity.

C. Instance Segmentation
Works on 2D instance segmentation can be roughly

classified into proposal-based and proposal-free methods.
Proposal-based methods [27], [28], [29] exploit region pro-
posals to locate the object and then obtain the corresponding
mask to classify whether the patch contains an object.
Proposal-free methods [30], [31], [32], [33] are usually
composed of segmentation branch and clustering-purpose
branch. The pixel-wise mask prediction is obtained by the
segmentation branch, and pixels belonging to a certain in-
stance are clustered by clustering-purpose branch. Similarly,
proposal-free methods [14], [15], [16], [17], [18] on 3D
point clouds generate point-level feature embedding and then
cluster them to segment instances. SGPN [14] learns to group
point features through a similarity matrix and uses double-
hinge loss to supervise the similarity matrix. [15], [16], [34]
jointly optimize semantic and instance segmentation and use
discriminative loss [32] to learn point-level instance embed-
ding. Note that, [17], [18], [34] are voxel-based methods,
whereas [14], [15], [16] are point-based methods, which are
same as ours. Another recent pipeline is single-stage 3D-
BoNet [35] regressing 3D bounding box and predicting a
point-level mask for each instance.

III. OUR APPROACH

In this section, we first describe the whole network
(Section III-A). Then we introduce the proposed ARFC
module complementing low-level regional features in sparse
regions (Section III-B) and the AR3 module mining the
reasoning relationships between high-level regional features
(Section III-C). Finally, the proposed dual spatial-aware dis-
criminative loss supervising the instance embedding learning
is introduced (Section III-D).

A. Network Architecture
An overview of our approach is illustrated in Fig. 1. In

the encoding stage, we use region-feature-enhanced structure
(i.e. ARFC and AR3 modules) to reinforce regional features
after SA (set abstraction) [4] operation at each layer, where-
as [15] only adopts stacked SA. Significantly, the proposed
ARFC module is utilized to complement low-level features.
With the network getting deeper and the receptive field
getting larger, the reasoning relationships between high-level
regional features are learned through our AR3 module. In
the decoding stage, one of the decoders is for point-level
semantic predictions, while the other one is for instance
embedding learning [15]. The proposed dual spatial-aware
discriminative loss aiming to narrow the intra-instance gap
and enlarge the inter-instance margin by combining location
space knowledge is employed to learn instance embedding.
Compared with naive discriminative loss in baseline [15],
our core contribution lies in dual spatial awareness. Finally,
mean-shift clustering and BlockMerging algorithm [14] are
utilized to obtain instance labels. The mode of semantic of
the points within the same instance as semantic label.
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Fig. 1. An overview of the proposed RegionNet. The inputs are point clouds with xyz coordinates and RGB attributes (9 means xyz, RGB, and
normalized xyz). The output includes two parts: semantic labels and instance labels. The proposed region-feature-enhanced structure includes ARFC and
AR3 modules, that is, embedding the ARFC and AR3 modules into vanilla PointNet++ architecture (without multi-scale grouping). The ARFC module
aims at adaptively complementing low-level features in shallow sparse regions (Fig. 2), and the AR3 module aims at reasoning about relationships between
high-level regional features (Fig. 3). Besides, the dual spatial-aware discriminative loss is proposed to supervise instance embedding learning (Fig. 4). SA
denotes set abstraction [4]. The down-sampling in SA samples the input point clouds into 1024, 256, 64, and 16 points sequentially.
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Fig. 2. ARFC mechanism. Given input feature of sparse region regioni,
complement the features by exploiting max-relative features of kNN regions.

B. Adaptive Regional Feature Complementary Module

Due to the density non-uniformity of the point clouds,
there are few points in regioni (marked in red in Fig. 2)
obtained by ball query. Thus, we propose an ARFC module
to adaptively complement the low-level features of such
sparse regions to alleviate the problem of density non-
uniformity by exploiting the max-relative features of its kNN
regions (i.e. dissimilar missing features), as shown in Fig. 2.

Given a region set R = {r1, r2, ..., rN}. We denote Fri
as input feature of region ri. F ′ri is output complementarity
feature. We formulate the ARFC module as

F ′ri = fc(Fri , Fnj
), nj ∈ Nk(ri) (1)

where Nk(ri) denotes the kNN regions of ri. fc denotes the
complementarity process taking Fri , Fnj

as inputs and F ′ri
as output, which will be elaborated below.

Inspired by [22], we use dynamic max-relative GCN to
hierarchically absorb the relative features of neighboring
regions. To begin with, we exploit a max aggregator to
aggregate the feature difference, which is used for extracting
max relative features of neighborhood regions. Then, we
concatenate the feature Frli and the max-relative features of
kNN regions FNk

(rli), followed by a multilayer perceptron
(MLP). The l + 1 layer regional feature Frl+1

i
is acquired

after adding the Frli (Eq. 2).

FNk(rli)
= max(Fnl

j
− Frli), n

l
j ∈ Nk(rli)

Frl+1
i

= Frli +MLP
([
Frli , FNk

(rli)
]) (2)

where l denotes the layer, l = 0, 1, ..., lmax. [, ] denotes

CM AMLP Concatenation Aggregation

M

C A

Location affinity

Feature affinity

Reasoning 
Relationship

+
Output 
Feature

Input
Feature

M
B
C
D
E

A
A
A
A

A
A
A
A

B
C
D
E

A

B

CE

D

table             chair

Fig. 3. AR3 module. Taking local region A as an example, affinities
between A and remaining regions are calculated in location and feature
embeddings. Then potential reasoning relationship is achieved by MLP,
concatenation, and aggregation progressively. Local regions in our network
are obtained by SA, which do not require any extra supervision signals.

concatenate operation. Note that, we draw lesson from the
idea of dynamic graph construction in [8] to dynamically
select useful information of different levels. So for the 1st
layer, i.e., l = 0, we search the kNN regions of ri according
to the location coordinates (xyz) of the centroids, when
l ≥ 1, according to the feature obtained from the last layer.

Finally, we fuse the features from different layers to realize
the complementary feature F ′ri (Eq. 3).

F ′ri =MLP
(
[Fr1i , Fr2i , ..., Frlmax

i
]
)

(3)

Remarkably, our ARFC module has the same input and
output dimensions, which can be directly embedded into
point-based architectures to complement low-level features.
In our network, we embed the module (in Fig. 1) into the
first two layers of the region-feature-enhanced structure.

C. Affinity-based Regional Relational Reasoning Module

Local regions in a scene are potentially relevant. For exam-
ple, the legs of tables are symmetrical, and tables are usually
near chairs. With the exploitation of reasoning relationships,
the models are able to understand 3D objects more com-
prehensively. From the perspective of bionics, we generally
first observe shapes or outlines of sub-regions to judge the
simple affinity rather than concatenate them like [13] when
reasoning about the relationships between sub-regions, which
has been indirectly proved effective in [21]. Then further
relationships between them are mined through progressive
reasoning. Therefore, we propose the AR3 module, as shown
in Fig. 3.
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Given a regional feature set F = {F1, F2, ..., FN}. The
AR3 module can be formulated as

F ′i = Fi + fr(Fi, Fj), Fj ∀ F (4)

where fr denotes the reasoning process taking Fi, Fj as
inputs and reasoning relationship as output (see Fig. 3),
which will be described in detail in the following.

Firstly, we calculate the affinity between local regions.
The two-norm and one-norm distances are simple ways to
calculate the affinity. However, this symmetric strategy is
problematic since the impact of region A on B is the same
as that of B on A [21]. In fact, A can deduce B, while
B may not be able to deduce A. Consequently, we model
the embedding difference as affinity, which is simple but
effective. As shown in Fig. 3, the AR3 module first cal-
culates the affinity of location embedding as well as feature
embedding. Location embeddings refer to xyz coordinates of
centroids (i.e, sampled points) here. We argue that the affinity
of location embedding represents real distance and structure
information between two regions, which also implies the
receptive filed size of the sub-region. Reasoning in feature
embedding can quarry potential repetitive regional patterns.

Secondly, further reasoning processes on location and
feature affinities are accomplished by respective MLP. Then
we concatenate and aggregate them effectively to realize
reasoning relationship. The aggregation operation is imple-
mented by Eq. 5.

h
(
[x, y]

)
= FCC

(N−1∑
i=1

FC3+C
(
[x, y]

))
(5)

where F denotes the 1 × 1 convolution. The subscript
represents the number of input channels, and the superscript
represents the number of output channels.

Eventually, we add reasoning relationship to input feature,
and the enhanced high-level regional feature F ′i is achieved.

The AR3 module is also a plug-and-play module without
extra supervision signals that can be easily integrated into
point-based architectures to enhance feature representation
of large regions. We plug the AR3 module (in Fig. 1) into
the last two layers of region-feature-enhanced structure to
extract reasoning relationships in multi-scale local features.

To be clear, although both AR3 module and ARFC module
are designed to enhance regional feature, there are at least
three obvious differences between them. Firstly, the AR3

module acts in the high-level features with large receptive
field, while the ARFC module acts in the low-level features
of shallow sparse regions. Secondly, the AR3 module exploits
MLPs to reason about the relationships between a sub-region
and all other sub-regions, while ARFC module adopts a max
aggregator to hierarchically aggregate max-relative features
of kNN regions to complement. Thirdly, location information
is used in quite a different way. AR3 module learns location
relationships, while ARFC module finds neighboring regions.

D. Dual Spatial-aware Discriminative Loss
As shown in Fig. 4, a good segmentation can be achieved

by the hyperplane with large margin. Thus we hope the

(a) Location space

hyperplane,1Ai
dis

,A Bi idis

(b) Feature space

margin,1Ai
DIS

,A Bi iDIS

,1 ,1( )
A Aintra i if dis DIS

, ,( )
A B A Binter i i i if dis DIS

Intra spatial awareness:

Inter spatial awareness:

Fig. 4. Dual spatial-aware discriminative loss. Dots of different colors
denote different instances. dis denotes distance in location space, DIS
denotes distance in feature space. fintra and finter refer to wi,j and
wiA,iB in Section III-D, respectively.

margin between the two instances in feature space to be large
and the gap of feature embeddings of points belonging to the
same instance to be small. Based on discriminative loss [15],
we propose the dual spatial awareness for improvement,
dubbed dual spatial-aware discriminative loss including intra
spatial-aware and inter spatial-aware discriminative losses.

Within an object instance, feature embeddings of points
closer to the center are more likely to be similar to the cen-
ter feature embedding, while feature embeddings of points
farther from the center (near the edge) are more likely to be
different. The points farther from the center should be given
a greater suction force, namely intra spatial awareness. The
intra spatial-aware loss is defined as

Lintra =
1

I

I∑
i=1

1

Ni

Ni∑
j=1

wi,j
[
‖fj − µf,i‖1 − δv

]2
+

(6)

where I is the number of ground-truth instances, Ni is the
number of points in instance i and [x]+ = max(0;x) means
the hinge. ‖ · ‖ denotes `1 distance. µf,i is the mean feature
embedding of instance i. fj is a feature embedding of a point.
δv is a margin. The intra spatial awareness is implemented by
wi,j , which is inspired by [17]. However, their loss weakens
intra loss item, and experimentally we found the origin loss
does not provide improvement in our network. We avoid
weakening by scale transform and adopt informative points.

Specifically, given an instance i with M points, we first use
Principal Component Analysis (PCA) to obtain informative
points. The representative center location coordinate µl,i is
obtained by further averaging informative points. We define
the intra spatial awareness based on Laplacian kernel as

wi,j =
2

1 + e−‖lj−µl,i‖1
, wi,j ∈ (1, 2) (7)

where lj is a location coordinate of a point.
Between different object instances, feature embeddings of

the two centers closer to each other are more likely to be
similar, while feature embeddings of the two centers farther
apart are more likely to be different. The closer the centers of
two instances, the greater the repulsion, namely inter spatial
awareness. The inter spatial-aware loss can be expressed as

Linter =
1

I(I − 1)

I∑
iA=1

I∑
iB=1

wiA,iB

[
2δd−‖µf,iA−µf,iB‖1

]2
+

(8)

8250



where iA 6= iB . δd is a margin. Similar to intra spatial
awareness, the inter spatial awareness is constructed as

wiA,iB = 1 +
2

1 + e‖sl,iA−sl,iB ‖1
, wiA,iB ∈ (1, 2) (9)

Instead of averaging informative points obtained by PCA
in intra spatial awareness term, we calculate the distance
between informative point set sl,iA and informative point set
sl,iB directly to take shape of objects into account. Besides,
we scale the weight range to (1, 2), which can preserve the
role of the discriminative loss [15].

Additionally, like [15], regularization term is incorporated
into instance segmentation loss to keep the embedding values
bounded, which is defined as Lreg = 1

I

∑I
i=1 ‖µf,i‖1. So

LINS = Lintra + Linter + α · Lreg (10)

where α is a hyperparameter. As for semantic prediction, the
cross-entropy loss LSEM is chosen in this paper. Above all,
our total train loss is L = LSEM + LINS .

IV. EXPERIMENT

A. Datasets and Implementation Details

Datasets We evaluate our approach on 3D instance segmen-
tation on the two datasets: Stanford 3D Indoor Semantics
Dataset [36] (S3DIS) and ScanNet-v2 dataset [37]. The
S3DIS dataset contains 3D scans from Matterport Scanners
in 6 areas including 272 rooms. Each point in the scene point
cloud has an instance label and one of the semantic labels
from 13 categories. The ScanNet-v2 dataset is obtained by
fusing multiple scans from different views. It contains 1513
scanned and reconstructed indoor scenes, and each point has
an instance label and one of the semantic labels from 40
categories. We employ 1201 scenes as the training set and
the rest 312 scenes as the test set.
Implementation Details Our framework was implemented
based on TensorFlow using Adam optimizer on single N-
VIDIA Titan-X with 12GB memory. We train our network
for 50 epochs, with batch size 12, base learning rate 0.001,
which is divided by 2 every 300k iterations. Same as [15],
δv and δd are set to 0.5, 1.5, respectively. α is set to 0.001.
Cins is set to 5. lmax and k are set to 1, 16 in ARFC module
respectively. Following [15], [35], we split the rooms into
1m2 overlapped blocks containing 4096 points.
Evaluation Metrics Following [3], [15], we report our exper-
iments testing on Area 5 and 6-fold cross validation results
on S3DIS dataset. For evaluation of semantic segmentation,
overall accuracy (oAcc), mean accuracy (mAcc) and mean
intersection over union (mIoU) across all the categories
are calculated and reported. For evaluation of instance seg-
mentation, (weighted) coverage (Cov, WCov) [38], [15], as
well as classical metrics mean precision (mPrec) and mean
recall (mRec) with IoU threshold 0.5 are also calculated and
reported. Besides, as for Scannet-v2 dataset, we use general
average precision (AP) as the instance evaluation metric with
different IoU thresholds, such as 0.5, 0.25.

TABLE I
INSTANCE AND SEMANTIC SEGMENTATION RESULTS ON S3DIS.

Method Instance metric Semantic metric
mCov mWCov mPrec mRec oAcc mAcc mIoU

Test on Area 5
SGPN [14] 32.7 35.5 36.0 28.7 - - -
JSIS3D [16] 32.6 35.6 39.7 29.1 82.8 49.8 42.0
3D-BoNet [35] 41.5 44.6 50.1 39.0 86.9 59.2 51.8
ASIS [15] 47.1 50.1 51.8 44.5 86.5 61.3 53.0
Ours 50.2 53.4 58.8 47.5 87.9 64.0 55.6

Test on 6-fold Cross Validation
SGPN [14] 37.9 40.8 38.2 31.2 - - -
JSIS3D [16] 37.3 41.0 49.5 33.4 79.9 59.8 48.5
3D-BoNet [35] 48.4 52.4 65.6 47.6 86.3 69.3 59.4
ASIS [15] 53.1 56.9 62.0 49.0 86.2 71.7 59.6
Ours 54.6 58.6 66.0 52.1 87.9 72.9 62.6

TABLE II
PER CLASS RESULTS ON S3DIS DATASET AREA 5. MOST METHODS DO

NOT PERFORM WELL ON “BEAM”, WHICH HAS FEW POINTS (0.029%).

mean
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Instance metric WCov
JSIS3D [16] 35.6 82.5 86.0 52.5 0.0 3.6 51.3 14.8 42.4 54.0 5.3 36.1 5.7 28.4
3D-BoNet [35] 45.7 89.4 87.8 71.8 0.0 10.8 6.3 10.3 46.3 68.2 10.5 45.3 47.2 43.3
ASIS [15] 50.1 88.9 89.8 70.4 0.0 10.9 61.7 6.0 50.4 70.5 35.8 56.4 64.7 45.5
Ours 53.4 91.3 88.3 75.1 0.0 12.9 70.6 19.1 52.1 77.5 37.0 53.5 63.4 52.6

Semantic metric IoU
JSIS3D [16] 42.0 89.3 96.3 70.3 0.0 5.9 47.9 14.8 57.3 61.8 9.1 46.7 7.8 38.5
3D-BoNet [35] 58.9 91.5 98.4 76.7 0.0 16.7 51.8 28.0 68.5 74.8 19.2 57.5 42.7 48.0
ASIS [15] 53.0 91.7 96.8 74.4 0.0 8.2 48.6 16.0 72.4 80.4 38.2 59.0 53.1 50.3
Ours 55.6 93.2 97.6 78.8 0.0 15.0 54.6 29.2 74.7 80.6 38.4 56.9 50.7 53.2

B. Evaluation on S3DIS Dataset

We compared our method with baseline ASIS [15], which
is based on vanilla PointNet++ architecture, and other state-
of-the-art methods, including SGPN [14], JSIS3D [16], 3D-
BoNet [35] on S3DIS dataset. Table I reports instance seg-
mentation results. Our method achieves 58.6 mWCov, which
outperforms ASIS1 by 1.7 when evaluating by 6-fold cross
validation. In terms of mPrec, a larger 4.0 gain is yielded.
Besides, the recall rate mRec also achieves significative 3.1
improvement. When testing on Area 5, the improvements
are consistent across the four evaluation metrics. We show
some instance segmentation results in Fig. 5. With the help of
the proposed region-feature-enhanced structure, our method
performs better than other methods in those regions having
sparse points or potential reasoning relationship. Besides,
nearby different instances (e.g., door and wall, chair and
chair) are distinguished well as the proposed dual spatial-
aware discriminative loss helps network enlarge the margin
in feature space. As shown in Table II, performance gains
on door, chair are in line with our observations.

Table I also illustrates the semantic segmentation results.
Our method outperforms other state-of-the-art methods. As
a whole, performances of more than half of object categories
achieve the highest score, as depicted in Table II. Some
examples are visualized in Fig. 6. Our method helps semantic
segment completely and correctly. Taking the sofa (line 3 in

1We reproduced the results of ASIS using the code at github, published
by the authors. Note, limited to resources, we set the batchsize to 12, and
train it for 50 epochs, which is same as our method.
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Fig. 5. The visualization comparison of our method and [35], [15] for instance segmentation on S3DIS. Different colors represent different instances.

TABLE III
INSTANCE SEGMENTATION RESULTS ON SCANNET-V2 DATASET.
POINT-BASED METHODS INCLUDING SGPN [14], GSPN [20],

ASIS [15] ARE REPORTED. 3D-BONET [35] ADOPTING VOXEL-BASED

BACKBONE WHEN EVALUATING ON THE DATASET IS EXCLUDED.

SGPN [14] GSPN [20] ASIS [15] Ours
AP0.5 35.1 37.8 44.5 46.1
AP0.25 - 53.4 64.0 69.1

Fig. 6) as an example, the points on its surfaces are sparse
due to illumination. Thanks to ARFC module complementing
low-level regional feature and AR3 module reasoning about
relationships between high-level regional features, the better
segmentation result is realized.

C. Evaluation on ScanNet-v2 Dataset

Further, we conduct experiments on Scannet-v2 dataset.
ScanNet [37] presented a voxel-based coarse prediction
framework, most methods based on which are voxel-based
methods. Instead, our method is point-based. So we make
comparisons with SGPN [14] and GSPN [20]. Table III
reports the experiment results. Our method outperforms [20]
by 8.3 at AP0.5. Significantly, our approach is superior
to [14] by a large margin at AP0.5. Besides, we also re-
train and test baseline ASIS on the dateset, our methods
still obtain better results. We submit our results to ScanNet-
v2 benchmark, and achieve state-of-the-art performance in
point-based methods with AP0.5 24.8 and AP0.25 47.4, while
SGPN [14] 14.3 and 39.0. This further proves our RegionNet
is effective and adaptable to various indoor datasets.

D. Ablation Study

To evaluate the effectiveness of each component of our
framework, we conduct ablation experiments on Area 5 of
S3DIS dataset. The base network is ASIS based on vanilla
PointNet++ (without multi-scale grouping) and discrimina-
tive loss. Table IV reports the ablation experiments of main

TABLE IV
ABLATION STUDY THE REGION-FEATURE-ENHANCED

STRUCTURE(CONSISTING OF ARFC, AR3), AND DUAL SPATIAL-AWARE

DISCRIMINATIVE LOSS (DSDLOSS) ON S3DIS DATASET AREA 5.

Module Loss Instance metric Semantic metric
ARFC AR3 DSDLoss mCov mWCov mPrec mRec oAcc mAcc mIoU

Base 47.1 50.1 51.8 44.5 86.5 61.3 53.0

Ours

X 48.1 51.2 55.0 44.9 87.7 62.1 54.7
X 48.6 51.6 54.9 45.4 87.3 62.0 54.1

X 47.9 51.0 55.8 45.6 87.2 63.7 55.1
X X 50.0 53.0 56.0 45.5 87.7 62.7 55.2
X X X 50.2 53.4 58.8 47.5 87.9 64.0 55.6

(a) (b) (c) (d)

Fig. 7. A close-up part confusion example of region-feature-enhanced
structure. (a)RGB; (b)Base; (c)Base+ARFC; (d)Base+ARFC+AR3.

components including ARFC module, AR3 module, and dual
spatial-aware discriminative loss (DSDLoss). Specifically,
our method equipped with any one of the components
achieves better performance than base. In terms of mPrec,
they all have a more than 3 improvement. Further, we test
the model equipped with ARFC and AR3, namely regional-
feature-enhanced structure, which is superior to the model e-
quipped with only ARFC or AR3. Finally, the full framework
achieves optimal performance across four instance evaluation
metrics and three semantic evaluation metrics. This shows
that our designed regional-feature-enhanced structure and
dual spatial-aware discriminative loss are effective.

In order to further prove the effectiveness of our ARFC
and AR3 modules, we visualize a close-up example in Fig. 7.
Comparing (b) and (c) (boxed in solid line), the back of the
chair with sparse points is segmented completely through
adding ARFC module. Then comparing (c) and (d) (boxed
in dotted line), the AR3 module improves legs of the table.
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Fig. 6. The visualization comparison of our method and state-of-the-art methods for semantic segmentation on S3DIS dataset.

TABLE V
ABLATION STUDY FOR ARFC MODULE.

mWCov mIoU inference speed(ms)
Base 50.2 53.0 151
Base-MSG [4] 50.1 53.7 178
Base-ARFC(ours) 51.2 54.7 155

TABLE VI
ABLATION STUDY FOR DUAL SPATIAL-AWARE DISCRIMINATIVE LOSS.

DSDLoss Instance metric
Intra Inter mPrec mRec

Base 51.8 44.5
X 53.7 43.4

X 54.6 44.1
X X 55.8 45.6

They confirm that the ARFC module complements the low-
level features in sparse regions, and the AR3 module has the
role of reasoning on high-level regional features to alleviate
part confusion. Besides, we also compare our ARFC module
with multi-scale grouping (MSG), which is a density adaptive
strategy in PointNet++. As shown in Table V, our ARFC
module exploiting max-relative features of neighboring re-
gions achieves higher performance than MSG strategy with
less inference time at the same input size (4k points).

Additionally, we also prove the role of intra spatial aware-
ness and inter spatial awareness in our DSDLoss. Table VI
reports the results. It gets limited improvement compared
with base when only intra spatial awareness is exploited,

(a) (b) (c) (d)

Fig. 8. A close-up instance confusion example of dual spatial-aware
discriminative loss. (a) RGB; (b) Base; (c) Base+Intra; (d) Base+Intra+Inter.

TABLE VII
GENERALITY ANALYSIS FOR OUR ARFC AND AR3 MODULES.

mWCov mIoU
3D-BoNet [35] 44.6 51.8
3D-BoNet-ARFC 48.6 54.9
3D-BoNet-AR3 46.3 52.5
3D-BoNet-ARFC-AR3 49.1 55.1

as shown in Fig. 8 (b) and (c) (marked in red). Because it
just intends to converge the points in an instance without
emphasizing the distinction between instances. When the
inter spatial awareness is added, our precision is improved
significantly, as shown in Fig. 8 (c) and (d) (marked in blue).

E. Generality and Run-time Analysis

To verify the generality of the proposed plug-and-play
ARFC and AR3 modules, we embed them in other point-
based networks, such as point-based 3D-BoNet [35]. As
shown in Table VII, our ARFC and AR3 modules signifi-
cantly boost the performance of [35], which proves they have
good generality. As for network computational complexity,
the ARFC module exploits non-parameter max-pooling op-
eration, and the AR3 module is embedded into deep layers
with least sampled points, which need little computational
cost. Actually, the inference speed of the baseline equipped
with the ARFC and AR3 modules is 159ms, whereas the
baseline ASIS is 151ms at the same input size (4k points).
This shows that the ARFC and AR3 modules are lightweight.

V. CONCLUSION

We put forward a proposal-free region-feature-enhanced
network termed RegionNet, focusing on reinforcing regional
feature representation and improving discriminative point
feature embedding. Our RegionNet successfully improves the
performance of 3D semantic instance segmentation on indoor
datasets, which demonstrates the effectiveness of incorporat-
ing low and high-level feature relationships between regions
and dual spatial-aware knowledge. For future work, we plan
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to learn the relationships between concrete instances or parts
instead of abstract regions generated SA.
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