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We study context-bounded verification of liveness properties of multi-threaded, shared-memory programs,

where each thread can spawn additional threads. Our main result shows that context-bounded fair termination

is decidable for the model; context-bounded implies that each spawned thread can be context switched

a fixed constant number of times. Our proof is technical, since fair termination requires reasoning about

the composition of unboundedly many threads each with unboundedly large stacks. In fact, techniques for

related problems, which depend crucially on replacing the pushdown threads with finite-state threads, are not

applicable. Instead, we introduce an extension of vector addition systems with states (VASS), called VASS with

balloons (VASSB), as an intermediate model; it is an infinite-state model of independent interest. A VASSB

allows tokens that are themselves markings (balloons). We show that context bounded fair termination reduces

to fair termination for VASSB. We show the latter problem is decidable by showing a series of reductions:

from fair termination to configuration reachability for VASSB and thence to the reachability problem for VASS.

For a lower bound, fair termination is known to be non-elementary already in the special case where threads

run to completion (no context switches).

We also show that the simpler problem of context-bounded termination is 2EXPSPACE-complete, matching

the complexity bound—and indeed the techniques—for safety verification. Additionally, we show the related

problem of fair starvation, which checks if some thread can be starved along a fair run, is also decidable in the

context-bounded case. The decidability employs an intricate reduction from fair starvation to fair termination.

Like fair termination, this problem is also non-elementary.

1 INTRODUCTION
We study decision problems related to liveness verification of shared-memory multithreaded

programs. In a shared-memory multithreaded program, a number of threads execute concurrently.
Each thread executes possibly recursive sequential code, and can spawn new threads for concurrent

execution. The threads communicate through shared global variables that they can read and write.

The execution of the program is guided by a non-deterministic scheduler that picks one of the
spawned threads to execute in each time step. If the scheduler replaces the currently executing

thread with a different one, we say the current active thread is context switched.
Shared-memory multithreaded programming is ubiquitous and static verification of safety or

liveness properties of such programs is a cornerstone of formal verification research. Indeed, there is

a vast research literature on the problem—from a foundational understanding of the computability

and complexity of (subclasses of) models, to program logics, and to efficient tools for analysis of

real systems.
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In this paper, we focus on decidability issues for liveness verification for multithreaded shared

memory programs with the ability to spawn threads. Liveness properties, intuitively, specify that

“something good” happens when a program executes. A simple example of a liveness property is

termination: the property that a program eventually terminates. In fact, termination is a “canonical”

liveness property: for a very general class of liveness properties, through monitor constructions,

verifying liveness properties reduces to verifying termination [Apt and Olderog 1991; Vardi 1991].

Unfortunately, under the usual notion of non-deterministic schedulers, some programs may fail

to terminate for uninteresting reasons. Consider the following program:

1 global bit := 1;

2 main() { spawn foo; spawn bar; }

3 foo() { if bit = 1 then spawn foo; }

4 bar() { bit := 0; }

A main thread spawns two additional threads foo and bar. The thread foo checks if a global bit

is set and, if so, re-spawns itself. The thread bar resets the global bit. There is a non-terminating

execution of this program in which bar is never scheduled. However, a scheduler that never

schedules a thread that is ready to run would be considered unfair. Instead, one formulates the

problem of fair termination: termination under a fair non-deterministic scheduler. We abstract

away from the exact mechanism of the scheduler, and only require that every spawned thread that

is infinitely often ready to run is eventually scheduled. Then, every fair run of the above program

is terminating: eventually bar is scheduled, after which foo does not spawn a new thread.

Fair termination of concurrent programs is highly undecidable. A celebrated result by Harel

[1986] shows that fair termination is Π1

1
-complete; in fact, the problem is already Π1

1
-complete

when the global state is finite and there are a finite number of recursive threads.
1
In contrast, safety

verification, modeled as state reachability, is merely Σ0

1
-complete.

Since the high undecidability relies on an unbounded exchange of information among threads,

a recent and apposite approach to verifying concurrent recursive programs is to explore only a

representative subset of program behaviors by limiting the number of inter-thread interactions

[Musuvathi and Qadeer 2007; Qadeer and Rehof 2005]. This approach, called context bounding

by Qadeer and Rehof [2005], considers the verification problem as a family of problems, one for

each 𝐾 . The 𝐾-context bounded instance, for any fixed 𝐾 ≥ 0, considers only those executions

where each thread is context switched at most 𝐾 times by the scheduler. In the limit as 𝐾 → ∞,
the 𝐾-bounded approach explores all behaviors where each thread runs a finite number of times.

In practice, bounded explorations with small values of 𝐾 have proved to be effective to uncover

many safety and liveness bugs in real systems.

In this paper, we prove the following results. We first show that 𝐾-context bounded termination

for multithreaded recursive programs with spawns is decidable and 2EXPSPACE-complete when

𝐾 ≥ 1. Then, we show that 𝐾-context bounded fair termination is decidable but non-elementary.

Our result implies fair termination is Π0

1
-complete when each thread is context-switched a finite

number of times. (Note that this does not contradict the Π1

1
-completeness of the general problem,

in which a thread can be context switched infinitely often.) We also study a stronger notion of

fairness called fair non-starvation, where threads are given unique identities in order to distinguish

threads with the same local configuration, and show that fair non-starvation is also decidable.

Our results generalize the special case of 𝐾 = 0 studied by Ganty and Majumdar [2012] as

asynchronous programs. When 𝐾 = 0, each thread executes to completion without being interrupted

in the middle. Ganty and Majumdar show the decidability of safety and liveness verification for

1
Recall that the class Π1

1
in the analytic hierarchy is the class of all relations on N that can be defined by a universal

second-order number-theoretic formula.
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this model. In particular, they prove safety and termination are both EXPSPACE-complete and

fair termination and fair starvation are decidable but non-elementary.
2
Their proof depends on

the observation that, since threads are not interrupted, one can replace the pushdown automata

for each thread by finite automata that accept Parikh-equivalent languages. Unfortunately, their

technique does not generalize when context switches are allowed.

For 𝐾 ≥ 1, Atig et al. [2009] showed that the safety verification problem is decidable in

2EXPSPACE. Ten years later, a matching lower bound was shown by Baumann et al. [2020]. The

key observation in the decision procedure is that safety is preserved under downward closures: one

can analyze a related program where some spawned threads are “forgotten.” Since the downward

closure of a context free language is effectively regular, one can replace the pushdown automaton for

each thread by a finite automaton accepting the downward closure. In fact, our proof of termination

also follows easily from this observation, as termination is also preserved by downward closures.

Unfortunately, fair termination and fair non-starvation are not preserved under downward

closures. Thus, we cannot apply the preceding techniques to replace pushdown automata by finite

automata in our construction. Thus, our proof is more intricate and requires several insights into

the computational model.

The key difficulty in our decision procedure is to maintain a finite representation for unboundedly
many active threads, each with unboundedly large local stacks and potentially spawning unbound-
edly many new threads, and to compose their context-switched executions into a global execution.

In order to maintain and compose such configurations, we introduce a new model, called VASS with
balloons (VASSB), that extends the usual model of a vector addition systems with states (VASS)

with “balloons”: a token in a VASSB can be a usual VASS token or a balloon token that is itself a

vector. Intuitively, balloon tokens represent the possible new threads a thread can spawn along one

of its execution segments.

We show through a series of constructions that the fair termination problem reduces to the

fair termination problem for VASSB, and thence to the configuration reachability problem for

VASSB. Finally, we show that configuration reachability for VASSB is decidable by a reduction to

the reachability problem for VASS. This puts VASSB in the rare class of infinite-state systems which

generalize VASS and yet maintain a decidable reachability (not just coverability!) problem.

Finally, we show a reduction from the fair starvation problem to fair termination. The reduction

relies on two combinatorial insights. The first is that if a program has an infinite fair run, then

it has one in which there exists a bound on the number of threads spawned by each thread. The

second is a novel pumping argument based on Ramsey’s theorem; it implies that it suffices to track

a finite amount of data about each thread to determine whether some thread can be starved.

In conclusion, we prove decidability of liveness verification for multithreaded shared memory

programs with the ability to dynamically spawn threads, an extremely expressive model of multi-

threaded programming. This model sits at the boundary of decidability and subsumes many other

models studied before.

For space reasons, the detailed proofs be found in the full version of the paper [Baumann et al.

[n. d.]].

Related Work. Safety verification for concurrent recursive programs is already undecidable with

just two threads and finite global store [Ramalingam 2000]. Many results on context-bounded safety

verification consider a model with a fixed number of threads, without spawns. The complexity of

safety verification for this model is well understood at this point. The key idea underlying the best

2
Their result shows a polynomial-time equivalence between fair termination and reachability in vector addition systems

with states (VASS, a.k.a. Petri nets). The complexity bounds follow from our current knowledge of the complexity of VASS

reachability [Czerwinski et al. 2019].
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algorithms reduce the problem to analyzing a sequential pushdown system [Lal and Reps 2009] by

guessing the bounded sequences of context switches for each thread and using the finite state to

ensure the sequential runs can be stitched together.

When the model allows spawning of new threads, as ours does, existing decision procedures

are significantly more complex, both in their technicalities and in computational cost. There are

relatively few results on decidability of liveness properties of infinite-state systems. Atig et al.

[2012a] show a sufficient condition for fair termination for context-bounded executions of a fixed

number of threads, where they look for ultimately periodic executions, in which each thread is

context switched at most 𝐾 times in the loop. They show that the search for such ultimately

periodic executions can be reduced to safety verification. In our model, fair infinite runs may

involve unboundedly many threads with unbounded stacks and need not be periodic—for example,

there can always be more and more newly spawned threads.

Multi-pushdown systems model multithreaded programs with a fixed number of threads. Many

decision procedures are known when the executions of such systems are restricted through different

bounds such as context, scope, or phase [Atig et al. 2012b, 2017; Torre et al. 2016], and also through

limitations on communication patterns [Lal et al. 2008]. These problems are orthogonal to us, either

in the modeling capabilities or in the properties verified.

Decidability of linear temporal logic is known for weaker models of multithreaded recursive

programs, such as symmetric parameterized programs [Kahlon 2008] or leader-follower programs

with non-atomic reads and writes [Durand-Gasselin et al. 2017; Fortin et al. 2017; Muscholl et al.

2017]. These programs cannot perform compare-and-swap operations, and therefore, their compu-

tational power is quite limited (in fact, LTL model checking is PSPACE-complete). A number of

heuristic approaches to fair termination of multithreaded programs provide sound but incomplete

algorithms, but for a more general class of programs involving infinite-state data variables [Cook

et al. 2007, 2011; Farzan et al. 2016; Kragl et al. 2020; Padon et al. 2018]. The goal there is to provide

a sound proof rule for verification but not to prove a decidability result.

In terms of fair termination problems for VASS, the theme of computational hardness continues.

For example, the classical notion of fair runs, in which an infinitely activated transition has to be

fired infinitely often, leads to undecidability [Carstensen 1987] and even Σ1

1
-completeness [Howell

et al. 1991]. However, weakly fair termination, where only those transitions that are almost always

activated have to be fired infinitely often, is decidable [Jančar 1990]. A rich taxonomy of fairness

notions with corresponding decidability results can be found in [Howell et al. 1991]. However, all

of these notions appear to be incomparable with our fairness notion for VASSB.

Our model of VASSB treads the boundary of models that generalize VASS for which reachability

can be proved to be decidable. We note that there are several closely related models, VASS with

a stack [Leroux et al. 2015] and branching VASS [Verma and Goubault-Larrecq 2005], for which

decidability of reachability is a long-standing open problem, and others, nested Petri nets [Lomazova

and Schnoebelen 1999], for which reachability is undecidable.

2 DYNAMIC NETWORKS OF CONCURRENT PUSHDOWN SYSTEMS (DCPS)
2.1 Preliminary Definitions
Multisets. A multiset m : 𝑆 → N over a set 𝑆 maps each element of 𝑆 to a natural number. LetM[𝑆]
be the set of all multisets over 𝑆 . We treat sets as a special case of multisets where each element

is mapped onto 0 or 1. We sometimes write m = [[𝑎1, 𝑎1, 𝑎3]] for the multiset m ∈ M[𝑆] such that

m(𝑎1) = 2, m(𝑎3) = 1, and m(𝑎) = 0 for each 𝑎 ∈ 𝑆\{𝑎1, 𝑎3}. The empty multiset is denoted ∅. The
size of a multiset m, denoted |m|, is given by

∑
𝑎∈𝑆 m(𝑎). This definition applies to sets as well.
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Given two multisets m,m′ ∈ M[𝑆] we define m +m′ ∈ M[𝑆] to be a multiset such that for all

𝑎 ∈ 𝑆 , we have (m +m′) (𝑎) = m(𝑎) + m′(𝑎). For 𝑐 ∈ N, we define 𝑐m as the multiset that maps

each 𝑎 ∈ 𝑆 to 𝑐 · m(𝑎). We also define the natural order ⪯ on M[𝑆] as follows: m ⪯ m′ iff there
exists mΔ ∈ M[𝑆] such that m +mΔ = m′. We also define m −m′ for m′ ⪯ m analogously: for all

𝑎 ∈ 𝑆 , we have (m −m′) (𝑎) = m(𝑎) −m′(𝑎).

Pushdown Automata. A pushdown automaton (PDA) P(𝑔,𝛾 ) = (𝑄, Σ, Γ, 𝐸, 𝑞0, 𝛾0, 𝑄𝐹 ) consists of a
finite set of states 𝑄 , a finite input alphabet Σ, a finite alphabet of stack symbols Γ, an initial state
𝑞0 ∈ 𝑄 , an initial stack symbol 𝛾0 ∈ Γ, a set of final states 𝑄𝐹 ⊆ 𝑄 , and a transition relation

𝐸 ⊆ (𝑄 × Γ) ×Σ𝜀 × (𝑄 × Γ≤2), where Σ𝜀 = Σ∪ {𝜀} and Γ≤2 = {𝜀} ∪ Γ∪ Γ2
. For ((𝑞,𝛾), 𝑎, (𝑞′,𝑤)) ∈ 𝐸

we also write 𝑞
𝑎 |𝛾/𝑤
−−−−→ 𝑞′.

The set of configurations of P is 𝑄 × Γ∗. The initial configuration is (𝑞0, 𝛾0). The set of final
configurations is 𝑄𝐹 × Γ∗. For each 𝑎 ∈ Σ ∪ {𝜀}, the relation

𝑎
=⇒ on configurations of P is defined as

follows: (𝑞,𝛾𝑤) 𝑎=⇒ (𝑞′,𝑤 ′𝑤) for all𝑤 ∈ Γ∗ iff (1) there is a transition 𝑞
𝑎 |𝛾/𝑤′
−−−−−→ 𝑞′ ∈ 𝐸, or (2) there

is a transition 𝑞
𝑎 |𝜀
−−→ 𝑞′ ∈ 𝐸 and 𝛾 = 𝑤 ′ = 𝜀.

For two configurations 𝑐, 𝑐 ′ of P, we write 𝑐 ⇒ 𝑐 ′ if 𝑐
𝑎
=⇒ 𝑐 ′ for some 𝑎. Furthermore, we write

𝑐
𝑢
=⇒∗ 𝑐 ′ for some 𝑢 ∈ Σ∗ if there is a sequence of configurations 𝑐0 to 𝑐𝑛 with

𝑐 = 𝑐0

𝑎1

==⇒ 𝑐1

𝑎1

==⇒ 𝑐2 · · · 𝑐𝑛−1

𝑎𝑛
==⇒ 𝑐𝑛 = 𝑐 ′,

such that 𝑎1 . . . 𝑎𝑛 = 𝑢. We then call this sequence a run of P over 𝑢. We also write 𝑐 ⇒∗ 𝑐 ′ if the
word 𝑢 does not matter. A run of P is accepting if 𝑐 is initial and 𝑐 ′ is final. The language accepted
by P, denoted 𝐿(P) is the set of words ∈ Σ∗, over which there is an accepting run of P.

Given two configurations 𝑐, 𝑐 ′ of P with 𝑐 ⇒∗ 𝑐 ′, we say that 𝑐 ′ is reachable from 𝑐 and that 𝑐 is

backwards-reachable from 𝑐 ′. If 𝑐 is the initial configuration, we simply say that 𝑐 ′ is reachable.

Parikh Images and Semi-linear Sets. The Parikh image of a word 𝑢 ∈ Σ∗ is a function Parikh(𝑢) :

Σ → N such that, for every 𝑎 ∈ Σ, we have Parikh(𝑢) (𝑎) = |𝑢 |𝑎 , where |𝑢 |𝑎 denotes the number

of occurrences of 𝑎 in 𝑢. We extend the definition to the Parikh image of a language 𝐿 ⊆ Σ∗:
Parikh(𝐿) = {Parikh(𝑢) | 𝑢 ∈ 𝐿}. We associate the natural isomorphism between NΣ

and N |Σ | and
consider the functions as vectors of natural numbers.

A subset ofM[𝑆] is linear if it is of the form {m0 + 𝑡1m1 + . . . + 𝑡𝑛m𝑛 | 𝑡1, . . . , 𝑡𝑛 ∈ N} for some

multisets m0,m1, . . . ,m𝑛 ∈ M[𝑆]. We call m0 the base vector and m1, . . . ,m𝑛 the period vectors. A
linear set has a finite representation based on its base and period vectors. A semi-linear set is a
finite union of linear sets.

Theorem 2.1 ([Parikh 1966]). For any context-free language 𝐿, the set Parikh(𝐿) is semi-linear. A
representation of the semi-linear set Parikh(𝐿) can be effectively constructed from a PDA for 𝐿.

2.2 Dynamic Networks of Concurrent Pushdown Systems
A Dynamic Network of Concurrent Pushdown Systems (DCPS) A = (𝐺, Γ,Δ, 𝑔0, 𝛾0) consists of a
finite set of (global) states 𝐺 , a finite alphabet of stack symbols Γ, an initial state 𝑔0 ∈ 𝐺 , an initial
stack symbol 𝛾0 ∈ Γ, and a finite set of transition rules Δ. The set of transition rules Δ is partitioned

into four kinds of rules: creation rules Δc, interruption rules Δi, resumption rules Δr, and termination
rules Δt. Elements of Δc have one of two forms: (1) 𝑔|𝛾 ↩→ 𝑔′ |𝑤 ′, or (2) 𝑔|𝛾 ↩→ 𝑔′ |𝑤 ′ ⊲ 𝛾 ′, where
𝑔,𝑔′ ∈ 𝐺 , 𝛾,𝛾 ′ ∈ Γ,𝑤 ′ ∈ Γ∗, and |𝑤 ′ | ≤ 2. Rules of type (1) allow the DCPS to take a single step in

one of its threads. Rules of type (2) additionally spawn a new thread with top of stack 𝛾 ′. Elements
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of Δi have the form 𝑔|𝛾 ↦→ 𝑔′ |𝑤 ′, where 𝑔,𝑔′ ∈ 𝐺 , 𝛾 ∈ Γ, and𝑤 ′ ∈ Γ∗ with 1 ≤ |𝑤 ′ | ≤ 2. Elements

of Δr have the form 𝑔 ↦→ 𝑔′ ◁ 𝛾 , where 𝑔,𝑔′ ∈ 𝐺 and 𝛾 ∈ Γ. Elements of Δt have the form 𝑔 ↦→ 𝑔′,
where 𝑔,𝑔′ ∈ 𝐺 .

The size |A| of A is defined as |𝐺 | + |Γ | + |Δ|: the number of symbols needed to describe the

global states, the stack alphabet, and the transition rules.

The set of configurations of A is 𝐺 ×
(
(Γ∗ × N) ∪ {#}

)
× M[Γ∗ × N]. Given a configuration

⟨𝑔, (𝑤, 𝑖),m⟩, we call 𝑔 the (global) state, (𝑤, 𝑖) the local configuration of the active thread, and m
the multiset of the local configurations of the inactive threads. In a configuration ⟨𝑔, #,m⟩, we call #

a schedule point.
The initial configuration ofA is ⟨𝑔0, #, [[(𝛾0, 0)]]⟩. For a configuration 𝑐 ofA, we will sometimes

write 𝑐.𝑔 for the state of 𝑐 and 𝑐.m for the multiset of threads of 𝑐 (both active and inactive). The

size of a configuration 𝑐 = ⟨𝑔, (𝑤, 𝑖),m⟩ is defined as |𝑐 | = |𝑤 | +∑(𝑤′, 𝑗) ∈m |𝑤 ′ |.
Intuitively, a DCPS represents a multi-threaded, shared memory program. The global states 𝐺

represent the shared memory. Each thread is potentially recursive. It maintains its own stack𝑤

over the stack alphabet Γ and uses the transition rules in Δc to manipulate the global state and its

stack. It can additionally spawn new threads using rules of type (2) in Δc. In a local configuration,

the natural number 𝑖 keeps track of how many times a thread has already been context switched

by the underlying scheduler. Any newly spawned thread has its context switch number set to 0.

The steps of a single thread defines the following thread step relation→ on configurations of

A: we have ⟨𝑔, (𝛾𝑤, 𝑖),m⟩ → ⟨𝑔′, (𝑤 ′𝑤, 𝑖),m′⟩ for all𝑤 ∈ Γ∗ iff (1) there is a rule 𝑔|𝛾 ↩→ 𝑔′ |𝑤 ′ in
Δc and m′ = m or (2) there is a rule 𝑔|𝛾 ↩→ 𝑔′ |𝑤 ′ ⊲ 𝛾 ′ in Δc and m′ = m + [[(𝛾 ′, 0)]]. We extend

the thread step relation→+ to be the irreflexive-transitive closure of→; thus 𝑐 →+ 𝑐 ′ if there is a
sequence 𝑐 → 𝑐1 → . . . 𝑐𝑘 → 𝑐 ′ for some 𝑘 ≥ 0.

A non-deterministic scheduler switches between concurrent threads. The active thread is the

one currently being executed and the multiset m keeps all other partially executed threads in the

system. Any spawned thread is put inm for future execution with an initial context switch number

0. The scheduler may interrupt a thread based on the interruption rules and non-deterministically

resume a thread based on the resumption rules.

The actions of the scheduler define the scheduler step relation ↦→ on configurations of A:

Swap

𝑔|𝛾 ↦→ 𝑔′ |𝑤 ′ ∈ Δi

⟨𝑔, (𝛾𝑤, 𝑖),m⟩ ↦→ ⟨𝑔′, #,m + [[𝑤 ′𝑤, 𝑖 + 1]]⟩

Resume

𝑔 ↦→ 𝑔′ ◁ 𝛾 ∈ Δr

⟨𝑔, #,m + [[𝛾𝑤, 𝑖]]⟩ ↦→ ⟨𝑔′, (𝛾𝑤, 𝑖),m⟩

Term

𝑔 ↦→ 𝑔′ ∈ Δt

⟨𝑔, (𝜀, 𝑖),m⟩ ↦→ ⟨𝑔′, #,m⟩

If a thread can be interrupted, then Swap swaps it out and increases the context switch number of

the thread. The rule Resume picks a thread that is ready to run based on the current global state

and its top of stack symbol and makes it active. The rule Term removes a thread on termination

(empty stack).

A run of a DCPS is a finite or infinite sequence of alternating thread execution and scheduler

step relations

𝑐0 →+ 𝑐 ′0 ↦→ 𝑐1 →+ 𝑐 ′1 ↦→ . . .

such that 𝑐0 is the initial configuration. The run is 𝐾-context switch bounded if, moreover, for each

𝑗 ≥ 0, the configuration 𝑐 𝑗 = (𝑔, (𝑤, 𝑖),m) satisfies 𝑖 ≤ 𝐾 . In a 𝐾-context switch bounded run, each

thread is context switched at most 𝐾 times and the scheduler never schedules a thread that has

already been context switched 𝐾 + 1 times. When the distinction between thread and scheduler

steps is not important, we write a run as a sequence 𝑐0 ⇒ 𝑐1 . . ..
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2.3 Identifiers and the Run of a Thread
Our definition of DCPS does not have thread identifiers associated with a thread. However, it

is convenient to be able to identify the run of a single thread along the execution. This can be

done by decorating local configurations with unique identifiers and modifying the thread step

for 𝑔|𝛾 ↩→ 𝑔′ |𝑤 ⊲ 𝛾 ′ to add a thread (ℓ, 𝛾 ′, 0) to the multiset of inactive threads, where ℓ is a fresh

identifier. By decorating any run with identifiers, we can freely talk about the run of a single thread,

the multiset of threads spawned by a thread, etc.

Let us focus on the run of a specific thread, that starts executing from some global state 𝑔 with

an initial stack symbol 𝛾 . In the course of its run, the thread updates its own local stack and spawns

new threads, but it also gets swapped out and swapped back in.

We show that the run of a thread corresponds to the run of an associated PDA that can be

extracted from A. This PDA updates the global state and the stack based on the rules in Δc, but

additionally (1) makes visible as the input alphabet the initial symbols (from Γ) of the spawned
threads, and (2) non-deterministically guesses jumps between global states corresponding to the

effect of context switches. There are two kinds of jumps. A jump (𝑔1, 𝛾, 𝑔2) in the PDA corresponds

to the thread being switched out leading to global state 𝑔1 and later resuming at global state 𝑔2 with

𝛾 on top of its stack (without being active in the interim). A jump (𝑔,⊥) corresponds to the last

time the PDA is swapped out (leading to global state 𝑔). We also make these guessed jumps visible

as part of the input alphabet. Thus, the input alphabet of the PDA is Γ ∪𝐺 × Γ ×𝐺 ∪𝐺 × {⊥}.
For any 𝑔 ∈ 𝐺 and 𝛾 ∈ Γ, we define the PDA P(𝑔,𝛾 ) = (𝑄, Σ, Γ⊥, 𝐸, init,⊥, {init, end}), where

𝑄 = 𝐺 ∪𝐺 × Γ ∪ {init, end}, Γ⊥ = Γ ∪ {⊥}, Σ = Γ ∪𝐺 × Γ ×𝐺 ∪𝐺 × {⊥}, 𝐸 is the smallest transition

relation such that

(1) There is a transition init
𝜀 |⊥/𝛾⊥
−−−−−→ 𝑔 in 𝐸,

(2) For every 𝑔1 |𝛾1 ↩→ 𝑔2 |𝑤 ∈ Δc there is a transition 𝑔1

𝜀 |𝛾1/𝑤−−−−−→ 𝑔2 in 𝐸,

(3) For every 𝑔1 |𝛾1 ↩→ 𝑔2 |𝑤 ⊲ 𝛾2 ∈ Δc there is a transition 𝑔1

𝛾2 |𝛾1/𝑤−−−−−−→ 𝑔2 in 𝐸,

(4) For every 𝑔1 |𝛾1 ↩→ 𝑔2 |𝑤 ∈ Δi, 𝑔3 ∈ 𝐺 , and 𝛾2 ∈ Γ there is a transition 𝑔1

(𝑔2,𝛾2,𝑔3) |𝛾1/𝑤−−−−−−−−−−−→ (𝑔3, 𝛾2),
and a transition (𝑔3, 𝛾2)

𝜀 |𝛾2/𝛾2−−−−−→ 𝑔3 in 𝐸,

(5) For every 𝑔1 |𝛾1 ↩→ 𝑔2 |𝑤 ∈ Δi and every 𝛾2 ∈ Γ⊥ there is a transition 𝑔1

𝜀 |𝛾1/𝑤−−−−−→ (𝑔2,⊥), and a

transition (𝑔2,⊥)
(𝑔2,⊥) |𝛾2/𝛾2−−−−−−−−−→ end in 𝐸,

(6) For every 𝑔1 ↩→ 𝑔2 ∈ Δt there is a transition 𝑔1

(𝑔2,⊥) |⊥/⊥−−−−−−−−→ end in 𝐸.

The set of behaviors of the PDA P(𝑔,𝛾 ) which correspond to a thread execution with precisely 𝑖

(𝑖 ≤ 𝐾 + 1) context switches is given by the following language:

𝐿
(𝑖)
(𝑔,𝛾 ) = 𝐿(P(𝑔,𝛾 ) ) ∩ ((Γ

∗ ·𝐺 × Γ ×𝐺)𝑖−1 (Γ∗ ·𝐺 × {⊥}))

The language 𝐿
(𝑖)
(𝑔,𝛾 ) is a context-free language. In the definition, we use the end of stack symbol ⊥

to recognize when the stack is empty.

2.4 Decision Problems and Main Results
Previous Work: Safety. The reachability problem for DCPS asks, given a global state 𝑔 of A, if there

is a run 𝑐0 ⇒ 𝑐1 . . .⇒ 𝑐𝑛 such that 𝑐𝑛 .𝑔 = 𝑔. It is well-known that reachability is undecidable (e.g.,

one can reduce the emptiness problem for intersection of context free languages). Therefore, it is

customary to consider context-switch bounded decision questions. Given 𝐾 ∈ N, a state 𝑔 of A is

𝐾-context switch bounded reachable if there is a 𝐾-context switch bounded run 𝑐0 ⇒ . . . ⇒ 𝑐𝑛
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with 𝑐𝑛 .𝑔 = 𝑔. For a fixed 𝐾 , the 𝐾-bounded state reachability problem (SRP[𝐾]) for a DCPS is

defined as follows:

Given A DCPS A and a global state 𝑔

Question Is 𝑔 𝐾-context switch bounded reachable in A?

This problem is known to be decidable; the 2EXPSPACE upper bound for each 𝐾 was proved by

Atig et al. [2009] and a matching lower bound for 𝐾 ≥ 1 by Baumann et al. [2020]. In case 𝐾 = 0,

the problem is known to be EXPSPACE-complete [Ganty and Majumdar 2012].

This Paper: Liveness. We now turn to context-bounded liveness specifications. The simplest liveness

specification is (non-)termination: does a program halt? For a fixed 𝐾 ∈ N, the 𝐾-bounded non-
termination problem NTERM[𝐾] is defined as follows:

Given A DCPS A.

Question Is there an infinite 𝐾-context switch bounded run?

When 𝐾 = 0, the non-termination problem is known to be EXPSPACE-complete [Ganty and

Majumdar 2012]. We show the following result.

Theorem 2.2 (Termination). For each 𝐾 ≥ 1, the problem NTERM[𝐾] is 2EXPSPACE-complete.

Fairness. An infinite run is fair if, intuitively, any thread that can be executed is eventually executed

by the scheduler. Fairness is used as a way to rule out non-termination due to uninteresting

scheduler choices.

We say a thread 𝑡 = (𝛾𝑤, 𝑖) is ready at a configuration 𝑐 = (𝑔, #,m) if 𝑡 ∈ m and there is some

rule 𝑔 ↦→ 𝑔′ ◁ 𝛾 in Δr. A thread 𝑡 is scheduled at 𝑐 if the scheduler step makes 𝑡 the active thread. A

run is unfair to thread 𝑡 if it is ready infinitely often but never scheduled. A fair run 𝜌 is one which

is not unfair to any thread. Restricting our attention to 𝐾-context switch bounded runs gives us

the corresponding notion of fair 𝐾-context switch bounded runs.

For fixed 𝐾 ∈ N, the 𝐾-context bounded fair non-termination problem FNTERM[𝐾] asks:
Given A DCPS A.

Question Is there an infinite, fair 𝐾-context switch bounded run?

Note that since our model does not have individual thread identifiers, fairness is defined only over

equivalence classes of threads that have the same stack𝑤 and the same context switch number 𝑖 .

The reason for our taking into account stacks and context switch numbers is the following. It is

a simple observation that there exists an infinite fair run in our sense if and only if there exists

a run in the corresponding system with thread identifiers–that is fair to each individual thread.

This is because an angelic scheduler could always pick the earliest spawned thread among those

with the same stack and context switch number. Therefore, our results allow us to reason about

multi-threaded systems with identifiers.

This raises the question of whether there are runs that are fair in our sense, but where a non-

angelic scheduler would still yield unfairness for some thread identity. In other words, is it possible

that a fair run starves a specific thread. For example, consider a program in which the main thread

spawns two copies of a thread foo. Each thread foo, when scheduled, simply spawns another

copy of foo and terminates. Here is a fair run of the program (we omit the global state as it is not

relevant), where we have decorated the threads with identifiers:

(#, [[(main, 0)0]]) ∗=⇒((main, 0)0, [[]]) ∗=⇒ (#, [[(foo, 0)1, (foo, 0)2]]) ∗=⇒ ((foo, 0)2, [[(foo, 0)1]]) ∗=⇒

(#, [[(foo, 0)1, (foo, 0)3]]) ∗=⇒ ((foo, 0)3, [[(foo, 0)1]]) ∗=⇒ . . .

The run is fair, but a specific thread marked with identifier 1 is never picked.
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Formally, a thread 𝑡 = (𝑤, 𝑖) is starved in an infinite fair run 𝜌 = 𝑐0 ⇒ 𝑐1 ⇒ . . . iff there is some

𝑗 such that 𝑐𝑖 .m(𝑡) ≥ 1 for all 𝑖 ≥ 𝑗 and whenever 𝑡 is resumed at 𝑐𝑘 for 𝑘 ≥ 𝑗 , we have 𝑐.m(𝑡) ≥ 2.

For fixed 𝐾 ∈ N, the 𝐾-bounded fair starvation problem STARV[𝐾] is defined as follows:

Given A DCPS A.

Question Is there an infinite, fair 𝐾-context switch bounded run that starves some thread?

We show the following results.

Theorem 2.3 (Fair Non-Termination). For each 𝐾 ∈ N, the problem FNTERM[𝐾] is decidable.

Theorem 2.4 (Fair Starvation). For each 𝐾 ∈ N, the problem STARV[𝐾] is decidable.

Previously, decidability results were only known when 𝐾 = 0 [Ganty and Majumdar 2012].

Recall that a decision problem is nonelementary if it is not in

⋃
𝑘≥0

𝑘-EXPTIME. Our algorithms

are nonelementary: they involve an (elementary) reduction to the reachability problem for vector

addition systems with states (VASS). This is unavoidable: already for𝐾 = 0, the fair non-termination

and fair starvation problems are non-elementary, because there is a reduction from the reachability

problem for VASS [Ganty and Majumdar 2012], which is non-elementary [Czerwinski et al. 2019].

In the rest of the paper, we prove Theorems 2.2, 2.3, and 2.4.

3 WARM-UP: NON-TERMINATION
In this section, we prove Theorem 2.2. The theorem follows easily from previous results for safety

verification [Atig et al. 2011; Baumann et al. 2020]. We recall the main ideas as a step toward the

more complex proof for fair termination.

Downward Closures: From DCPS to DCFS

A DCPS A = (𝐺, Γ,Δ, 𝑔0, 𝛾0) is called a dynamic network of concurrent finite systems (DCFS) if in
each transition rule in Δc ∪ Δi, we have |𝑤 ′ | ≤ 1. Intuitively, a DCFS corresponds to the special

case where each thread is a finite-state process (and each stack is bounded by 1).

We reduce the 𝐾-bounded non-termination problem for DCPS to the non-termination problem

for DCFS. Fix 𝐾 ∈ N and a DCPS A = (𝐺, Γ,Δ, 𝑔0, 𝛾0). The crucial observation of Atig et al. [2011]

is that answer to the 𝐾-bounded reachability problem remains unchanged if we allow threads to

“drop” some spawned threads. That is, for every 𝑔|𝛾 ↩→ 𝑔′ |𝑤 ′ ⊲𝛾 ′, we also add the rule 𝑔|𝛾 ↩→ 𝑔′ |𝑤 ′
to Δc. Informally, the “forgotten” spawned thread 𝛾 ′ is never scheduled. Clearly, a global state is
reachable in the original DCPS iff it is reachable in the new DCPS.
We observe that this transformation also preserves non-termination: if there is a (𝐾-bounded)

non-terminating run in the original DCPS, there is one in the new one.

The ability to forget spawned tasks allows us to transform the language 𝐿
(𝑖)
(𝑔,𝛾 ) of each thread

into a regular language by taking downward closures.
We need some definitions. For any alphabet Σ, define the subword relation ⊑⊆ Σ∗×Σ∗ as follows:

for every 𝑢, 𝑣 ∈ Σ∗, we have 𝑢 ⊑ 𝑣 iff 𝑢 can be obtained from 𝑣 by deleting some letters from

𝑣 . For example, 𝑎𝑐𝑏𝑏𝑎 ⊑ 𝑏𝑎𝑐𝑏𝑎𝑐𝑏𝑎𝑐 but 𝑎𝑏𝑏𝑎 ̸⊑ 𝑏𝑎𝑏𝑎. The downward closure 𝑤↓ with respect to

the subword order of a word 𝑤 ∈ Σ∗ is defined as 𝑤↓ := {𝑤 ′ ∈ Σ∗ | 𝑤 ′ ⊑ 𝑤}. The downward
closure 𝐿↓ of a language 𝐿 ⊆ Σ∗ is given by 𝐿↓ := {𝑤 ′ ∈ Σ∗ | ∃𝑤 ∈ 𝐿 : 𝑤 ′ ⊑ 𝑤}. Recall that
the downward closure 𝐿↓ of any language 𝐿 is a regular language [Haines 1969]. Moreover, a

finite automaton accepting the downward closure of a context-free language can be effectively

constructed [Courcelle 1991]. The size of the resulting automaton is at most exponential in the size

of the PDA for the context-free language [Bachmeier et al. 2015].
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Now consider the following language:

�̂�(𝑔,𝛾 ) =
𝐾+1⋃
𝑖=1

(
𝐿
(𝑖)
(𝑔,𝛾 )↓ ∩

( (
Γ∗ · (𝐺 × Γ ×𝐺)

)𝑖−1 (Γ∗ ·𝐺 × {⊥})
))

This language is regular and can be effectively constructed from the PDA P(𝑔,𝛾 ) . It accepts all
behaviors of a thread that is context switched at most 𝐾 + 1 times such that, by adding additional

spawned tasks, one gets back a run of the original thread in A.

The DCFS simulates the downward closure of the DCPS by simulating the composition of the

automata for each downward closure. The construction is identical to [Atig et al. 2011, Lemma 5.3].

Thus, we can conclude with the following lemma.

Lemma 3.1. The 𝐾-bounded non-termination problem for DCPS can be reduced in exponential time
to the non-termination problem for DCFS. The resulting DCFS is of size at most exponential in the
size of the DCPS.

From DCFS Non-Termination to VASS Non-Termination
A vector addition system with states (VASS) is a tuple𝑉 = (𝑄, 𝑃, 𝐸) where𝑄 is a finite set of states, 𝑃

is a finite set of places, and 𝐸 is a finite set of edges of the form 𝑞
𝛿−→ 𝑞′ where 𝛿 ∈ Z𝑃 . A configuration

of the VASS is a pair (𝑞,𝑢) ∈ 𝑄×M[𝑃]. The edges in 𝐸 induce a transition relation on configurations:

there is a transition (𝑞,𝑢) 𝛿−→ (𝑞′, 𝑢 ′) if there is an edge 𝑞
𝛿−→ 𝑞′ in 𝐸 such that 𝑢 ′(𝑝) = 𝑢 (𝑝) + 𝛿 (𝑝)

for all 𝑝 ∈ 𝑃 . A run of the VASS is a finite or infinite sequence of configurations 𝑐0

𝛿0−→ 𝑐1

𝛿1−→ . . ..

The non-termination problem for VASS asks, given a VASS and an initial configuration 𝑐0, is there

an infinite run starting from 𝑐0.

Lemma 3.2. The 𝐾-context bounded non-termination problem for DCFS can be reduced in polyno-
mial time to non-termination problem for VASS.

Proof. Let A = (𝐺, Γ, 𝛿, 𝑔0, 𝛾0) be a DCFS. We define a VASS 𝑉 (A) = (𝐺 × (Γ × {0, . . . , 𝐾} ∪
{#}), (Γ ∪ {𝜀}) × {0, . . . , 𝐾 + 1}, 𝐸). Intuitively, a configuration ((𝑔,𝛾, 𝑖), 𝑢) of the VASS represents

a configuration of the DCFS where the global state is 𝑔, the active thread has stack 𝛾 and has been

previously context switched 𝑖 times, and for each 𝛾 ′ ∈ Γ and 𝑖 ∈ {0, . . . , 𝐾 + 1}, the value 𝑢 (𝛾 ′, 𝑖)
represents the number of pending threads with stack 𝛾 ′ which have each been context switched 𝑖

times. A global state (𝑔, #) indicates a state where the scheduler picks a new thread. The edges in 𝐸

update the configurations to simulate the steps of the DCFS.
For each transition 𝑔 |𝛾 ↩→ 𝑔′ |𝛾 ′ ∈ Δc and for each 𝑖 ∈ {0, . . . , 𝐾}, the VASS has a transition that

changes (𝑔,𝛾, 𝑖) to (𝑔′, 𝛾 ′, 𝑖). For each transition 𝑔|𝛾 ↩→ 𝑔′ |𝛾 ′ ⊲ 𝛾 ′′ ∈ Δc and for each 𝑖 ∈ {0, . . . , 𝐾},
the VASS has a transition that changes (𝑔,𝛾, 𝑖) to (𝑔′, 𝛾 ′, 𝑖) and puts a token in (𝛾 ′′, 0). For each
transition 𝑔|𝛾 ↦→ 𝑔′ |𝛾 ′ ∈ Δi and for each 𝑖 ∈ {0, . . . , 𝐾}, the VASS has a transition that changes 𝑔 to

(𝑔′, #) while putting a token into (𝛾 ′, 𝑖 + 1). For each 𝑔 ↦→ 𝑔′ ◁ 𝛾 ∈ Δr, there is a transition (𝑔, #) to
(𝑔′, 𝛾, 𝑖) that takes a token from (𝛾, 𝑖). For each 𝑔 ↦→ 𝑔′ ∈ Δt, there is a transition (𝑔, 𝜀, 𝑖) to (𝑔′, #).
Clearly, there is a bijection between the runs ofA and the runs of the VASS from ((𝑔0, #), [[𝛾0, 0]]).

Thus, there is an infinite run in A iff there is an infinite run in 𝑉 (A) from ((𝑔0, #), [[𝛾0, 0]]).

Proof of Theorem 2.2
The 2EXPSPACE upper bound follows by combining Lemmas 3.1, 3.2, and the EXPSPACE upper

bound for the non-termination problem for VASS [Rackoff 1978].

The 2EXPSPACE lower bound follows from the observation made already in [Baumann et al.

2020] that the 2EXPSPACE-hardness of𝐾-bounded reachability already holds for terminating DCPS,
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in which every run is terminating. It is now a simple reduction to take an instance of the𝐾-bounded

state reachability problem for a terminating DCPS and add a “gadget” that produces an infinite run

whenever the target global state is reached.

4 FAIR NON-TERMINATION
We now turn to proving Theorem 2.3. Unfortunately, fair termination is not preserved under

downward closure. The example in Section 1 has no fair infinite run, since eventually (under

fairness), bit is set to 1 by the instance of bar and the program terminates. However, the downward

closure that omits bar has a fair infinite run. Thus, we cannot replace the PDAs for each thread

with finite-state automata and there is no obvious reduction to VASS.
Our proof is more complicated. First, we introduce an extension, VASS with balloons (VASSB),

of VASS (Section 4.1). A VASSB extends a VASS with balloon states and balloon places, and allows

keeping multisets of state-vector pairs over balloons. We can use this additional power to store

spawned threads. As we shall see (Section 4.2), we can reduce DCPS to VASSB. Later, we shall show
decidability of fair infinite behaviors for VASSB, completing the proof.

4.1 VASS with Balloons
A VASS with balloons (VASSB) is a tupleV = (𝑄, 𝑃,Ω,Φ, 𝐸), where 𝑄 is a finite set of states, 𝑃 is

a finite set of places, Ω is a finite set of balloon states, Φ is a finite set of balloon places, and 𝐸 is

a finite set of edges of the form 𝑞
op
−→ 𝑞′, where op is one of a finite set OP of operations of the

following form:

(1) op = 𝛿 with 𝛿 ∈ Z𝑃 ,
(2) op = inflate(𝜎, 𝑆), where 𝜎 ∈ Ω and 𝑆 ⊆ NΦ

is a semi-linear subset of NΦ
.

(3) op = deflate(𝜎, 𝜎 ′, 𝜋, 𝑝), where 𝜎, 𝜎 ′ ∈ Ω, 𝜋 ∈ Φ, 𝑝 ∈ 𝑃 .
(4) op = burst(𝜎), where 𝜎 ∈ Ω.

A configuration of a VASSB is an element of 𝑄 ×M[𝑃] ×M[Ω ×M[Φ]]. That is, a configuration
𝑐 = (𝑞,m, n) consists of a state 𝑞 ∈ 𝑄 , a multiset m ∈ M[𝑃], and a multiset n ∈ M[Ω ×M[Φ]]
of balloons. We assume n has finite support. A semiconfiguration is a configuration (𝑞,m, ∅). For
semiconfigurations, we simply write (𝑞,m) ∈ 𝑄 ×M[𝑃]. For a configuration 𝑐 , we write 𝑐.𝑞, 𝑐.m,

and 𝑐.n to denote the components of 𝑐 . For a balloon 𝑏 ∈ Ω×M[Φ], we write 𝑏.𝜎 and 𝑏.k to indicate

its balloon state and contents respectively and write 𝑐.n(𝑏) for the number of balloons 𝑏 in 𝑐 .

The edges in 𝐸 define a transition relation on configurations. For an edge 𝑞
op
−→ 𝑞′, and configu-

rations 𝑐 = (𝑞,m, n) and 𝑐 ′ = (𝑞′,m′, n′), we define 𝑐
op
−→ 𝑐 ′ iff one of the following is true:

(1) If op = 𝛿 ∈ Z𝑃 and m′ = m + 𝛿 and n′ = n.
(2) If op = inflate(𝜎, 𝑆) and m′ = m and n′ = n + [[(𝜎, k)]] for some k ∈ 𝑆 . That is, we create a

new balloon with state 𝜎 and multiset k for some k ∈ 𝑆 .
(3) If op = deflate(𝜎, 𝜎 ′, 𝜋, 𝑝) and there is a balloon 𝑏 = (𝜎, k) ∈ Ω ×M[Φ] with n(𝑏) ≥ 1 and

m′ = m + k(𝜋) · [[𝑝]] and n′ = (n − [[𝑏]]) + [[(𝜎 ′, k′)]], where k′(𝜋) = 0 and k′(𝜋 ′) = k(𝜋 ′)
for all 𝜋 ′ ∈ Φ \ {𝜋}. That is, we pick a balloon (𝜎, k) from n, transfer the contents in place 𝜋

from k to place 𝑝 in m, and update the balloon state 𝜎 to 𝜎 ′. Here we say the balloon (𝜎, k)
was deflated.

(4) If op = burst(𝜎) and there is a balloon 𝑏 = (𝜎, k) ∈ Ω ×M[Φ] with n(𝑏) ≥ 1 and m′ = m
and n′ = n − [[𝑏]]. This means we pick some balloon 𝑏 with state 𝜎 from our multiset n of

balloons and remove it, making any tokens still contained in its balloon places disappear as

well. Here we say the balloon 𝑏 is burst.
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The edge set 𝐸 is the disjoint union of the sets 𝐸𝑝 , 𝐸𝑛, 𝐸𝑑 , 𝐸𝑏 which stand for the edges with

operations from (1),(2),(3),(4) respectively. We write 𝑐 −→ 𝑐 ′ if 𝑐
op
−→ 𝑐 ′ for some edge 𝑞

op
−→ 𝑞′ in 𝐸.

A run 𝜌 = 𝑐0

op
0−−→ 𝑐1

op
1−−→ 𝑐2

op
2−−→ · · · is a finite or infinite sequence of configurations. The size of

V = (𝑄, 𝑃,Ω,Φ, 𝐸) is given by |V| = |𝑄 | + |𝑃 | + |Ω | + |Φ| + |𝐸 |.
An infinite run 𝜌 is progressive iff the following holds:

(1) For every configuration 𝑐𝑖 = (𝑞𝑖 ,m𝑖 , n𝑖 ) and every balloon 𝑏 = (𝜎, k) ∈ Ω × M[Φ] with
n𝑖 (𝑏) ≥ 1 there is a 𝑐 𝑗 , 𝑗 > 𝑖 , such that op 𝑗 either bursts or deflates 𝑏.

(2) Moreover, for every configuration 𝑐𝑖 = (𝑞𝑖 ,m𝑖 , n𝑖 ) and every place 𝑝 ∈ 𝑃 with m𝑖 (𝑝) ≥ 1

there is a 𝑐 𝑗 , 𝑗 > 𝑖 , such that a token is removed from 𝑝; that is, op 𝑗 ≡ 𝛿 with 𝛿 (𝑝) < 0.

We define the balloon-norm of a configuration 𝑐 = (𝑞,m, n) as ||𝑐 || =

max{∑𝑝∈Φ k(𝑝) | ∃𝜎 n(𝜎, k) > 0}. A progressive run is shallow if there is a number 𝐵 ∈ N
such that ||𝑐 𝑗 || ≤ 𝐵 for all 𝑗 ≥ 0. In other words, shallowness of a run means that each balloon in

every configuration on the run contains at most 𝐵 tokens in the balloon places. Note that this does

not mean the size of the configurations become bounded: the number of balloons and the number

of tokens in 𝑃 can still be unbounded.

The progressive run problem for VASSB is the following:

Given A VASSBV = (𝑄, 𝑃,Ω,Φ, 𝐸) and an initial semiconfiguration 𝑐0.

Question DoesV have an infinite progressive run starting from 𝑐0?

In Section 5, we shall prove the following theorems.

Theorem 4.1. The progressive run problem for VASSB is decidable.

The following is a by-product of the proof of Theorem 4.1, which will be used in Section 6.

Theorem 4.2. A VASSBV has a progressive run iff it has a shallow progressive run.

4.2 From DCPS to VASSB

Instead of reducing fairness for DCPS to VASSB, we would like to use a stronger notion, which

simplifies many of our proofs. To this end, we introduce the notion of progressiveness that we

already defined for VASSB now for DCPS as well: given a bound 𝐾 ∈ N, an infinite run 𝜌 of a DCPS
is called progressive if the rule Term is only ever applied when the active thread is at 𝐾 context

switches, and for every local configuration (𝑤, 𝑖) of an inactive thread in a configuration of 𝜌 , there

is a future point in 𝜌 where the rule Resume is applied to (𝑤, 𝑖), making it the local configuration

of the active thread.

Intuitively, no type of thread can stay around infinitely long in a progressive run without being

resumed, and every thread that terminates does so after exactly 𝐾 context switches. Note that

progressiveness is a stronger condition than fairness, because it does not allow threads to “get stuck”

or go above the context switch bound𝐾 . However, we can always transform aDCPSwhere we want
to consider fair runs into one where we can consider progressive runs instead. The transformation

is formalized by the following lemma.

Lemma 4.3. Given a bound 𝐾 ∈ N and a DCPS A, we can construct a DCPS Ã such that:

• A has an infinite fair 𝐾-context switch bounded run iff Ã has an infinite progressive 𝐾-context
switch bounded run.
• A has an infinite fair 𝐾-context switch bounded run that starves a thread iff Ã has an infinite
progressive 𝐾-context switch bounded run that starves a thread.
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Idea. To prove Lemma 4.3 we modify the DCPSA by giving every thread a bottom of stack symbol

⊥ and saving its context switch number in its top of stack symbol. We also save this number in

the global state whenever a thread is active. This way we can still swap a thread out and back in

again once it has emptied its stack, and we also can keep track of how often we need to repeat that,

before we reach 𝐾 context switches and allow it to terminate.

Furthermore, we also keep a subset 𝐺 ′ of the global states of A in our new global states, which

restricts the states that can appear when no thread is active. This way we can guess that a thread

will be “stuck” in the future, upon which we terminate it instead (going up to 𝐾 context switches

first) and also spawn a new thread keeping track of its top of stack symbol in the bag. Then later

we restrict the subset 𝐺 ′ to only those global states that do not have Resume rules for the top of

stack symbols we saved in the bag. This then verifies our guess of “being stuck”. The second part

of the lemma is used in Section 6, where we reason about starvation.

We now state the main reduction to VASSB.

Theorem 4.4. Given a bound 𝐾 ∈ N and a DCPS A we can construct a VASSBV with a state 𝑞0

such thatA has an infinite progressive 𝐾-context switch bounded run iffV has an infinite progressive
run from (𝑞0, ∅, ∅).

Idea. One of the main insights regarding the behavior of DCPS is that the order of the spawns of

a thread during one round of being active does not matter. None of the spawned threads during

one such segment can influence the run until the active thread changes. Thus we only need to

look at the semi-linear Parikh image of the language of spawns for each segment. One can then

identify a thread with the state changes and spawns it makes during segments 0 through 𝐾 . The

state changes can be stored in a balloon state and the spawns for each segment in balloon places

that correspond to 𝐾 + 1 copies of the stack alphabet. The inflate operation then basically guesses

the exact multiset of spawns of the corresponding thread.

Representing threads by balloons in this way does not keep track of stack contents, which was

important for ensuring the progressiveness of a DCPS run. However, starting from a progressive

DCPS run we can always construct a progressive run for the VASSB by always continuing with the

oldest thread in a configuration if given multiple choices, and then building the balloons accordingly.

Always picking the oldest balloon also works for the reverse direction.

Now let us argue about the construction in more detail. Given a DCPS with stack alphabet Γ and

a context switch bound 𝐾 , construct a VASSB whose configurations mirror the ones of the DCPS
in the following way. The set of places is Γ and it is used to capture threads that have not been

scheduled yet and therefore only carry a single stack symbol. Formally each thread with context

switch number 0 and stack content 𝛾 ∈ Γ is represented by a token on place 𝛾 . The set of balloon

places is Γ × {0, . . . , 𝐾} and they are supposed to carry the future spawns of any given thread

during segments 0 to 𝐾 . Every thread 𝑡 with context switch number ≥ 1 is then represented by a

balloon where the number of tokens on balloon place (𝛾, 𝑖) is equal to the number of threads with

stack content 𝛾 that 𝑡 will spawn during its 𝑖th segment. The spawns for segment 0 are transferred

to the place set Γ immediately after such a balloon is created, since the represented thread is now

supposed to have made its first context switch. Furthermore, each balloon state consists of the

context switch sequence and context switch number of its corresponding thread 𝑡 . The set of states

of the VASSB mirrors the global states of the DCPS.
For this idea to work, we need to compute the semi-linear set of spawns that each type of thread

can make, so that we can correctly inflate the corresponding balloon using this set. Here, the type
of a terminating thread consists of the stack symbol 𝛾 it spawns with, the global state 𝑔 in which it

first becomes active, the sequence of context switches it makes, and the state in which it terminates.

Given a DCPS A = (𝐺, Γ,Δ, 𝑔0, 𝛾0) and a context switch bound 𝐾 , the formal definition of the set
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of thread types is

T (A, 𝐾) ≔ 𝐺 × Γ × (𝐺 × Γ ×𝐺)𝐾 ×𝐺.
Since we want to decide existence of an infinite progressive run of A, we can restrict ourselves to

threads that make exactly𝐾 context switches. Now let 𝑡 = (𝑔′
0
, 𝛾 ′

0
, (𝑔1, 𝛾1, 𝑔

′
1
) . . . (𝑔𝐾 , 𝛾𝐾 , 𝑔′𝐾 ), 𝑔𝐾+1) ∈

T (A, 𝐾) be a thread type. We want to use P(𝑔′
0
,𝛾 ′

0
) , the PDA of a thread of this type, to accept the

language of spawns such a thread can make. However, we have two requirements on this language,

that the PDA does not yet fulfill. Firstly, in the spirit of progressiveness, we only want to consider

threads that reach the empty stack and terminate. Secondly, we want the spawns during each

segment of the thread execution to be viewed separately from one another.

For the first requirement, we modify the transition relation of P(𝑔′
0
,𝛾 ′

0
) , such that transitions of

the form (𝑔2,⊥)
(𝑔2,⊥) |𝛾2/𝛾2−−−−−−−−−→ end defined in (5) are only kept in the relation for 𝛾2 = ⊥. This ensures

that the PDA no longer considers thread executions that do not reach the empty stack.

Regarding the second requirement, we can simply introduce 𝐾 + 1 copies of Γ to the input

alphabet of P(𝑔′
0
,𝛾 ′

0
) . It is then redefined as Σ = Γ × {0, . . . , 𝐾} ∪𝐺 × Γ ×𝐺 ∪𝐺 × {⊥}, while the

stack alphabet and states stay the same. Any transition previously defined on input 𝛾 ∈ Γ is now

copied for inputs (𝛾, 0) to (𝛾, 𝑘).
Let P̃(𝑔′

0
,𝛾 ′

0
) be the PDA these changes result in. Then the context-free language that characterizes

the possible spawns of a thread of type 𝑡 is given by the following:

𝐿𝑡 ≔ 𝐿(P̃(𝑔′
0
,𝛾 ′

0
) ) ∩ (Γ × 0)∗ · (𝑔1, 𝛾1, 𝑔

′
1
) · (Γ × 1)∗ · · · (𝑔𝐾 , 𝛾𝐾 , 𝑔′𝐾 ) · (Γ × 𝐾)∗ · (𝑔𝐾+1,⊥)

Here we intersect the language of the PDA with a regular language, which forces it to adhere to

the type 𝑡 and groups the spawns correctly. If the language 𝐿𝑡 is nonempty, using Parikh’s theorem

(Theorem 2.1), we can compute the semi-linear set characterizing the Parikh-image of this language

projected to Γ × {0, . . . , 𝐾}, which we denote sl(𝑡). We also define the set of all semi-linear sets that

arise in this way as SL(A, 𝐾) ≔ {sl(𝑡) | 𝑡 ∈ T (A, 𝐾), 𝐿𝑡 ≠ ∅}.
Now we can construct a VASSB whose configurations correspond to the ones of the DCPS in

the way we mentioned earlier. From (𝑞0, ∅, ∅) we put a token on 𝛾0 to simulate spawning the initial

thread and thus begin the simulation of the DCPS. We can then construct a progressive run of

the VASSB from a progressive run of the DCPS by constructing the individual balloons as if the

scheduler always picked the oldest thread out of all choices with the same local configuration. The

converse direction works for similar reasons by always picking the oldest balloon to continue with.

The proof also allows us to reason about shallow progressive runs of DCPS. Following the same

notion for VASSB, we call a run of a DCPS shallow if there is a bound 𝐵 ∈ N such that each

thread on that run spawns at most 𝐵 threads. Obverse that in the VASSB construction of this

section the spawns of DCPS threads are mapped to the contents of balloons, which is how the

two notions of shallowness correspond to each other. Thus we can go from progressive DCPS-run
to progressive VASSB-run by Theorem 4.4, to shallow progressive VASSB-run by Theorem 4.2, to

shallow progressive DCPS run by Theorem 4.4 combined with the observation on the two notions

of shallowness. This is formalized in the following:

Corollary 4.5. A DCPS A has a progressive run iff it has a shallow progressive run.

5 FROM PROGRESSIVE RUNS FOR VASSB TO REACHABILITY
In this section, we prove Theorems 4.1 and 4.2. We outline the main ideas and technical lemmas

used to obtain the proofs. The formal proofs can be found in the full version of the paper.

We first establish that finite witnesses exist for infinite progressive runs. As a byproduct, this

yields Theorem 4.2. Then, we show that finding finite witnesses for progressive runs reduces to

reachability in VASSB. Finally, we prove that reachability is decidable for VASSB.
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5.1 From Progressive Runs to Shallow Progressive Runs
Fix a VASSBV = (𝑄, 𝑃,Ω,Φ, 𝐸). A pseudoconfiguration p(𝑐) = (𝑞,m, 𝜕n) ∈ 𝑄 ×M[𝑃] ×M[Ω] of a
configuration 𝑐 = (𝑞,m, n) is given by 𝜕n(𝜎) = ∑

k∈M[Φ] n(𝜎, k). That is, a pseudoconfiguration is

obtained by counting the number of balloons in a given state 𝜎 ∈ Ω but ignoring the contents. The

support supp(m) of a multisetm is the set of places {𝑝 | m(𝑝) > 0} wherem takes non-zero values.

For configurations 𝑐 = (𝑞,m, n) and 𝑐 ′ = (𝑞′,m′, n′), we write 𝑐 ≤ 𝑐 ′ if 𝑞 = 𝑞′, m ⪯ m′, and
n ⪯ n′. Moreover, we write p(𝑐) ≤p p(𝑐 ′) if 𝑞 = 𝑞′, m ⪯ m′, and 𝜕n ⪯ 𝜕n′. Both ≤ and ≤p are
well-quasi orders (wqo), that is, any infinite sequence of configurations (resp. pseudoconfigurations)

has an infinite increasing subsequence with respect to ≤ (resp. ≤p) (see, e.g., [Abdulla et al. 1996;
Finkel and Schnoebelen 2001] for details). This follows because wqos are closed under multiset

embeddings. Moreover,V is monotonic w.r.t. ≤: if 𝑐1 → 𝑐 ′
1
and 𝑐1 ≤ 𝑐2, then there is some 𝑐 ′

2
such

that 𝑐 ′
1
≤ 𝑐 ′

2
and 𝑐2 → 𝑐 ′

2
.

In analogy with algorithms for finding infinite runs in VASS (in particular the procedure for

checking fair termination in the case 𝐾 = 0 in [Ganty and Majumdar 2012]), one might try to find a

self-covering run w.r.t. the ordering ≤. However, checking for such a run would require comparing

an unbounded collection of pairs of balloons. In order to overcome this issue, we use a token-shifting
surgery which moves tokens from one balloon to another. The surgery is performed on the given

progressive run 𝜌 , converting it into a progressive run 𝜌 ′ with a special property: there exist

infinitely many configurations in 𝜌 ′ which contain only empty balloons. By restricting ourselves to

such configurations, we are able to show the existence of a special kind of self-covering run where

the cover and the original configuration only contain empty balloons and thus it suffices to compare

them using the ordering ≤p. First, we need the following notion of a witness for progressiveness.

For 𝐴 ⊆ 𝑃, 𝐵 ⊆ Ω, a run 𝜌𝐴,𝐵 = 𝑐0

∗−→ 𝑐
∗−→ 𝑐 ′ is called an 𝐴, 𝐵-witness for progressiveness if it

satisfies the following properties:

(1) For any 𝑐 ′′ occurring between 𝑐 and 𝑐 ′, we have supp(𝑐 ′′.m) ⊆ 𝐴,
(2) for each 𝑝 ∈ 𝐴, there exists op between 𝑐 and 𝑐 ′ in 𝜌𝐴,𝐵 such that op = 𝛿 where 𝛿 (𝑝) < 0,

(3) for any balloon 𝑏, we have 𝑐.n(𝑏) ≥ 1 iff 𝑐 ′.n(𝑏) ≥ 1 iff (𝑏.k = ∅ and 𝑏.𝜎 ∈ 𝐵),
(4) for any 𝜎 ∈ 𝐵, there exists op occurring between 𝑐 and 𝑐 ′ such that op = deflate(𝜎, ·, ·, ·) or

op = burst(𝜎) is applied to an empty balloon with state 𝜎 , and

(5) p(𝑐) ≤p p(𝑐 ′) and supp(𝑐.m) = supp(𝑐 ′.m).

In order to formalize the idea of a token-shifting surgery, we associate a unique identity with

each balloon. In particular, we may associate the unique number 𝑖 ∈ N with the balloon 𝑏 which

is inflated by the 𝑖𝑡ℎ operation op𝑖 in a run 𝜌 = 𝑐0

op
1−−→ 𝑐1

op
2−−→ 𝑐2 · · · , giving us a balloon-with-id

(𝑏, 𝑖). The id of a balloon is preserved on application of deflate and burst operations and thus we

can speak of the balloon 𝑖 and the sequence of operations seq𝑖 that it undergoes. Given a run 𝜌 ,

we produce a corresponding canonical run-with-id 𝜏 inductively as follows: the balloon identities

are assigned as above and the balloon with least id is chosen for execution every time. Extending

the notion of a balloon-with-id to a configuration-with-id 𝑑 (where every balloon has an id) and

a run-with-id 𝜏 (which consist of sequences of configurations-with-id), we define the notion of a

progressive run-with-id 𝜏 , which is one such that the sequence seq𝑖 associated with any id 𝑖 in 𝜏 is

either infinite, or seq𝑖 is finite with the last operation being a burst. If every id 𝑖 undergoes a burst

operation in a run-with-id 𝜏 , we say “𝜏 bursts every balloon.” We abuse terminology by saying “𝜌

bursts every balloon” for a run 𝜌 to mean that there is a corresponding run-with-id 𝜏 which bursts

every balloon. It is easy to see that the canonical run-with-id 𝜏 associated with a progressive run

𝜌 is “almost” progressive. By always picking the id which has been idle for the longest time, we

can convert 𝜏 into a progressive run-with-id. Thus there exists a progressive run if and only if
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there exists a progressive run-with-id, but the latter retains more information, allowing us to argue

formally in proofs. With these notions in hand, we prove the following lemma:

Lemma 5.1. Given a VASSBV and a semiconfiguration 𝑠 ofV , one can construct a VASSBV ′ =
(𝑄 ′, 𝑃 ′,Ω′,Φ′, 𝐸 ′) and a semiconfiguration 𝑠 ′ ofV ′ such that the following are equivalent:
(1) V has a progressive run from 𝑠 ,
(2) V ′ has a progressive run from 𝑠 ′ that bursts every balloon, and
(3) V ′ has an 𝐴, 𝐵-witness for some 𝐴 ⊆ 𝑃 ′ and 𝐵 ⊆ Ω′.

The remainder of this subsection is devoted to the proof of Lemma 5.1. The lemma is proved

in two steps: first we show (1) ⇐⇒ (2), then we show (2) ⇐⇒ (3). We do some preprocessing

before (1) ⇐⇒ (2), by showing that one can convert V into a VASSB V ′ with two special

properties: (i) the zero-base property, by which every linear set ofV ′ has base vector equal to 0,
and (ii) the property of being typed, which means that we guess and verify the sequence of deflates

performed by a balloon 𝑏 that could potentially transfer a non-zero number of tokens by including

this information in its balloon state 𝑏.𝜎 . A deflate operation which transfers a non-zero number

of tokens is called a non-trivial deflate. The type 𝑡 = (𝐿, 𝑆) of a balloon 𝑖 consists of the linear set
𝐿 used during its inflation, along with the sequence 𝑆 = (𝜋1, 𝑝1), (𝜋2, 𝑝2), · · · , (𝜋𝑛, 𝑝𝑛) of deflate
operations on 𝑖 , such that for each 𝑗 ∈ {1, · · · , 𝑛}, the first deflate operation acting on the balloon

place 𝜋 𝑗 sends tokens to the place 𝑝 𝑗 .

Lemma 5.2. Given a VASSBV along with its semiconfigurations 𝑠0, 𝑠1, we can construct a zero-base,
typed VASSBV ′ and its semiconfigurations 𝑠 ′

0
, 𝑠 ′

1
such that:

(1) There is a progressive run ofV from 𝑠0 iff there is a progressive run ofV ′ from 𝑠 ′
0
.

(2) There is a run 𝑠0

∗−→ 𝑠1 inV iff there is a run 𝑠 ′
0

∗−→ 𝑠 ′
1
inV ′.

The zero-base property is easily obtained by making sure that the portion of tokens transferred

which correspond to the base vector are separately transferred using 𝐸𝑝-edges. The addition of

the types into the global state can be done by expanding the set of balloon states exponentially. A

proof of the lemma is given in the full version.

We return to the proof of Lemma 5.1. The direction (1)⇒ (2) requires us to show thatV ′ can be

assumed to “burst every balloon” in a progressive run-with-id. Consider a balloon 𝑖 occurring in

an arbitrary progressive run-with-id 𝜏 ′′. In order to convert the given 𝜏 ′′ into a progressive 𝜏 ′ in
which every balloon is burst, we need to burst those id’s 𝑖 such that seq𝑖 is infinite in 𝜏

′′
. Since only

a finite number of non-trivial deflates can be performed by a given balloon 𝑖 , this implies that seq𝑖
consists of a finite prefix in which non-trivial deflates are performed, followed by an infinite suffix

of trivial deflates. Every such balloon 𝑖 can then be burst and replaced by a special VASS token. The

infinite trivial suffix is then simulated by using addition and subtraction operations of these special

tokens using additional places, since any such balloon 𝑖 will not transfer any more tokens. The

converse direction (1)⇐ (2) is a reversal of the construction where we replace the special VASS
tokens with infinite sequences of trivial deflate operations.

Token-Shifting. We move on to show (2) ⇐⇒ (3). The key idea is a token-shifting surgery.

A token-shifting surgery creates a run 𝜏 ′ from a run 𝜏 as depicted in Figure 1. We start with the

run-with-id 𝜏 = 𝑑0

op
1−−→ 𝑑1

op
2−−→ 𝑑2 · · · in which two balloons have the same type 𝑡 = (𝐿, 𝑆) with

𝑆 = (𝜋1, 𝑝1), (𝜋2, 𝑝2), (𝜋3, 𝑝3) being the sequence of (potentially) non-trivial deflates. Recall that an

index 𝑖 relates to the operation op𝑖 in 𝜏 . The region of a balloon which is shaded grey visualizes

the total number of tokens contained in the balloon. This number is seen to decrease after each

non-trivial deflate operation. An empty balloon is white in color. Balloons having the same identity
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𝜏

𝑖0 𝑖1

(𝜋1, 𝑝1)

𝑖2

(𝜋2, 𝑝2)

𝑖3

(𝜋3, 𝑝3)

𝑗0 𝑗1

(𝜋1, 𝑝1)

𝑗2

(𝜋2, 𝑝2)

𝑗′
2

(𝜋2, 𝑝
′
2
)

𝑗3

(𝜋3, 𝑝3)

𝜏′
𝑖0 𝑖1

(𝜋1, 𝑝1)

𝑖2

(𝜋2, 𝑝2)

𝑖3

(𝜋3, 𝑝3)

𝑗0 𝑗1

(𝜋1, 𝑝1)

𝑗2

(𝜋2, 𝑝2)

𝑗′
2

(𝜋2, 𝑝
′
2
)

𝑗3

(𝜋3, 𝑝3)

Fig. 1. Top: Initial run 𝜏 with two non-empty balloons which perform the same sequence of three non-trivial
deflates (𝜋1, 𝑝1), (𝜋2, 𝑝2), (𝜋3, 𝑝3). Bottom: Modified run 𝜏 ′ after shifting tokens from the cyan balloon inflated
at 𝑗0 to the red balloon inflated at 𝑖0.

have the same outline color: red for the balloon 𝑏1 inflated at 𝑖0 and cyan for the balloon 𝑏2 inflated

at 𝑗0. At 𝑖3 (resp. 𝑗3) all tokens have been transferred and the red balloon (resp. cyan balloon) is

empty. The crucial property satisfied is that 𝑖𝑘 < 𝑗𝑘 for 𝑘 ∈ {1, 2, 3}, i.e., every deflate from 𝑆 of

the red balloon occurs before the corresponding deflate of the cyan balloon. In the modified run

𝜏 ′, we have the inflation of an empty cyan balloon and the inflation of the red balloon with the

sum of the tokens of both red and cyan balloons in 𝜏 . We require the zero-base property in order

to be able to shift the tokens in this manner: observe that a linear set with zero base vector is

closed under addition. Note that the cyan balloon undergoes a trivial deflate at 𝑗 ′
2
where no tokens

are transferred: this deflate is not part of 𝑆 and is not relevant for the token-shifting. Thus the

run-with-id 𝜏 may be modified to give a valid run-with-id 𝜏 ′. Note that the configurations-with-id
𝑑 ′𝑗 of 𝜏

′
satisfy 𝑑 ′𝑗 ≥ 𝑑 𝑗 for each 𝑗 and so by monotonicity every operation that is applied at 𝑑 𝑗 can

be applied at 𝑑 ′𝑗 .
We now show how token-shifting is applied to prove (2) ⇐⇒ (3) in Lemma 5.1. First, from a

progressive run 𝜏 ofV ′ such that every balloon is burst, we produce a run 𝜏 ′ ofV ′ from which it

will be easy to extract an 𝐴, 𝐵-witness. Let 𝑇∞ be the set of types of balloons which occur infinitely

often in 𝜏 . Since every balloon is eventually burst in 𝜏 , there has to be a configuration 𝑑0 such

that after 𝑑0, every occurring balloon has a type in 𝑇∞. We now inductively pick a sequence of

configurations 𝑑1, 𝑑2, · · · and a sequence of sets of balloons 𝐼1, 𝐼2, · · · with the following properties,

for each 𝑘 ≥ 1:

(1) 𝐼𝑘 contains exactly one balloon inflated after 𝑑𝑘−1 for each type in 𝑇∞ and

(2) every balloon in 𝐼𝑘 is burst before 𝑑𝑘 .

For every balloon 𝑖 not in any of the sets 𝐼1, 𝐼2, · · · , which is inflated between 𝑑𝑘 and 𝑑𝑘+1 for

𝑘 ≥ 1, we shift its tokens to the corresponding balloon 𝑗 in 𝐼𝑘 of the same type as 𝑖 . Clearly this

is allowed since all of the deflate operations of 𝑗 occur before 𝑖 is inflated. Thus we obtain the

run 𝜏 ′ = 𝑑 ′′
0

∗−→ 𝑑 ′
0

∗−→ 𝑑 ′
1

∗−→ 𝑑 ′
2
. . . from 𝜏 . The prefix 𝑑 ′′

0

∗−→ 𝑑 ′
0
of the modified run 𝜏 ′ may contain

balloons of arbitrary type. Between 𝑑 ′
0
and 𝑑 ′

1
, there are only balloons in 𝑇∞. After 𝑑 ′2, we have an

infinite suffix where all balloons are of a type from 𝑇∞ and the only non-empty balloons are those

belonging to 𝐼𝑘 for some 𝑘 ≥ 2. This means that the configurations-with-id 𝑑 ′
𝑘
for each 𝑘 ≥ 2 only
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contain empty balloons. Since ≤p is a well-quasi-ordering, the sequence 𝑑 ′2, 𝑑 ′3, . . . must contain

configurations 𝑑 ′
𝑙
and 𝑑 ′𝑚 with 𝑑 ′

𝑙
≤p 𝑑 ′𝑚 . We obtain an 𝐴, 𝐵-witness as follows. We choose the set

𝑃∞ which is the set of places which are non-empty infinitely often along 𝜏 ′ for the set 𝐴. Since the
set of possible balloon states and places in a given configuration is finite, by Pigeonhole Principle,

we may assume that 𝑑 ′
𝑙
and 𝑑 ′𝑚 have the same set of non-empty places 𝐴 ⊆ 𝑃 ′ and balloon states

𝐵 ⊆ Ω. We may also assume that progressiveness checks (2) and (4) corresponding to 𝐴 and 𝐵

occur between 𝑑 ′
𝑙
and 𝑑 ′𝑚 .

Conversely, an (𝐴, 𝐵)-witness 𝜌𝐴,𝐵 can be “unrolled” to give a progressive run 𝜏 ′′ ofV ′. Further-
more, since the unrolling 𝜏 ′′ only contains balloons with contents present in the finite run 𝜌𝐴,𝐵 ,

giving us a shallow progressive run as stated in Theorem 4.2.

5.2 Reduction to Reachability
The reachability problem REACH for VASSB asks:

Given A VASSBV = (𝑄, 𝑃,Ω,Φ, 𝐸) and two semiconfigurations 𝑐0 and 𝑐 .

Question Is there a run 𝑐0

∗−→ 𝑐 ?

The more general version of the problem, where 𝑐0 and 𝑐 can be arbitrary configurations (i.e., with

balloon contents), easily reduces to this problem. However, the exposition is simpler if we restrict to

semiconfigurations here. In this subsection, we shall reduce the progressive run problem for VASSB
to the reachability problem for VASSB. In the next subsection, we shall reduce the reachability

problem to the reachability problem for VASS, which is known to be decidable [Kosaraju 1982;

Mayr 1981].

Lemma 5.3. The progressive run problem for VASSB reduces to the problem REACH for VASSB.

Fix a VASSB V . Using Lemma 5.1, we look for progressive witnesses. Let 𝐴 ⊆ 𝑃 and 𝐵 ⊆ Ω.
We shall iterate over the finitely many choices for 𝑇 = (𝐴, 𝐵) and check that V has an infinite

progressive run with a 𝐴, 𝐵-witness by reducing to the configuration reachability problem for an

associated VASSBV(𝑇 ).
The VASSB V(𝑇 ) simulates V and guesses the two configurations 𝑐1 and 𝑐2 such that 𝑐0

∗−→
𝑐1

∗−→ 𝑐2 satisfies the conditions for a progressive witness. It operates in five total stages, with three

main stages and two auxiliary ones sandwiched between the main stages. In the first main stage, it

simulates two identical copies of the run ofV starting from 𝑐0. The global state is shared by the

two copies while we have separate sets of places. We cannot maintain separate sets of balloons

for each copy since the inflate operation is inherently non-deterministic and hence the balloon

contents may be different in the two balloons produced. The trick to maintaining two copies of the

same balloon is to in fact only inflate a single instance of a “doubled” balloon which uses “doubled”

vectors and two copies of balloon places. Deflate operations are then performed twice on each

doubled balloon, moving tokens to the corresponding copies of places.

The VASSBV(𝑇 ) also tracks the number of balloons in each balloon state (independent of their

contents), for each copy of the run. At some point, it guesses that the current configuration is 𝑐1 (in

both copies) and moves to the first auxiliary stage. The first auxiliary stage checks whether all the

balloons in 𝑐1 are empty. Control is then passed to the second main stage.

In the second main stage, the first copy of the run is frozen to preserve p(𝑐1) andV(𝑇 ) continues
to simulateV on the second copy. This is implemented by producing only “single” balloons during

this stage and only deflating the second copy of the places in the “double” balloons which were

produced in the first main stage. While simulatingV on the second copy,V(𝑇 ) additionally checks
the progressiveness constraints (2) and (4) corresponding to an 𝐴, 𝐵-witness in its global state. The

second main stage non-deterministically guesses when the second copy reaches 𝑐2 (and ensures
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all progress constraints have been met) and moves on to the second auxiliary stage. Here the

fact that all the balloons in 𝑐2 are empty is checked and then control passes to the third main

stage. In the third main stage, V(𝑇 ) verifies that the two configurations 𝑐1 and 𝑐2 also satisfy

conditions (1), (3), and (5) for an 𝐴, 𝐵-witness. A successful verification puts V(𝑇 ) in a specific

final semi-configuration.

5.3 From Reachability in VASSB to Reachability in VASS

In this subsection, we show that reachability for VASSB reduces to reachability in ordinary VASS.
We write exp𝑘 (𝑥) for the 𝑘-fold exponential function i.e. exp

1
(𝑥) is 2

𝑥
, exp

2
(𝑥) is 2

2
𝑥

etc.

A run 𝜌 = 𝑠1

∗−→ 𝑠2 of a VASSBV between two semiconfigurations is said to be𝑁 -balloon-bounded
for some 𝑁 ∈ N if there exist at most 𝑁 non-empty balloons which are inflated in 𝜌 . The following

lemma is the crucial observation for our reduction.

Lemma 5.4. Given any VASSB V = (𝑄, 𝑃,Ω,Φ, 𝐸), there exists 𝑁 ∈ N with 𝑁 ≤ 𝑂 (exp
4
( |V|))

such that for any two semiconfigurations 𝑠1, 𝑠2, if (V, 𝑠1, 𝑠2) ∈ REACH, then there exists a run
𝜌 = 𝑠1

∗−→ 𝑠2 ofV that is 𝑁 -balloon-bounded.

Before we prove Lemma 5.4, let us see how it allows us to reduce reachability in VASSB to

reachability in VASS.

Lemma 5.5. The problem REACH for VASSB reduces to the problem REACH for VASS.

From a given VASSBV , we construct a VASSV ′ which has extra places Ω × {1, · · · , 𝑁 } × Φ for

storing the contents of all the non-empty balloons, as well as extra places Ω that store the number

of balloons which were created empty for each balloon state 𝜎 ofV . The global state ofV ′ is used
to keep track of the total number of non-empty balloons created as well as their state changes.

Deflate and burst operations are replaced by appropriate token transfers such that there is only

one opportunity forV ′ to transfer tokens of any non-empty balloon by using the global state. This

results in a faithful simulation in the forward direction, as well as the easy extraction of a run ofV
from a run ofV ′ in the converse direction.

Proof of Lemma 5.4. We now prove Lemma 5.4, which will complete the proof of Theorem 4.1.

We observe that if, for every balloon state 𝜎 , the number of balloons that are inflated in 𝜌 with

state 𝜎 is bounded by 𝑁 , this implies a bound of |Ω |𝑁 on the total number of balloons inflated in 𝜌 .

Hence, we can equivalently show the former bound assuming a particular balloon state. We assume

thatV is both zero-base and typed while preserving reachability by Lemma 5.2. This implies that

the type information is contained in the state of a balloon. The lemma is then proved by showing

that if more than 𝑁 non-empty balloons of a particular state 𝜎 are inflated in a run 𝜌 = 𝑠1

∗−→ 𝑠2,

then it is possible to perform an id-switching surgery, resulting in a run 𝜌 ′ = 𝑠1

∗−→ 𝑠2 which creates

one less non-empty balloon with state 𝜎 .

The id-switching surgery is depicted in Figure 2 . The formal proof of correctness uses runs-with-

id. Fix a run-with-id 𝜏 = 𝑑0

op
1−−→ 𝑑1

op
2−−→ 𝑑2 · · · . Suppose the cyan and orange balloons are inflated

at 𝑖0 and 𝑗0 respectively with the same balloon state. Since the type information is included in the

balloon state, this implies that they are also of the same type 𝑡 = (𝐿𝑡 , 𝑆𝑡 ). The points marked with

indices 𝑖1, 𝑖2, 𝑖3, 𝑖4 (resp. 𝑗1, 𝑗2, 𝑗3, 𝑗4) are those at which the cyan (resp. orange) balloon undergoes a

deflate from 𝑆𝑡 . While 𝑖1 < 𝑗1 and 𝑖4 < 𝑗4, we have 𝑗2 < 𝑖2 and 𝑗3 < 𝑖3; therefore token-shifting is

not possible. However, let us assume that the state of the cyan and orange balloons is the same at

𝑑 𝑗2−1 and 𝑑𝑖3 of 𝜏 . This implies that the operations performed on the two balloons in 𝜏 [ 𝑗2, 𝑖3] can be

switched as shown in the middle of Figure 2. Note that this need not be a valid run as the number

, Vol. 1, No. 1, Article . Publication date: October 2020.



20 Pascal Baumann, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche

𝜏

𝑖0 𝑗0 𝑖1 𝑗1 𝑗2

𝑖0 .𝜎 . = 𝑗0 .𝜎

𝑖2 𝑗3 𝑖3

𝑖0 .𝜎 = 𝑗0 .𝜎

𝑖4 𝑗4

𝑖0 𝑗0 𝑖1 𝑗1 𝑖2 𝑗2 𝑖3 𝑗3 𝑖4 𝑗4

𝜏′
𝑖0 𝑗0 𝑖1 𝑗1 𝑖2 𝑗2 𝑖3 𝑗3 𝑖4 𝑗4

Fig. 2. Top: Initial run 𝜏 with two non-empty balloons of the same type: cyan balloon inflated at 𝑖0 and orange
balloon inflated at 𝑗0. Middle: Switching cyan and orange balloons in the part of 𝜏 between 𝑗2 and 𝑖3. Bottom:
Modified run 𝜏 ′ obtained by shifting token from orange balloon to cyan balloon.

of tokens transferred by the orange at 𝑗2 may exceed that transferred by the cyan balloon at 𝑖2 and

the extra tokens may be required for the run 𝜏 [ 𝑗2, 𝑖2] to be valid. However, the id-switching now

enables a token-shifting operation since 𝑗𝑘 < 𝑖𝑘 for each 𝑘 ∈ {0, 1, . . . , 4}. Thus, combining the

switch with a token-shifting operation which moves all tokens from orange to cyan results in the

valid run 𝜏 ′ shown at the bottom of Figure 2, which contains one less non-empty balloon of type 𝑡

than 𝜏 . It remains to show that such an id-switching surgery is always possible in a run 𝜏 when the

number of non-empty balloons of a type 𝑡 exceeds the bound 𝑁 given in the lemma.

Ramsey’s Theorem. To this end, we employ the well-known (finite) Ramsey’s theorem [Ramsey

1930, Theorem B], which we recall first. For a set 𝑆 and 𝑘 ∈ N, we denote by P𝑘 (𝑆) the set of all
𝑘-element subsets of 𝑆 . An 𝑟 -colored (complete) graph is a tuple (𝑉 , 𝐸1, . . . , 𝐸𝑟 ), where𝑉 is a finite set

of vertices and the sets 𝐸1, . . . , 𝐸𝑟 form a partition of all possible edges (i.e. two-element subsets), i.e.

P2 (𝑉 ) = 𝐸1
¤∪ · · · ¤∪𝐸𝑟 . A subset𝑈 ⊆ 𝑉 of vertices is monochromatic if all edges between members

of𝑈 have the same color, in other words, if P2 (𝑈 ) ⊆ 𝐸 𝑗 for some 𝑗 ∈ [1, 𝑟 ]. Ramsey’s theorem says

that for each 𝑟, 𝑛 ∈ N, there is a number 𝑅(𝑟 ;𝑛) such that any 𝑟 -colored graph with at least 𝑅(𝑟 ;𝑛)
vertices contains a monochromatic subset of size 𝑛. It is a classical result by Erdős and Rado [Erdős

and Rado 1952, Theorem 1] that 𝑅(𝑟 ;𝑛) ≤ 𝑟𝑟 (𝑛−2)+1
.

The application of Ramsey’s Theorem is shown in Figure 3. The bottom half of the figure depicts

the construction of a graph 𝐺𝑡 whose vertices are balloons, on which Ramsey’s theorem is applied.

This results in the identification of a monochromatic clique with vertices 𝑖0, 𝑗0, 𝑘0, 𝑙0. The top half

of the figure shows the deflate operations on the balloons inflated at 𝑖0, 𝑗0, 𝑘0, 𝑙0 in the run 𝜏 .

Formally, we construct a graph𝐺𝑡 with vertex set𝑉𝑡 of all id’s in 𝜏 of a fixed type 𝑡 . By assumption,

|𝑉𝑡 | ≥ 𝑁 . For id’s 𝑖, 𝑗 ∈ 𝑉𝑡 with 𝑖 < 𝑗 and 𝑆 = (𝜋1, 𝑝1), · · · , (𝜋𝑛, 𝑝𝑛), define a sequence 𝑠𝑖, 𝑗 ∈ {0, 1} |𝑆 |
by 𝑠𝑖, 𝑗 (𝑘) = 0 if and only if 𝑖 undergoes the deflate transferring tokens from 𝜋𝑘 to 𝑝𝑘 before 𝑗 does.

In Figure 3, assuming that |𝑆 | = 4, we have 𝑠𝑖0, 𝑗0 = 0110. Interpreting each word from {0, 1} |𝑆 | as
a color, we obtain a finite coloring of the edges of 𝐺𝑡 . Red colored edges in 𝐺𝑡 are to be interpreted

as the string 0110, with other colors representing other strings. For a large enough value of 𝑁 ,

Ramsey’s Theorem gives us a monochromatic subgraph𝐺 ′𝑡 of 𝐺𝑡 induced by a set of vertices 𝑉 ′𝑡 .
As shown in the figure, any pair of balloons chosen from the cyan, orange, green and magenta
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𝜏

𝑖0 𝑗0 𝑘0 𝑙0 𝑖1 𝑗1 𝑘1 𝑙1 𝑙2

𝑖0 .𝜎 . = 𝑗0 .𝜎

𝑘2
𝑗2 𝑖2 𝑙3 𝑘3 𝑗3 𝑖3

𝑖0 .𝜎 . = 𝑗0 .𝜎

𝑖4 𝑗4 𝑘4 𝑙4

𝑖0

𝑗0

𝑘0𝑙0

𝐺𝑡

𝑖0

𝑗0

𝑘0𝑙0

𝐺 ′𝑡

Ramsey

𝑖0

𝑗0

Pigeonhole

Fig. 3. Above:Four balloons inflated at 𝑖0 < 𝑗0 < 𝑘0 < 𝑙0 of the same type 𝑡 performing four deflate operations
(subscripts denote deflate operations of the same balloon). Note that the ordering relationship of deflate
operations between any pair of the four balloons is the same: between balloons 𝑖0 and 𝑗0, their deflate
sequences are related as 𝑖1 < 𝑗1, 𝑗2 < 𝑖2, 𝑗3 < 𝑖3, 𝑖4 < 𝑗4, which is represented by the string 0110. The edge-
color red is used to represent 0110 in the figure. The balloons 𝑖0 and 𝑗0 share the same states at configurations
𝑑𝑙2 − 1 and 𝑑𝑖3 of 𝜏 .
Below: The same four balloons inflated at 𝑖0 < 𝑗0 < 𝑘0 < 𝑙0 shown as forming a monochromatic subgraph 𝐺 ′𝑡
in the graph 𝐺𝑡 . For large enough |𝐺 ′𝑡 |, by Pigeonhole Principle we find 𝑖0, 𝑗0 which share the same states.

balloons inflated at 𝑖0, 𝑗0, 𝑘0, 𝑙0 respectively, behave in the same way with respect to their order of

deflates and thus form a monochromatic subgraph 𝐺 ′𝑡 colored red.

Let a maximal contiguous sequence of 1’s in 𝑠𝑖, 𝑗 be called a 1-block. Since the number of balloon

states is finite, this implies that for a large enough value of |𝑉 ′𝑡 |, there will exist two id’s 𝑖0, 𝑗0 ∈
|𝑉 ′𝑡 | (represented by the cyan and orange balloons respectively) which share the same states

at configurations at the beginning and end of every 1-block by the Pigeonhole Principle. The id-

switching surgery can be performed on the cyan and orange balloons, which are the ones considered

in the id-switching surgery of Figure 2. While Ramsey’s Theorem gives a double-exponential bound

on𝑁 in order to obtain a large monochromatic subgraph, the second condition requiring same states

at the beginning and end of 1-blocks further increases our requirement to exp
4
for id-switching to

be enabled.

This concludes the proof of Lemma 5.4 as well as Theorem 4.1.

6 STARVATION
We now prove Theorem 2.4. Let us first explain the additional difficulty of the starvation problem.

For deciding progressive termination, we observed that each thread execution can be abstracted

by its type and the threads it spawns. (In other words, two executions that agree in these data are

interchangeable without affecting progressiveness of a run.) However, for starvation of a thread, it

is also important whether each thread visits some stack content𝑤 after 𝑖 context switches. Here,𝑤

is not known in advance and has to be agreed upon by an infinite sequence of threads.

Very roughly speaking, we reduce starvation to progressive termination as follows. For each

thread, we track its spawned multiset up to some bound 𝐵. Using Ramsey’s theorem [Ramsey 1930,

Theorem B], we show that if we choose 𝐵 high enough, then this abstraction already determines

whether a sequence of thread executions can be replaced with different executions that actually
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visit some agreed upon stack content𝑤 after 𝑖 context switches. The latter condition permitting

replacement of threads will be called “consistency.”

A further subtlety is that consistency of the abstractions up to 𝐵 only guarantees consistency of

the (unabstracted) executions if the run is shallow. Here, Corollary 4.5 will yield a shallow run, so

that we may conclude consistency of the unabstracted executions.

Terminology
In our terminology, a thread is a pair (𝑤, 𝑖), where𝑤 is a stack content and 𝑖 is a context switch

number. To argue about starvation, it is convenient to talk about how a thread evolves over time.

By a (thread) execution we refer to the sequence of (pushdown and swap) instructions that belong

to a single thread, from its creation via spawn until its termination. A thread execution can spawn

new threads during each of its segments. We say that a thread execution 𝑒 produces the multiset

m ∈ M[Λ], where Λ = Γ × {0, . . . , 𝐾} if the following holds: For each 𝑖 ∈ {0, . . . , 𝐾} and 𝛾 ∈ Γ, the
thread execution 𝑒 spawns m((𝛾, 𝑖)) new threads with top of stack 𝛾 in segment 𝑖 . In this case, we

also call m the production of 𝑒 .

According to Lemma 4.3, in order to decide STARV[𝐾], it suffices to decide whether in a given

DCPS A, there exists a progressive run that starves some thread (𝑤, 𝑖). Therefore, we say that a

run 𝜌 is starving if it is progressive and starves some thread (𝑤, 𝑖). Let us first formulate starvation

in terms of thread executions. We observe that a progressive run 𝜌 starves a thread (𝑤, 𝑖) if and
only if there are configurations 𝑐1, 𝑐2, . . . and executions 𝑒1, 𝑒2, . . . in 𝜌 such that:

(1) For each 𝑗 = 1, 2, . . ., in configuration 𝑐 𝑗 , both 𝑒 𝑗 and 𝑒 𝑗+1 are in state (𝑤, 𝑖),
(2) 𝑒 𝑗 is switched to in the step after 𝑐 𝑗 , and

(3) 𝑒 𝑗+1 is not switched to until 𝑐 𝑗+1.

For the “if” direction, note that if a progressive run 𝜌 starves (𝑤, 𝑖), then (𝑤, 𝑖) must be in the bag

from some point on and whenever (𝑤, 𝑖) becomes active, there are at least two instances of (𝑤, 𝑖)
in the bag. We choose 𝑐1, 𝑐2, . . . as exactly those configurations in 𝜌 after which (𝑤, 𝑖) becomes

active. Moreover, 𝑒 𝑗 is the thread execution that is switched to after 𝑐 𝑗 . Furthermore, since in 𝑐 𝑗 ,

there must be another instance of (𝑤, 𝑖) in the bag, there must be some execution 𝑒 ′𝑗 whose state
(𝑤, 𝑖) is in the bag at 𝑐 𝑗 . However, since 𝑒 𝑗+1 will start from (𝑤, 𝑖) in 𝑐 𝑗+1 and 𝑒 ′𝑗 is in (𝑤, 𝑖) at 𝑐 𝑗 , we
may assume that 𝑒 𝑗+1 = 𝑒 ′𝑗 . With this choice, we clearly satisfy (1)–(3) above.

For the “only if” direction, note that conditions (1)–(3) allow (𝑤, 𝑖) to become active in between

𝑐 𝑗 and 𝑐 𝑗+1. However, since 𝑒 𝑗+1 is not switched to between 𝑐 𝑗 and 𝑐 𝑗+1, we know that any time

(𝑤, 𝑖) becomes active, there must be another instance of (𝑤, 𝑖).

Consistency
Our first step in deciding starvation is to find a reformulation that does not explicitly mention the

stack𝑤 . Instead, it states the existence of𝑤 as a consistency condition, which we will develop now.

Of course, it suffices to check whether a DCPS can starve some thread (𝑤, 𝑖) when 𝑖 ∈ [1, 𝐾] is
fixed. Therefore, from now on, we choose some 𝑖 ∈ [1, 𝐾] and want to decide whether there is a

stack𝑤 ∈ Γ∗ such that the thread (𝑤, 𝑖) can be starved by our DCPS.
First, a note on notation. In the following, we will abbreviate the set T (A, 𝐾) of thread types

with T . We will work with families (𝑋𝑡 )𝑡 ∈T of subsets 𝑋𝑡 ⊆ 𝑋 of some set 𝑋 indexed by types

𝑡 ∈ T . We identify the set of such tuples indexed by T with P (𝑋 )T . Sometimes, it is more natural

to treat them as tuples (𝑋1, . . . , 𝑋𝑘 ) with 𝑘 = |T |. For simplicity, we will call both objects tuples.
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For each type 𝑡 ∈ T , we consider the following set
𝑆𝑡 = {(𝑤,m) ∈ Γ∗ ×M[Λ] | there is an execution of type 𝑡 that produces m

and reaches stack𝑤 after segment 𝑖}
The set 𝑆𝑡 encodes the following information: Is there a thread execution of type 𝑡 that produces

m ∈ M[Λ] and at the same time arrives in 𝑤 after 𝑖 segments? The tuple𝔖A = (𝑆𝑡 )𝑡 ∈T encodes

this information for all types at once.

We will analyze𝔖A to show that if our decision procedure claims that there exists a starving run,

then we can construct one. This construction will involve replacing one execution with another that

(i) has the same type, (ii) arrives in𝑤 after 𝑖 segments, and (iii) spawns more threads. Formally, the

inserted execution must be larger w.r.t. the following order: Form,m′ ∈ M[Λ], we havem ⪯1 m′ if
and only ifm ⪯ m′ and also supp(m) = supp(m′). Recall that supp(m) = {𝑥 ∈ Λ | m(𝑥) > 0} is the
support of m ∈ M[Λ]. Here, the condition supp(m) = supp(m′) makes sure that the replacement

does not introduce thread spawns with new stack symbols, as this might destroy progressiveness

of the run.

Let 𝑆 ⊆ Γ∗ ×M[Λ] be a set. For𝑤 ∈ Γ∗, we define
𝑆↓𝑤 = {m ∈ M[Λ] | ∃m′ ∈ M[Λ] : m ⪯1 m′, (𝑤,m′) ∈ 𝑆}.

Observe thatm ∈ 𝑆𝑡↓𝑤 expresses that there exists an execution of type 𝑡 that visits𝑤 after segment

𝑖 and produces a vector m′ ⪰1 m.

Our definition of consistency involves the tuple 𝔖A . However, since some technical proofs

will be more natural in a slightly more abstract setting, we define consistency for a general tuple

𝔖 = (𝑆1, . . . , 𝑆𝑘 ) of subsets 𝑆𝑙 ⊆ Γ∗ ×M[Λ]. Hence, the following definitions should be understood

with the case𝔖 = 𝔖A in mind. Suppose we have a run with thread executions 𝑒1, 𝑒2, . . . and for

each type 𝑡 , let 𝑉𝑡 be the set of productions of all executions in {𝑒1, 𝑒2, . . .} that have type 𝑡 . We

want to formulate a condition expressing the existence of a stack𝑤 such that for any 𝑡 ∈ T and

any multiset m ∈ 𝑉𝑡 , there exists an execution of type 𝑡 that visits 𝑤 (after 𝑖 context switches)

and produces a multiset m′ ⪰1 m. This would allow us to replace each 𝑒 𝑗 by an execution 𝑒 ′𝑗 that
actually visits𝑤 : Sincem′ ⪰1 m, we know that 𝑒 ′𝑗 produces more threads of each stack symbol (and

can thus still sustain the run), but also does not introduce new kinds of threads (because m′ and m
have the same support), so that progressiveness will not be affected by the replacement.

Let us make this formal. We say that a tuple𝔙 = (𝑉1, . . . ,𝑉𝑘 ) with 𝑉𝑙 ⊆ M[Λ] is𝔖-consistent if
there exists a 𝑤 ∈ Γ∗ with 𝑉𝑙 ⊆ 𝑆𝑙↓𝑤 for each 𝑙 ∈ [1, 𝑘]. In this case, we call 𝑤 an𝔖-consistency
witness for𝔙. For words𝑤,𝑤 ′ ∈ Γ∗, we write𝑤 ≤𝔖 𝑤 ′ if 𝑆𝑙↓𝑤 ⊆ 𝑆𝑙↓𝑤′ for every 𝑙 ∈ [1, 𝑘].

Starvation in terms of consistency
This allows us to state the following reformulation of starvation, where𝑤 does not appear explicitly.

A progressive run 𝜌 is said to be consistent if there are configurations 𝑐1, 𝑐2, . . . and thread executions

𝑒1, 𝑒2, . . . that produce m1,m2, . . . and such that:

(1) For each 𝑗 = 1, 2, . . ., in configuration 𝑐 𝑗 , the executions 𝑒 𝑗 and 𝑒 𝑗+1 have completed 𝑖 segments,

(2) 𝑒 𝑗 is switched to in the step after 𝑐 𝑗 ,

(3) 𝑒 𝑗+1 is not switched to until 𝑐 𝑗+1, and:
(4) Let𝑉𝑡 = {m𝑗 | 𝑗 ∈ N, execution 𝑒 𝑗 has type 𝑡}. Then the tuple𝔙 = (𝑉𝑡 )𝑡 ∈T is𝔖A-consistent.

Note that the consistency condition in (4) expresses that there exists a stack content𝑤 such that we

could, instead of each 𝑒 𝑗 , perform a thread execution that actually visits𝑤 . It is thus straightforward

to show:

Lemma 6.1. A DCPS has a starving run if and only if it has a consistent run.
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Tracking consistency
Our next step is to find some finite data that we can track about each of the produced vectors

m1,m2, . . . such that this data determines whether the tuple (𝑉𝑡 )𝑡 ∈T is𝔖A-consistent. We do this

by abstracting vectors “up to a bound.” Let 𝐵 ∈ N. We define the map 𝛼𝐵 : M[Λ] → M[Λ] by
𝛼𝐵 (m) = m′, where m′(𝑥) = min(m(𝑥), 𝐵) for 𝑥 ∈ Λ. We naturally extend 𝛼𝐵 to subsets ofM[Λ]
(point-wise) and to tuples of subsets ofM[Λ] (component-wise). Note that for a tuple𝔙 = (𝑉𝑡 )𝑡 ∈T
with 𝑉𝑡 ⊆ M[Λ] for 𝑡 ∈ T , the tuple 𝛼𝐵 (𝔙) belongs to the finite set P ( [0, 𝐵]Λ)T . The following
theorem tells us that by abstracting w.r.t. some suitable 𝐵, we do not lose information about

𝔖A-consistency.

Theorem 6.2. Given a DCPS A, there is an effectively computable bound 𝐵 ∈ N such that the
following holds. If𝔙 = (𝑉𝑡 )𝑡 ∈T is a tuple of finite subsets𝑉𝑡 ⊆ M[Λ], then𝔙 is𝔖A-consistent if and
only if 𝛼𝐵 (𝔙) is𝔖A-consistent.

Roughly speaking, Theorem 6.2 allows us to check for the existence of a consistent run by

checking whether there is one with an𝔖A-consistent tuple 𝛼𝐵 (𝔙). However, we may only conclude

consistency of𝔙 (and hence of the run) from consistency of 𝛼𝐵 (𝔙) if𝔙 is finite. To remedy this,

we shall employ the fact that a DCPS with a progressive run also has a shallow progressive run

(Corollary 4.5). We will show that if our algorithm detects a run 𝜌 with consistent 𝛼𝐵 (𝔙), then
there also exists a run 𝜌 ′ with finite𝔙 such that 𝛼𝐵 (𝔙) is consistent, meaning by Theorem 6.2, 𝜌 ′

has to be consistent.

Moreover, given a tuple of finite subsets, we can decide𝔖A-consistency:

Theorem 6.3. Given a tuple𝔙 = (𝑉𝑡 )𝑡 ∈T of finite subsets 𝑉𝑡 ⊆ M[Λ], it is decidable whether𝔙 is
𝔖A-consistent.

Deciding starvation
We will prove Theorems 6.2 and 6.3 later in this section. Before we do that, let us show how they are

used to decide starvation. First, we use Theorem 6.2 to compute 𝐵 ∈ N. Let us fix 𝐵 for the decision

procedure. Let 𝔲 ∈ P ( [0, 𝐵]Λ)T with 𝔲 = (𝑈𝑡 )𝑡 ∈T . We use a lower-case letter for this tuple to

emphasize that it is of bounded size. An infinite progressive run 𝜌 of A is said to be (𝑖, 𝔲)-starving
if it contains configurations 𝑐1, 𝑐2, . . . and executions 𝑒1, 𝑒2, . . . that produce m1,m2, . . . such that:

(1) For each 𝑗 = 1, 2, . . ., in configuration 𝑐 𝑗 , the executions 𝑒 𝑗 and 𝑒 𝑗+1 have completed 𝑖 segments,

(2) 𝑒 𝑗 is switched to in the step after 𝑐 𝑗 ,

(3) 𝑒 𝑗+1 is not switched to until 𝑐 𝑗+1, and:
(4) Let 𝑉𝑡 = {m𝑗 | 𝑗 ∈ N, execution 𝑒 𝑗 has type 𝑡}. Then 𝛼𝐵 (𝑉𝑡 ) ⊆ 𝑈𝑡 for each 𝑡 ∈ T .
Now using the bound 𝐵 from Theorem 6.2, we can show the following.

Lemma 6.4. IfA has a starving run, then it has an (𝑖, 𝔲)-starving run for some 𝑖 ∈ [1, 𝐾] and some
𝔖A-consistent 𝔲 ∈ P ( [0, 𝐵]Λ)T . Moreover, ifA has a shallow (𝑖, 𝔲)-starving run for some 𝑖 ∈ [1, 𝐾]
and some𝔖A-consistent 𝔲 ∈ P ( [0, 𝐵]Λ)T , then it has a starving run.

Here, we need to assume shallowness for the converse direction because we need finiteness of𝔙

in the converse of Theorem 6.2.

Because of Lemma 6.4, we can proceed as follows to decide starvation. We first guess a tuple

𝔲 ∈ P ( [0, 𝐵]Λ)T and check whether it is𝔖A-consistent using Theorem 6.3. Then, we construct

a DCPS A (𝑖,𝔲) such that A (𝑖,𝔲) has a progressive run if A has an (𝑖, 𝔲)-starving run. Moreover,

we use the fact every DCPS that has a progressive infinite run also has a shallow infinite run

(Corollary 4.5). This will allow us to turn a progressive run of A (𝑖,𝔲) into a shallow (𝑖, 𝔲)-starving
run of A, which must be starving by Lemma 6.4. Let us now see how to construct A (𝑖,𝔲) .
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Freezing DCPS

For constructing A (𝑖,𝔲) , it is convenient to have a simple locking mechanism available, which we

call “freezing.” It will be easy to see that this can be implemented in DCPS. In a freezing DCPS,
there is one distinguished “frozen” thread in each configuration. It cannot be resumed using the

ordinary resume rules. It can only be resumed using an unfreeze operation, which at the same time

freezes another thread. We use this to make sure that the 𝑒 𝑗+1 stays inactive between 𝑐 𝑗 and 𝑐 𝑗+1.
Syntactically, a freezing DCPS is a tupleA = (𝐺, Γ,Δ, 𝑔0, 𝛾0, 𝛾𝑓 ), where (𝐺, Γ,Δ, 𝑔0, 𝛾0) is a DCPS,

except that the rules Δ also contain a set Δu of unfreezing rules of the form 𝑔 ↦→ 𝑔′ ◁ 𝛾 ^ 𝛾 ′ and
𝛾𝑓 is the initial frozen thread with a single stack symbol. The unfreezing rules allow the DCPS to

unfreeze and resume a thread with top of stack 𝛾 , while also freezing a thread with top of stack 𝛾 ′. A

configuration is a tuple in𝐺 × (Γ∗×N∪{#}) ×M[Γ̂∗ × N], where Γ̂ = Γ∪Γ^ and Γ^ = {𝛾^ | 𝛾 ∈ Γ}.
A thread is frozen if its top-of-stack belongs to Γ^. It will be clear from the steps that in each

reachable configuration, there is exactly one frozen thread.

A freezing DCPS has the same steps as those of the corresponding DCPS. In particular, those

apply only to top-of-stack symbols in Γ. In addition, there is one more rule:

Unfreeze

𝑔 ↦→ 𝑔′ ◁ 𝛾 ^ 𝛾 ′

⟨𝑔, #,m + [[𝛾^𝑤, 𝑙]] + [[𝛾 ′𝑤 ′, 𝑗]]⟩ ↦→ ⟨𝑔′, (𝛾𝑤, 𝑙),m + [[𝛾 ′^𝑤 ′, 𝑗]]⟩

Hence, the frozen thread (𝛾^𝑤, 𝑙) is unfrozen and resumes, while the thread (𝛾 ′𝑤 ′, 𝑗) becomes the

new frozen thread. Moreover, the initial configuration is ⟨𝑔0, #, [[(𝛾0, 0)]] + [[(𝛾^𝑓 , 0)]]⟩.
Given these additional steps, progressive termination is defined as for DCPS. (In particular, the

progressiveness condition also applies to frozen threads.)

Lemma 6.5. Given a freezing DCPS A, it is decidable whether A has a progressive run. Moreover,
if A has a progressive run, then it has a shallow progressive run.

Lemma 6.5 can be shown using a straightforward reduction to progressive termination of ordinary

DCPS. The freezing is realized by introducing stack symbols Γ^ = {𝛾^ | 𝛾 ∈ Γ}. An unfreeze rule

𝑔 ↦→ 𝑔′ ◁ 𝛾 ^ 𝛾 ′ for a thread (𝛾^𝑤, 𝑙) is then simulated by a simple locking mechanism using a

bounded number of context switches: It turns a thread with stack 𝛾 ′𝑤 ′ into one with stack 𝛾 ′^𝑤 ′

(using context switches) and then resumes (𝛾^𝑤, 𝑗), where initially, 𝛾^ is replaced with 𝛾 . Other

than that, for threads with top of stack in Γ^, there are no resume rules. Since each thread in a

freeze DCPS can only be frozen and unfrozen at most 𝐾 times, the constructed DCPS uses at most

2𝐾 + 1 context-switches to simulate a run of the freeze DCPS.

Reduction to progressive runs in freezing DCPS

We now reduce starvation to progressive runs in freezing DCPS. We first guess a pair (𝑖, 𝔲) with
𝑖 ∈ [1, 𝐾] and a𝔖A-consistent 𝔲 ∈ P ( [1, 𝐵]Λ)T , 𝔲 = (𝑈𝑡 )𝑡 ∈T , and construct a freezingDCPSA (𝑖,𝔲)
so that A has an (𝑖, 𝔲)-starving run if and only if A (𝑖,𝔲) has a progressive run. Moreover, if A (𝑖,𝔲)
has a progressive run, then A even has a shallow (𝑖, 𝔲)-starving run. Therefore, A has a starving

run if and only if for some choice of (𝑖, 𝔲), A (𝑖,𝔲) has a progressive run.
Intuitively, we do this by tracking for each thread execution the multiset 𝛼𝐵 (m), where m is its

production. Using frozen threads, we make sure that every progressive run inA contains executions

𝑒1, 𝑒2, . . . to witness (𝑖, 𝔲)-starvation. To verify the (𝑖, 𝔲)-starvation, we also track each thread’s

type and current context-switch number. Hence, we store a tuple (𝑡, 𝑗, m̄, n̄), where (i) 𝑡 is the type,
(ii) 𝑗 is the current context-switch number, (iii) m̄ is the guess for 𝛼𝐵 (m), where m ∈ M[Λ] is the
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entire production of the execution, and (iv) n̄ is 𝛼𝐵 (n), where n ∈ M[Λ] is the multiset spawned so

far.

While a thread is inactive, the extra information is stored on the top of the stack, resulting in

stack symbols (𝛾, 𝑡, 𝑗, m̄, n̄). In particular, when we spawn a new thread, we immediately guess its

type 𝑡 and the abstraction m̄, and we set 𝑗 = 0 and n̄ = ∅. The freezing and unfreezing works as

follows. Initially, we have the frozen thread 𝛾† (where 𝛾† is a fresh stack symbol). To unfreeze it, we

have to freeze a thread of some type 𝑡 where m̄ belongs to 𝑈𝑡 (recall that this is a component of 𝔲):

𝑔 ↦→ 𝑔′ ◁ 𝛾† ^ (𝛾, 𝑡, 𝑖, m̄, n̄)
for every 𝑔,𝑔′ ∈ 𝐺 , 𝑡 ∈ T , m̄ ∈ 𝑈𝑡 . To unfreeze (and thus resume) a thread with top of stack

(𝛾, 𝑡, 𝑖, m̄, n̄), we have to freeze a thread (𝛾 ′, 𝑡 ′, 𝑖, m̄′, n̄′) with m̄′ ∈ 𝑈𝑡 ′ . Unfreezing requires context-

switch number 𝑖 , because the executions 𝑒1, 𝑒2, . . . must be in segment 𝑖 in 𝑐1, 𝑐2, . . .:

𝑔 ↦→ 𝑔′ ◁ (𝛾, 𝑡, 𝑖, m̄, n̄) ^ (𝛾 ′, 𝑡 ′, 𝑖, m̄′, n̄′)
for each resume rule 𝑔 ↦→ 𝑔′ ◁𝛾 , 𝑡 , m̄, and n̄, provided that 𝑔 is the state specified in 𝑡 to enter from

in the 𝑖th segment. Here, 𝑔′ is a decorated version of 𝑔′, in which the thread can only transfer the

extra information related to 𝑡, 𝑖, m̄, n̄ back to the global state. Symmetrically, when interrupting a

thread that information is transferred back to the stack and the segment counter 𝑗 is incremented.

To resume an ordinary (i.e. unfrozen) inactive thread, we have a resume rule 𝑔 ↦→ 𝑔′ ◁ (𝛾, 𝑡, 𝑗, m̄, n̄)
for each resume rule 𝑔 ↦→ 𝑔′ ◁ 𝛾 and each 𝑡 , 𝑗 , m̄, and n̄ — if 𝑔 is specified as the entering global

state for segment 𝑗 in 𝑡 . While a thread is active, it keeps n̄ up to date by recording all spawns (and

reducing via 𝛼𝐵). Finally, when a thread terminates, it checks that the components m̄ and n̄ agree.

It is clear from the construction that A has a (𝑖, 𝔲)-starving run if and only if A (𝑖,𝔲) has a
progressive run. Moreover, Lemma 6.5 tells us that if A (𝑖,𝔲) has a progressive run, then it has a

shallow progressive run. This shallow progressive run clearly yields a shallow (𝑖, 𝔲)-starving run of

A. According to Lemma 6.4, this implies that A has a starving run. This establishes the following

lemma, which implies that starvation is decidable for DCPS.

Lemma 6.6. A has a starving run if and only if for some 𝑖 ∈ [1, 𝐾] and some 𝔖A-consistent
𝔲 ∈ P ( [0, 𝐵]Λ)T , the freezing DCPS A (𝑖,𝔲) has a progressive run.

Proving Theorems 6.2 and 6.3
It remains to prove Theorems 6.2 and 6.3. We will use a structural description of the sets

𝑆𝑡 (Lemma 6.7), which requires some terminology. An automaton over Γ∗ × M[Λ] is a tuple

M = (𝑄, 𝐸, 𝑞0, 𝑞𝑓 ), where 𝑄 is a finite set of states, 𝐸 ⊆ 𝑄 × Γ∗ × M[Λ] × 𝑄 is a finite set of

edges, 𝑞0 ∈ 𝑄 is its initial state, and 𝑞𝑓 ∈ 𝑄 is its final state. We write 𝑝
𝑢 |m
−−−→ 𝑞 if there is a

sequence (𝑝0, 𝑢1,m1, 𝑝1), (𝑝1, 𝑢2,m2, 𝑝2), . . . , (𝑝𝑛−1, 𝑢𝑛,m𝑛, 𝑝𝑛) of edges inM with 𝑝 = 𝑝0, 𝑞 = 𝑝𝑛 ,

𝑢 = 𝑢1 · · ·𝑢𝑛 , andm = m1+· · ·+m𝑛 . The set accepted byM is the set of all (𝑤,m) ∈ Γ∗×M[Λ] with
𝑞0

𝑤 |m
−−−→ 𝑞𝑓 . A subset of Γ∗ ×M[Λ] is rational if it is accepted by some automaton over Γ∗ ×M[Λ].

Lemma 6.7. For every 𝑡 ∈ T , the set 𝑆𝑡 is effectively rational.

This can be deduced from [Zetzsche 2013, Lemma 6.2]. Since the latter would require introducing

a lot of machinery, we include a direct proof in the full version. Both proofs are slight extensions

of Büchi’s proof of regularity of the set of reachable stacks in a pushdown automaton [Büchi

1964, Theorem 1]. The only significant difference is the following: While [Büchi 1964] essentially

introduces shortcut edges for runs that go from one stack𝑤 back to𝑤 , we glue in a finite automaton

that produces the same output over Λ as such runs. This is possible since the set of the resulting

multisets is always semi-linear by Parikh’s theorem [Parikh 1966, Theorem 2].
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Because of Lemma 6.7, the following immediately implies Theorem 6.3:

Lemma 6.8. Given a tuple 𝔖 = (𝑆1, . . . , 𝑆𝑘 ) of rational subsets 𝑆 𝑗 ⊆ Γ∗ × M[Λ] and a tuple
𝔲 = (𝑈1, . . . ,𝑈𝑘 ) of finite subsets𝑈 𝑗 ⊆ M[Λ], it is decidable whether 𝔲 is𝔖-consistent.

Proof. Since 𝑆 𝑗 is rational, for eachm ∈ M[Λ] and 𝑗 ∈ [1, 𝑘], we can compute a finite automaton

for the language 𝑇𝑗,m = {𝑤 ∈ Γ∗ | m ∈ 𝑆 𝑗↓𝑤}. Then 𝔲 is𝔖-consistent if and only if the intersection⋂
𝑗 ∈[1,𝑘 ]

⋂
m∈𝑈 𝑗

𝑇𝑗,m of regular languages is non-empty, which is clearly decidable.

Moreover, because of Lemma 6.7, Theorem 6.2 is a direct consequence of the following.

Proposition 6.9. Given rational subsets 𝑆1, . . . , 𝑆𝑘 ⊆ Γ∗ ×M[Λ], we can compute a bound 𝐵 such
that for the tuple𝔖 = (𝑆1, . . . , 𝑆𝑘 ), the following holds: If𝔙 = (𝑉1, . . . ,𝑉𝑘 ) is a tuple of finite subsets
𝑉𝑗 ⊆ M[Λ], then𝔙 is𝔖-consistent if and only if 𝛼𝐵 (𝔙) is𝔖-consistent.

Thus, it remains to prove Proposition 6.9, which is the purpose of the rest of this section. Note

that in Proposition 6.9, the requirement that the 𝑉𝑗 be finite is crucial. For example, suppose 𝑘 = 1

and 𝑆 = {(a𝑛, 𝑛 · [[b]]) | 𝑛 ∈ N} and𝔖 = (𝑆). Then a set 𝑉 ⊆ M[{b}] is𝔖-consistent if and only

if 𝑉 is finite. Hence, there is no bound 𝐵 such that 𝛼𝐵 (𝑉 ) reflects 𝔖-consistency of any 𝑉 . For

Proposition 6.9, we use Ramsey’s theorem (see Section 5.3) to prove the following pumping lemma.

Lemma 6.10. Given a tuple𝔖 = (𝑆1, . . . , 𝑆𝑘 ) of rational subsets 𝑆 𝑗 ⊆ Γ∗ ×M[Λ], we can compute a
bound𝑀 such that the following holds. In a word𝑤 with𝑀 marked positions, we can pick two marked
positions so that for the resulting decomposition𝑤 = 𝑥𝑦𝑧, we have 𝑥𝑦𝑧 ≤𝔖 𝑥𝑦ℓ𝑧 for every ℓ ≥ 1.

Proof. LetM 𝑗 be an automaton for 𝑆 𝑗 with state set 𝑄 𝑗 for 𝑗 ∈ [1, 𝑘]. We may assume that the

sets 𝑄 𝑗 are pairwise disjoint and we define 𝑄 =
⋃𝑘
𝑗=1
𝑄 𝑗 and 𝑛 = |𝑄 |. To each 𝑢 ∈ Γ∗, we assign a

subset 𝜅 (𝑢) ⊆ 𝑄 × P (Λ), where (𝑞,Θ) ∈ 𝑄 𝑗 × P (Λ) belongs to 𝜅 (𝑢) if there is a cycle inM 𝑗 that

starts (and ends) in 𝑞, reads 𝑢, and reads a multiset with support Θ. Hence, for 𝑞 ∈ 𝑄 𝑗 and Θ ⊆ Λ,

we have (𝑞,Θ) ∈ 𝜅 (𝑢) if and only if 𝑞
𝑢 |m
−−−→ 𝑞 inM 𝑗 for some m ∈ M[Λ] with supp(m) = Θ.

We specify𝑀 later. Suppose𝑀 positions 𝑠1, . . . , 𝑠𝑀 are marked in𝑤 . We build a colored graph

on𝑀 vertices and we label the edge from 𝑗 to 𝑗 ′ by the set 𝜅 (𝑢), where 𝑢 is the infix of𝑤 between

𝑠 𝑗 and 𝑠 𝑗 ′ . Hence, the graph is 𝑟 -colored, where 𝑟 = 2
|𝑄 | ·2|Λ|

is the number of subsets of 𝑄 × P (Λ).
We now apply Ramsey’s theorem. We compute𝑀 so that𝑀 ≥ 𝑅(𝑟 ;𝑛 + 1), e.g.𝑀 = 𝑟𝑟 (𝑛−1)+1

. Then

our graph must contain a monochromatic subset of size 𝑛 + 1. Let 𝑡1, . . . , 𝑡𝑛+1 be the corresponding
positions in 𝑤 . Moreover, let 𝑤 = 𝑥𝑦1 · · ·𝑦𝑛𝑧 be the decomposition of 𝑤 such that 𝑦 𝑗 is the infix

between 𝑡 𝑗 and 𝑡 𝑗+1. We claim that with 𝑦 = 𝑦1 · · ·𝑦𝑛 , we have indeed 𝑥𝑦𝑧 ≤𝔖 𝑥𝑦ℓ𝑧 for every ℓ ≥ 1.

Consider a word 𝑥𝑦ℓ𝑧 and some multiset m ∈ 𝑆 𝑗↓𝑥𝑦𝑧 . We have to show that m ∈ 𝑆 𝑗↓𝑥𝑦ℓ𝑧 .
Since m ∈ 𝑆 𝑗↓𝑥𝑦𝑧 , there is a run ofM 𝑗 reading (𝑥𝑦𝑧,m′) for some m′ ⪰1 m. SinceM 𝑗 has ≤ 𝑛
states, some state must repeat at two borders of the decomposition 𝑦 = 𝑦1 · · ·𝑦𝑛 . Suppose our run
reads (𝑦𝑓 · · ·𝑦𝑔, m̄) on a cycle on 𝑞 ∈ 𝑄 𝑗 for some m̄ inM 𝑗 . By monochromaticity, we know that

𝜅 (𝑦𝑓 · · ·𝑦𝑔) = 𝜅 (𝑦ℎ) for every ℎ ∈ [1, 𝑛]. Observe that we can write

𝑥𝑦ℓ𝑧 = 𝑥𝑦1 · · ·𝑦𝑓 −1 (𝑦𝑓 · · ·𝑦𝑛𝑦1 · · ·𝑦𝑓 −1)ℓ−1𝑦𝑓 · · ·𝑦𝑛𝑧. (1)

For everyℎ ∈ [1, 𝑛], we have𝜅 (𝑦𝑓 · · ·𝑦𝑔) = 𝜅 (𝑦ℎ), and hence𝑞
𝑦ℎ |mℎ−−−−−→ 𝑞 inM 𝑗 for somemℎ ∈ M[Λ]

with supp(mℎ) = supp(m̄). Then, in particular, supp(mℎ) ⊆ supp(m′) = supp(m). Therefore,
Eq. (1) shows thatM 𝑗 accepts (𝑥𝑦ℓ𝑧,m′ + (ℓ − 1)∑𝑛

ℎ=1
mℎ). Since we now have m ⪯1 m′ + (ℓ −

1)∑𝑛
ℎ=1

mℎ , this implies m ∈ 𝑆↓𝑥𝑦ℓ𝑧 .

Using Lemma 6.10, we can obtain the final ingredient of Proposition 6.9:

, Vol. 1, No. 1, Article . Publication date: October 2020.



28 Pascal Baumann, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche

Lemma 6.11. Given a tuple𝔖 = (𝑆1, . . . , 𝑆𝑘 ) of rational subsets 𝑆 𝑗 ⊆ Γ∗ ×M[Λ], we can compute
a bound 𝐵 such that the following holds. Let 𝔙 = (𝑉1, . . . ,𝑉𝑘 ) be a𝔖-consistent tuple and suppose
𝛼𝐵 (m) ∈ 𝑉𝑗 . Then adding m to 𝑉𝑗 preserves𝔖-consistency.

The idea is the following. Let𝔙′ = (𝑉 ′
1
, . . . ,𝑉 ′

𝑘
) be obtained from𝔙 by adding m to 𝑉𝑗 . Let us

say that 𝑤 ∈ Γ∗ covers some n ∈ 𝑉 ′𝑗 if and only if n ∈ 𝑆 𝑗↓𝑤 . Since 𝔙 is𝔖-consistent, there is a

𝑤 ∈ Γ∗ that covers all elements of𝔙. Then 𝑤 covers 𝛼𝐵 (m). Moreover, m agrees with 𝛼𝐵 (m) on
all coordinates where m is < 𝐵. We now have to construct a 𝑤 ′ that covers m in the remaining

coordinates. A simple pumping argument for each coordinate of m over an automaton for 𝑆 𝑗 (say,

with 𝐵 larger than the number of states) would yield a word𝑤 ′ that even covers m. However, this

might destroy coverage of all the other multisets in𝔙. Therefore, we use Lemma 6.10. It allows us

to choose 𝐵 high enough so that pumping to 𝑤 ′ = 𝑥𝑦ℓ𝑧 covers m, but also guarantees 𝑤 ≤𝔖 𝑤 ′.
The latter implies that going from𝑤 to𝑤 ′ does not lose any coverage.

Finally, Proposition 6.9 follows from Lemma 6.11 by induction.

7 CONCLUSION
We have shown decidability of verifying liveness forDCPS in the context-bounded case. Our results

imply that fair termination forDCPS isΠ0

1
-complete when each thread is restricted to context switch

a finite number of times. Our result extends to liveness properties that can be expressed as a Büchi

condition. We can reduce to fair non-termination by simply adding the states of a Büchi automaton

to the global states via a product construction. From there, the Büchi acceptance condition can be

simulated by using a special thread that forces a visit to a final state when scheduled, and then

reposts itself before terminating. Scheduling this thread fairly along an infinite execution thus

results in infinitely many visits to final states.

While we have focused on termination- and liveness-related questions, our techniques also imply

further decidability results on commonly studied decision questions for concurrent programs. A

run of a DCPS is bounded if there is a bound 𝐵 ∈ N so that the number of pending threads in

every configuration along the run is at most 𝐵. The 𝐾-bounded boundedness problem asks if every

𝐾-context bounded run is bounded. Since boundedness is preserved under downward closures, our

techniques for non-termination can be modified to show the problem is also 2EXPSPACE-complete.

The 𝐾-bounded configuration reachability problem for DCPS asks if a given configuration is

reachable. Our reductions from DCPS to VASSB, and the decidability of reachability for VASSB,
imply 𝐾-bounded configuration reachability is decidable for DCPS.

Thus, combined with previous results on safety verification [Atig et al. 2011] and the case 𝐾 = 0

[Ganty and Majumdar 2012], our paper closes the decidability frontier for all commonly studied

𝐾-bounded verification problems for all 𝐾 ≥ 0.
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In this section we strengthen the notion of fairness for DCPS to progressiveness by proving

Lemma 4.3.
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Idea. To prove Lemma 4.3 we modify the DCPSA by giving every thread a bottom of stack symbol

⊥ and saving its context switch number in its top of stack symbol. We also save this number in

the global state whenever a thread is active. This way we can still swap a thread out and back in

again once it has emptied its stack, and we also can keep track of how often we need to repeat that,

before we reach 𝐾 context switches and allow it to terminate.

Furthermore, we also keep a subset 𝐺 ′ of the global states of A in our new global states, which

restricts the states that can appear when no thread is active. This way we can guess that a thread

will be “stuck” in the future, upon which we terminate it instead (going up to 𝐾 context switches

first) and also spawn a new thread keeping track of its top of stack symbol in the bag. Then later

we restrict the subset 𝐺 ′ to only those global states that do not have Resume rules for the top of

stack symbols we saved in the bag. This then verifies our guess of “being stuck”.

Formal construction. Let 𝐾 ∈ N and A = (𝐺, Γ,Δ, 𝑔0, 𝛾0) be a DCPS. We construct the DCPS
Ã = (𝐺, Γ̃, Δ̃, (𝑔0,𝐺), 𝛾0), where

• 𝐺 =
(
𝐺 × P (𝐺)

)
∪
(
𝐺 × {0, . . . , 𝐾} × P (𝐺)

)
∪
(
𝐺 × {0, . . . , 𝐾} × P (𝐺)

)
, where𝐺 = {𝑔 |𝑔 ∈ 𝐺}

and P (𝐺) is the powerset of 𝐺 , i.e. the set of all subsets of 𝐺 ,
• Γ̃ = Γ⊥ ∪ (Γ⊥ × {0, . . . , 𝐾}) ∪ Γ̄, where Γ⊥ = Γ ∪ {⊥} and Γ̄ = {𝛾 |𝛾 ∈ Γ},
• Δ̃ = Δ̃c ∪ Δ̃i ∪ Δ̃r ∪ Δ̃t consists of the following transitions rules:

(1) (𝑔1,𝐺
′) ↦→ (𝑔2,𝐺

′) ◁ 𝛾 ∈ Δ̃r for all 𝐺
′ ⊇ {𝑔1} iff 𝑔1 ↦→ 𝑔2 ◁ 𝛾 ∈ Δr.

(2) (𝑔1,𝐺
′) ↦→ (𝑔2, 𝑘,𝐺

′) ◁ (𝛾, 𝑘) ∈ Δ̃r for all 𝑘 ∈ {1, . . . , 𝐾}, 𝐺 ′ ⊇ {𝑔1} iff 𝑔1 ↦→ 𝑔2 ◁ 𝛾 ∈ Δr.

(3) (𝑔,𝐺 ′) |𝛾 ↩→ (𝑔, 0,𝐺 ′) | (𝛾, 0).⊥ ∈ Δ̃c for all 𝑔 ∈ 𝐺 , 𝛾 ∈ Γ.
(4) (𝑔, 𝑘,𝐺 ′) |𝛾 ↩→ (𝑔, 𝑘,𝐺 ′) | (𝛾, 𝑘) ∈ Δ̃c for all 𝑘 ∈ {0, . . . , 𝐾}, 𝑔 ∈ 𝐺 , 𝛾 ∈ Γ⊥.
(5) (𝑔1, 𝑘,𝐺

′) | (𝛾, 𝑘) ↩→ (𝑔2, 𝑘,𝐺
′) |𝑤 ∈ Δ̃c for all 𝑘 ∈ {0, . . . , 𝐾} iff 𝑔1 |𝛾 ↩→ 𝑔2 |𝑤 ∈ Δc.

(6) (𝑔1, 𝑘,𝐺
′) | (𝛾1, 𝑘) ↩→ (𝑔2, 𝑘,𝐺

′) |𝑤 ⊲𝛾2 ∈ Δ̃c for all 𝑘 ∈ {0, . . . , 𝐾} iff 𝑔1 |𝛾1 ↩→ 𝑔2 |𝑤 ⊲𝛾2 ∈ Δc.

(7) (𝑔1, 𝑘,𝐺
′) | (𝛾1, 𝑘) ↦→ (𝑔2,𝐺

′) | (𝛾2, 𝑘 + 1)𝛾3 ∈ Δ̃i for all 𝑘 ∈ {0, . . . , 𝐾 − 1}, 𝐺 ′ ⊇ {𝑔2} iff
𝑔1 |𝛾1 ↦→ 𝑔2 |𝛾2𝛾3 ∈ Δi, where 𝛾2 ∈ Γ and 𝛾3 ∈ Γ ∪ {𝜀}.

(8) (𝑔1, 𝑘,𝐺
′) | (⊥, 𝑘) ↩→ (𝑔2, 𝑘,𝐺

′) | (⊥, 𝑘) ∈ Δ̃c for all 𝑘 ∈ {0, . . . , 𝐾} iff 𝑔1 ↦→ 𝑔2 ∈ Δt

(9) (𝑔, 𝑘,𝐺 ′) | (⊥, 𝑘) ↦→ (𝑔, 𝑘 + 1,𝐺 ′) | (⊥, 𝑘 + 1) ∈ Δ̃i for all 𝑘 ∈ {0, . . . , 𝐾 − 1}, 𝑔 ∈ 𝐺 ′ ⊆ 𝐺 .
(10) (𝑔, 𝑘,𝐺 ′) | (⊥, 𝑘) ↩→ (𝑔, 𝑘,𝐺 ′) | (⊥, 𝑘) ∈ Δ̃c for all 𝑘 ∈ {0, . . . , 𝐾 − 1}, 𝑔 ∈ 𝐺 ′ ⊆ 𝐺 .
(11) (𝑔, 𝑘,𝐺 ′) ↦→ (𝑔, 𝑘,𝐺 ′) ◁ (⊥, 𝑘) ∈ Δ̃r for all 𝑘 ∈ {0, . . . , 𝐾}, 𝑔 ∈ 𝐺 ′ ⊆ 𝐺 .
(12) (𝑔, 𝐾,𝐺 ′) | (⊥, 𝐾) ↩→ (𝑔, 𝐾,𝐺 ′) |𝜀 ∈ Δ̃c for all 𝑔 ∈ 𝐺 ′ ⊆ 𝐺 .
(13) (𝑔, 𝐾,𝐺 ′) ↦→ (𝑔,𝐺 ′) ∈ Δ̃t for all 𝑔 ∈ 𝐺 ′ ⊆ 𝐺 .
(14) (𝑔1, 𝑘,𝐺

′) | (𝛾, 𝑘) ↩→ (𝑔2, 𝑘,𝐺
′) |𝜀 ⊲ 𝛾 ∈ Δ̃c for all 𝑘 ∈ {0, . . . , 𝐾}, 𝑔2 ∈ 𝐺 ′ ⊆ 𝐺 , 𝛾 ∈ Γ iff

𝑔1 |𝛾1 ↦→ 𝑔2 |𝑤 ∈ Δi for some𝑤 ∈ Γ∗ and 𝑔′ ↦→ 𝑔 ◁ 𝛾 ∈ Δr for some 𝑔′ ∈ 𝐺 ′, 𝑔 ∈ 𝐺 .
(15) (𝑔1, 𝑘,𝐺

′) | (𝛾, 𝑘) ↩→ (𝑔2, 𝑘,𝐺
′) |𝜀 ∈ Δ̃c for all 𝑘 ∈ {0, . . . , 𝐾}, 𝑔2 ∈ 𝐺 ′ ⊆ 𝐺 , 𝛾 ∈ Γ iff

𝑔1 |𝛾1 ↦→ 𝑔2 |𝑤 ∈ Δi for some𝑤 ∈ Γ∗ and 𝑔′ ↦→ 𝑔 ◁ 𝛾 ∉ Δr for all 𝑔
′ ∈ 𝐺 ′, 𝑔 ∈ 𝐺 .

(16) (𝑔, 𝑘,𝐺 ′) |𝛾 ↩→ (𝑔, 𝑘,𝐺 ′) |𝜀 ∈ Δ̃c for all 𝑘 ∈ {0, . . . , 𝐾}, 𝑔 ∈ 𝐺 ′ ⊆ 𝐺 , 𝛾 ∈ Γ.
(17) (𝑔, 𝑘,𝐺 ′) |⊥ ↩→ (𝑔, 𝑘,𝐺 ′) | (⊥, 𝑘) ∈ Δ̃c for all 𝑘 ∈ {0, . . . , 𝐾}, 𝑔 ∈ 𝐺 ′ ⊆ 𝐺 .
(18) (𝑔,𝐺 ′) ↦→ (𝑔, 0,𝐺 ′) ◁ 𝛾 ∈ Δ̃r for all 𝑘 ∈ {1, . . . , 𝐾}, 𝑔 ∈ 𝐺 ′ ⊆ 𝐺 , 𝛾 ∈ Γ.
(19) (𝑔, 0,𝐺1) |𝛾 ↩→ (𝑔, 0,𝐺2) | (⊥, 0) ∈ Δ̃c for all 𝑔 ∈ 𝐺2 ⊆ 𝐺1 ⊆ 𝐺 , 𝛾 ∈ Γ, where 𝐺2 = {𝑔1 ∈

𝐺1 |∀𝑔2 ∈ 𝐺 : 𝑔1 ↦→ 𝑔2 ◁ 𝛾 ∉ Δr}.

We proceed by constructing a run of Ã from a fair run ofA and argue that this construction results

in a progressive run and preserves starvation, which proves the if direction of the two points of

Lemma 4.3. For the only if direction we argue that we can also do this backwards, starting with a

progressive run from Ã and constructing one from A.
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Let 𝜌 be a infinite fair run of A. We begin by formalizing the notion threads reaching a certain

local configuration and never progressing from there. Consider a local configuration 𝑡 = (𝑤, 𝑖) of
A that over the course of 𝜌 is only removed from the bag finitely often (via applications of Resume)

and is added to the bag more often than it is removed (via applications of Swap). Let 𝑛𝑡 be the

number of times 𝑡 is removed from the bag in this way. Then from the (𝑛 + 1)th applications of

Swap and onwards adding 𝑡 to the bag over the course of 𝜌 , we say the local configuration 𝑡 added

to the bag is stagnant.
Now we can properly construct an infinite run 𝜌 of Ã. Whenever 𝜌 reaches a configuration with

global state 𝑔, 𝜌 mimics it by reaching a global state that includes 𝑔 in the state tuple. Similarly

any non-stagnant local configuration (𝛾𝑤, 𝑖) occurring on 𝜌 corresponds to a local configuration(
(𝛾, 𝑖)𝑤, 𝑖

)
occurring on 𝜌 , whereas the empty stack corresponds to stack content ⊥ or (⊥, 𝑖).

Newly spawned local configurations (𝛾, 0) look the same in both runs. For the initial configuration

⟨𝑔0,⊥, [[(𝛾0, 0)]]⟩ of 𝜌 and ⟨(𝑔0,𝐺),⊥, [[(𝛾0, 0)]]⟩ of 𝜌 this correspondence evidently holds. Let

us now go over the consecutive thread step and scheduler step relations of 𝜌 and construct 𝜌

appropriately:

In the following, for any step relation between two configurations of A, we write a number 1 to

17 above the arrow to denote which rule of Δ̃ is being applied.

Case ⟨𝑔1, #,m + [[(𝛾𝑤, 𝑖)]]⟩ ↦→ ⟨𝑔2, (𝛾𝑤, 𝑖),m⟩ due to 𝑔1 ↦→ 𝑔2 ◁ 𝛾 ∈ Δr:
If 𝑖 = 0 (and therefore also𝑤 = 𝜀) then

⟨(𝑔1,𝐺
′), #, m̃ + [[(𝛾, 0)]]⟩ 1↦−→ ⟨(𝑔2,𝐺

′), (𝛾, 0), m̃⟩ 3−→ ⟨(𝑔2, 0,𝐺
′),

(
(𝛾, 0)⊥, 0

)
, m̃⟩,

otherwise (if 𝑖 ≥ 1)

⟨(𝑔1,𝐺
′), #, m̃ + [[

(
(𝛾, 𝑖)𝑤⊥, 𝑖

)
]]⟩ 2↦−→ ⟨(𝑔2, 𝑖,𝐺

′),
(
(𝛾, 𝑖)𝑤⊥, 𝑖

)
, m̃⟩.

Case ⟨𝑔1, (𝛾𝑤, 𝑖),m⟩ → ⟨𝑔2, (𝑤 ′𝑤, 𝑖),m⟩ due to 𝑔1 |𝛾 ↩→ 𝑔2 |𝑤 ′ ∈ Δc:

⟨(𝑔1, 𝑖,𝐺
′),

(
(𝛾, 𝑖)𝑤⊥, 𝑖

)
, m̃⟩ 5−→ ⟨(𝑔2, 𝑖,𝐺

′), (𝑤 ′𝑤⊥, 𝑖), m̃⟩,
from here, if𝑤 ′𝑤 = 𝛾 ′𝑤 ′′ ≠ 𝜀 for some 𝛾 ′ ∈ Γ, 𝜌 continues with

⟨(𝑔2, 𝑖,𝐺
′), (𝛾 ′𝑤 ′′⊥, 𝑖), m̃⟩ 4−→ ⟨(𝑔2, 𝑖,𝐺

′),
(
(𝛾 ′, 𝑖)𝑤 ′′⊥, 𝑖

)
, m̃⟩,

otherwise (if𝑤 ′𝑤 = 𝜀) 𝜌 continues with

⟨(𝑔2, 𝑖,𝐺
′), (⊥, 𝑖), m̃⟩ 4−→ ⟨(𝑔2, 𝑖,𝐺

′),
(
(⊥, 𝑖), 𝑖

)
, m̃⟩.

Case ⟨𝑔1, (𝛾𝑤, 𝑖),m⟩ → ⟨𝑔2, (𝑤 ′𝑤, 𝑖),m + [[(𝛾 ′, 0)]]⟩ due to 𝑔1 |𝛾 ↩→ 𝑔2 |𝑤 ′ ⊲ 𝛾 ′ ∈ Δc:

⟨(𝑔1, 𝑖,𝐺
′),

(
(𝛾, 𝑖)𝑤⊥, 𝑖

)
, m̃⟩ 6−→ ⟨(𝑔2, 𝑖,𝐺

′), (𝑤 ′𝑤⊥, 𝑖), m̃ + [[(𝛾 ′, 0)]]⟩,
if𝑤 ′𝑤 = 𝛾 ′′𝑤 ′′ ≠ 𝜀 for some 𝛾 ′′ ∈ Γ then 𝜌 continues with

⟨(𝑔2, 𝑖,𝐺
′), (𝛾 ′′𝑤 ′′⊥, 𝑖), m̃ + [[(𝛾 ′, 0)]]⟩ 4−→ ⟨(𝑔2, 𝑖,𝐺

′),
(
(𝛾 ′′, 𝑖)𝑤 ′′⊥, 𝑖

)
, m̃ + [[(𝛾 ′, 0)]]⟩,

otherwise (if𝑤 ′𝑤 = 𝜀) 𝜌 continues with

⟨(𝑔2, 𝑖,𝐺
′), (⊥, 𝑖), m̃ + [[(𝛾 ′, 0)]]⟩ 4−→ ⟨(𝑔2, 𝑖,𝐺

′),
(
(⊥, 𝑖), 𝑖

)
, m̃ + [[(𝛾 ′, 0)]]⟩.

Case ⟨𝑔1, (𝛾𝑤, 𝑖),m⟩ ↦→ ⟨𝑔2, #,m + [[(𝑤 ′𝑤, 𝑖 + 1)]]⟩ due to 𝑔1 |𝛾 ↦→ 𝑔2 |𝑤 ′ ∈ Δi:
By definition of Δi we have 1 ≤ |𝑤 ′ | ≤ 2 and therefore𝑤 ′ = 𝛾1𝛾2 for some 𝛾1 ∈ Γ, 𝛾2 ∈ Γ∪{𝜀}.
If (𝑤 ′𝑤, 𝑖 + 1) is not stagnant here, then

⟨(𝑔1, 𝑖,𝐺
′),

(
(𝛾, 𝑖)𝑤⊥, 𝑖

)
, m̃⟩ 7↦−→ ⟨(𝑔2,𝐺

′), #, 𝑖
)
, m̃ + [[

(
(𝛾1, 𝑖 + 1)𝛾2𝑤⊥, 𝑖 + 1

)
]]⟩.

, Vol. 1, No. 1, Article . Publication date: October 2020.



Context-Bounded Liveness-Verification for Multithreaded Shared-Memory Programs 33

Otherwise (if (𝑤 ′𝑤, 𝑖 + 1) is stagnant here), if𝐺 ′ still contains states that allow Resume rules

on 𝛾1, we first save this top of stack symbol in the bag (as 𝛾1):

⟨(𝑔1, 𝑖,𝐺
′),

(
(𝛾, 𝑖)𝑤⊥, 𝑖

)
, m̃⟩ 14−→ ⟨(𝑔2, 𝑖,𝐺

′), (𝑤⊥, 𝑖), m̃ + [[(𝛾1, 0)]]⟩.

If 𝐺 ′ does not allow for any Resume rules on 𝛾1 we do not save this top of stack symbol:

⟨(𝑔1, 𝑖,𝐺
′),

(
(𝛾, 𝑖)𝑤⊥, 𝑖

)
, m̃⟩ 15−→ ⟨(𝑔2, 𝑖,𝐺

′), (𝑤⊥, 𝑖), m̃⟩.

In both of these stagnant cases we continue by almost emptying the stack of the active thread

in 𝜌 . Let m̃′ = m̃ + [[(𝛾1, 0)]] in the first case and m̃′ = m̃ in the second case:

⟨(𝑔2, 𝑖,𝐺
′), (𝑤⊥, 𝑖), m̃′⟩ 16−→ . . .

16−→ ⟨(𝑔2, 𝑖,𝐺
′), (⊥, 𝑖), m̃′⟩ 17−→ ⟨(𝑔2, 𝑖,𝐺

′),
(
(⊥, 𝑖), 𝑖

)
, m̃′⟩.

From here 𝜌 continues with what we call an extended thread termination, where we force the
active thread to make its remaining context switches (up to 𝐾 ) and then terminate:

⟨(𝑔2, 𝑖,𝐺
′),

(
(⊥, 𝑖), 𝑖

)
, m̃′⟩ 9↦−→ ⟨(𝑔2, 𝑖 + 1,𝐺 ′), #, m̃′ + [[

(
(⊥, 𝑖 + 1), 𝑖 + 1

)
]]⟩

11↦−→ ⟨(𝑔2, 𝑖 + 1,𝐺 ′),
(
(⊥, 𝑖 + 1), 𝑖 + 1

)
, m̃′⟩

10−→ ⟨(𝑔2, 𝑖 + 1,𝐺 ′),
(
(⊥, 𝑖 + 1), 𝑖 + 1

)
, m̃′⟩

...
(
(𝐾 − 𝑖) repetitions of the rule sequence (9), (11), (10)

)
10−→ ⟨(𝑔2, 𝐾,𝐺

′),
(
(⊥, 𝐾), 𝐾

)
, m̃′⟩

12−→ ⟨(𝑔2, 𝐾,𝐺
′), (𝜀, 𝐾), m̃′⟩

13↦−→ ⟨(𝑔2,𝐺
′), #, m̃′⟩.

Of course if 𝑖 = 𝐾 only the last two steps are part of 𝜌 . We also note that rule (10) is

only necessary to facilitate alternation between thread step and scheduler step relations, as

required by runs of DCPS.
Case ⟨𝑔1, (𝜀, 𝑖),m⟩ ↦→ ⟨𝑔2, #,m⟩ due to 𝑔1 ↦→ 𝑔2 ∈ Δt:

⟨(𝑔1, 𝑖,𝐺
′),

(
(⊥, 𝑖), 𝑖

)
, m̃⟩ 8−→ ⟨(𝑔2, 𝑖,𝐺

′),
(
(⊥, 𝑖), 𝑖

)
, m̃′⟩,

from here 𝜌 continues with an extended thread termination, as explained previously.

Once a particular configuration ⟨𝑔, #,m⟩ is reached:
Let𝐺inf ⊆ 𝐺 be the set of global states that occur infinitely often on configurations of 𝜌 with

no active thread. Let ⟨𝑔, #,m⟩ be a configuration upon which only global states in 𝐺inf occur

on configurations with no active thread on 𝜌 (including for this configuration itself, meaning

𝑔 ∈ 𝐺inf). Furthermore, no new top of stack symbols appear among stagnant threads after

this configuration has occurred. Now we handle all the threads with top of stack symbol in Γ̄
spawned over the course of 𝜌 :

⟨(𝑔,𝐺1), #, m̃ + [[(𝛾, 0)]]⟩
18↦−→ ⟨(𝑔, 0,𝐺1), (𝛾, 0), m̃⟩

19−→ ⟨(𝑔, 0,𝐺2),
(
(⊥, 0), 0

)
, m̃⟩.

Here 𝐺2 = {𝑔1 ∈ 𝐺1 |∀𝑔2 ∈ 𝐺 : 𝑔1 ↦→ 𝑔2 ◁ 𝛾 ∉ Δr}, i.e. the subset of 𝐺1 that no longer

contains any global states that allow Resume rules for 𝛾 . We continue with an extended

thread termination, upon which we repeat these steps until no more local configurations

with top of stack symbol in Γ̄ are in the bag.
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The run 𝜌 is sound: Firstly, the correspondence of local configurations we mentioned earlier is

upheld throughout the run. Secondly, we always save the cs-number of the active thread in the state

tuple and we have no cs-number in the state tuple if there is no active thread, which we assumed to

hold at the start of all step sequences we added to 𝜌 . Finally, the subset 𝐺 ′ ⊆ 𝐺 in each state tuple

restricts which global states can occur while there is no active thread, but we update it in such a

way that none of the steps we want to make are disallowed: As long as we visit global states ∉ 𝐺inf
in configurations with no active thread 𝐺 ′ = 𝐺 holds. After such visits stop happening, we update

𝐺 ′ based on all the stagnant threads that occurred. However, the top of stack symbols of stagnant

threads cannot allow for the application of Resume rules from global states in 𝐺inf , because that

would violate the fairness condition of 𝜌 . Therefore 𝐺inf ⊆ 𝐺 ′ still holds after we finish updating

𝐺 ′, which means all future steps are still allowed by 𝐺 ′.
The run 𝜌 is also progressive: Firstly, every local configuration on 𝜌 that corresponds to a

non-stagnant thread of 𝜌 is resumed at some point, because its correspondent was handled fairly

on 𝜌 , which implies resumption for non-stagnant threads. Secondly, the local configurations of 𝜌

corresponding to stagnant threads of 𝜌 do not have to be resumed, since they always terminate.

Thirdly, all threads with top of stack in Γ̄ are resumed eventually: Since we only update𝐺 ′ once all
different types of these threads were spawned, the update disallows any Resume rules for all top of

stack symbols of stagnant threads occurring afterwards. Therefore the only transition rule in Δ̃c
that spawns these threads (rule 14) can no longer be applied (we apply rule 15 instead). Since these

threads then no longer occur in the bag afterwards, they are of course do not have to be resumed.

Finally, every thread that terminates does so after exactly 𝐾 context switches: This is due to the

extended thread termination that is performed every time the bottom of stack symbol ⊥ is reached.

A thread is starved by 𝜌 iff a thread is starved by 𝜌 : It is clear that stagnant threads cannot

be starved, and non-stagnant threads of 𝜌 have their correspondents handled in same way on 𝜌 .

The only mismatch in starvation can thus occur on the threads with top of stack symbol in Γ̄.
However, we already argued that after a certain point, none of these threads even occur as part of a

configuration of 𝜌 anymore. Therefore they cannot be starved either. This concludes the if-direction

of the proof.

For the only if direction let 𝜌 be an infinite progressive run of Ã. We observe that we can do

most of the previous construction backwards to obtain an infinite run 𝜌 of A. Whenever we guess

a thread to be stagnant by using rule (14) or (15) on 𝜌 , we instead keep its correspondent around in

𝜌 forever. Since each local configuration with top of stack symbol in Γ̄ has to have a Resume rule

applied to it on 𝜌 , we eventually are restricted to global states that do not allow for Resume rules

on the corresponding top of stack symbols in Γ. This means the threads we keep around forever on

𝜌 are “stuck” and therefore handled fairly. Restricting the global states based on some symbol 𝛾 also

disallows new threads with the same symbol to spawn during 𝜌 afterwards. This means at some

point no new threads with top of stack symbol in Γ̄ are newly added to the bag, but the old threads

disappear eventually because of progressiveness. Thus these threads cannot be exhibit starvation

that then would not be present in 𝜌 . Finally, all remaining threads of 𝜌 are handled the same way as

their correspondents of 𝜌 , meaning the progressiveness of the latter implies fairness of the former.

B PROOFS FROM SECTION 4.1
In this section we prove Theorem 4.4 formally, which involves constructing a VASSBV with the

same progressiveness properties (when starting in configuration 𝑐0 = (𝑞0, ∅, ∅)) as a given DCPS
A.

Formal construction. Let 𝐾 ∈ N andA = (𝐺, Γ,Δ, 𝑔0, 𝛾0) be a DCPS with Γ = {𝛾0, . . . , 𝛾𝑙 }. Construct
a VASSBV = (𝑄, 𝑃,𝑄, 𝑃, 𝐸), where
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• 𝑄 =
(
T (A, 𝐾) × {0, . . . , 𝐾} × SL(A, 𝐾) × (Γ ∪ {𝜀})

)
∪ {⊥},

• 𝑃 = Γ × {0, . . . , 𝐾},
• 𝑄 = 𝐺 ∪ (𝐺 ×𝑄 ×𝐺) ∪ {𝑞0},
• 𝑃 = Γ,

• 𝐸 contains the following edges of the form 𝑞
op
−→ 𝑞′:

(1) op = 𝛿 ∈ Z𝑃 with 𝛿 (𝑝) = 0 for all 𝑝 ∈ 𝑃 , iff 𝑞 = 𝑞0, and 𝑞
′ = (𝑔0, 𝑞, 𝑔1) with 𝑞 = (𝑡, 0, sl(𝑡), 𝜀)

where 𝑡 ∈ T (A, 𝐾) with a first segment going from 𝑔0 to 𝑔1.

(2) op = 𝛿 ∈ Z𝑃 with 𝛿 (𝛾) = −1 and 𝛿 (𝑝) = 0 for all 𝑝 ≠ 𝛾 , iff there is a rule 𝑔1 ↦→ 𝑔2 ◁ 𝛾 ∈ Δr,

𝑞 = 𝑔1 ∈ 𝐺 , and 𝑞′ = (𝑔2, 𝑞, 𝑔3) with 𝑞 = (𝑡, 0, sl(𝑡), 𝜀) where 𝑡 ∈ T (A, 𝐾) with a first

segment going from 𝑔2 to 𝑔3.

(3) op = inflate(𝑞, 𝑆), iff 𝑞 = (𝑔1, 𝑞, 𝑔2) where 𝑞 = (𝑡, 0, 𝑆, 𝜀), and 𝑞′ = (𝑔1, 𝑞
′, 𝑔2) where

𝑞′ = (𝑡, 0, 𝑆, 𝛾0), for some 𝑡 ∈ T (A, 𝐾), 𝑆 ∈ SL(A, 𝐾), 𝑔1, 𝑔2 ∈ 𝐺 .
(4) op = deflate(𝑞, 𝑞′, 𝑝, 𝑝), iff 𝑝 = 𝛾𝑖 , 𝑝 = (𝛾𝑖 , 𝑗),𝑞 = (𝑡, 𝑗, 𝑆,𝛾𝑖 ),𝑞′ = (𝑡, 𝑗, 𝑆,𝛾𝑖+1),𝑞 = (𝑔1, 𝑞, 𝑔2),

and 𝑞′ = (𝑔1, 𝑞
′, 𝑔2), for some 𝑗 ∈ {0, . . . , 𝐾}, 𝑡 ∈ T (A, 𝐾), 𝑆 ∈ SL(A, 𝐾), 𝑖 ∈ {0, . . . , 𝑙 − 1},

𝑔1, 𝑔2 ∈ 𝐺 .
(5) op = deflate(𝑞, 𝑞′, 𝑝, 𝑝), iff 𝑝 = 𝛾𝑙 , 𝑝 = (𝛾𝑙 , 𝑗),𝑞 = (𝑡, 𝑗, 𝑆,𝛾𝑙 ),𝑞′ = (𝑡, 𝑗+1, 𝑆, 𝜀),𝑞 = (𝑔1, 𝑞, 𝑔2),

and 𝑞′ = 𝑔2, for some 𝑗 ∈ {0, . . . , 𝐾 − 1}, 𝑡 ∈ T (A, 𝐾), 𝑆 ∈ SL(A, 𝐾), 𝑔1, 𝑔2 ∈ 𝐺 .
(6) op = deflate(𝑞, 𝑞′, 𝑝, 𝑝), iff 𝑝 = 𝛾𝑙 , 𝑝 = (𝛾𝑙 , 𝐾), 𝑞 = (𝑡, 𝐾, 𝑆,𝛾𝑙 ), 𝑞′ = ⊥, 𝑞 = (𝑔1, 𝑞, 𝑔2), and

𝑞′ = (𝑔1,⊥, 𝑔2), for some 𝑡 ∈ T (A, 𝐾), 𝑆 ∈ SL(A, 𝐾), 𝑔1, 𝑔2 ∈ 𝐺 .
(7) op = burst(⊥) iff 𝑞 = (𝑔1,⊥, 𝑔2) and 𝑞 = 𝑔2 for some 𝑔1, 𝑔2 ∈ 𝐺 .
(8) op = 𝛿 ∈ Z𝑃 with 𝛿 (𝑝) = 0 for all 𝑝 ∈ 𝑃 , iff there is a rule 𝑔1 ↦→ 𝑔2 ◁𝛾 ∈ Δr, 𝑞 = 𝑔1 ∈ 𝐺 and

𝑞′ = (𝑔2, 𝑞, 𝑔3) with 𝑞 = (𝑡, 𝑗, 𝑆, 𝛾0) where 𝑡 ∈ T (A, 𝐾) with a 𝑗 th context switch on symbol

𝛾 followed by a 𝑗th segment going from 𝑔2 to 𝑔3, for some 𝑆 ∈ SL(A, 𝐾), 𝑗 ∈ {1, . . . , 𝐾}.
Intuitively, the edge in (1) spawns the initial thread, the edges in (2) remove a thread with cs-number

0 when it becomes active for the first time and the edges in (3) convert it to a balloon, the edges in (4)

apply the spawns during the 𝑗th segment of a thread by transferring them from the balloon to the

regular places, the edges in (5) and (6) finalize this application process with the edges in (6) handling

the special case of the 𝐾th segment of a thread, the edges in (7) burst balloons containing no more

spawns, and the edges in (8) initialize the application of spawns for a thread with cs-number ≥ 1

that is already being represented by a balloon.

Lemma B.1. The DCPSA has an infinite, progressive, 𝐾-context switch bounded run iff the VASSB
V has an infinite progressive run.

Proof. For the only if direction let 𝜌 be an infinite, progressive, 𝐾-context switch bounded run

ofA. We want to decompose 𝜌 into parts corresponding to a single thread each. To do this we look

at the continuous segments of 𝜌 where a thread is active, starting from the first configuration with

an active thread and ending each segment at a configuration with no active thread, upon which a

new segment begins at the very next configuration. We can now group segments together into

executions of single threads:
• Start with the earliest not yet grouped segment where the active thread has context switch

number 0. Note the local configuration that gets added to the bag at the end of this segment.

• Take the very next ungrouped segment in 𝜌 where the active thread at the beginning matches

the previously noted local configuration. Again, note the local configuration that gets added

to the bag at the end of this segment.

• Repeat the previous step until an empty stack occurs.

Repeating this infinitely often decomposes 𝜌 into infinitely many thread executions of 𝐾 + 1

segments each. This is because due to progressiveness all local configurations have to be resumed
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and all thread terminations occur after exactly 𝐾 context switches. Each execution also corresponds

to a thread type 𝑡 , which can be determined by taking note of the global state and top of stack

symbol at the start of each segment and the global state at the end of each segment of the execution.

Since all executions end in the empty stack, 𝐿𝑡 ≠ ∅ for all thread types 𝑡 that occur on 𝜌 in this

way. Let us now construct from 𝜌 an infinite run ofV starting from 𝑐0 = (𝑞0, ∅, ∅):

• Start with the edge from (1) to create a token on the place corresponding to the initial stack

symbol 𝛾0.

• Go over all consecutive segments of 𝜌 . If a segment is the first segment of an execution:

– Start with an edge from (2) to remove a token from place 𝛾 , which is the top of stack symbol

this segment starts with. Use as 𝑔2 the global state this segment starts with, as 𝑔3 the global

state this segment ends in, and as 𝑡 the thread type this segment’s execution corresponds

to. This leads to a state ofV that contains the semi-linear set 𝑠 (𝑡).
– Next, take an edge from (3) to create a balloon whose contents characterize exactly the

spawns made by this segment’s execution. This is possible because we kept track of 𝑠 (𝑡) in
the state, and the appropriate balloon contents are in this semi-linear set by construction.

– From here we need to deflate the balloon |Γ | times to transfer all the spawns from this

segment to the places ofV . This is done using the edges from (4) for each 𝑖 from 0 to 𝑙 − 1

on the balloon places (𝛾0, 0) to (𝛾𝑙−1, 0). The 0 as the second component is because this is

the first segment of an execution.

– If this is not the last segment of its execution, we use an edge from (5) to perform the last

deflation on the balloon place (𝛾𝑙 , 0) and go to the global state that this segment ends in,

using that state as 𝑔2.

– If it is the last segment of its execution we instead use an edge from (6) perform the same

deflation, but go to a state (𝑔1,⊥, 𝑔2) instead. From there we use the edge from (7) to burst

the balloon and finally go to state 𝑔2, which this segment ends in.

• If a segment is not the first segment of its execution:

– Start with an edge from (8) using as 𝑔2 the global state this segment starts with, as 𝑔3 the

global state this segment ends in, and as 𝑞 the balloon state we ended in after handling the

previous segment of this execution.

– From here continue like for a first segment of an execution, deflating the balloon |Γ | times

in the next few steps. Note that we operate on balloon places Γ × { 𝑗}, where this is the 𝑗 th
segment within its execution, instead of Γ × {0}.

Since each thread execution of 𝜌 has exactly 𝐾 segments, any balloon will eventually reach the

𝐾th segment while going over 𝜌 . This results in an edge from (7) being used to burst the balloon.

Therefore any balloon state occurring in a configuration ofV on the constructed run will be used

for a deflate or burst later. Furthermore, each place 𝛾 ∈ Γ corresponds to a local configuration (𝛾, 0)
of A, and we remove a token from it whenever we switch in a thread with that local configuration.

Since such local configurations always have to be resumed on 𝜌 , the corresponding places will

always have tokens removed from them as well. Thus the handling of all balloons and places fulfils

the conditions for a progressive run.

The constructed run ofV is also sound: For each segment of 𝜌 it has a sequence of transitions

that make the same state change as that segment, and also apply the same spawns. The latter is due

to initially choosing the contents during the creation of a balloon correctly. A token representing

the initial thread is also created in the beginning of the run. Since the transitions from one segment

to the next require the same resumption rules Δr as in 𝜌 (see edges (2) and (8)) these are also

possible inV .
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For the if direction we do a very similar construction, but backwards. Starting with an infinite

progressive run ofV from 𝑐0, we decompose it into segments that end in a state in𝐺 . Afterwards

we group those segments together by matching the local balloon configurations in the same way

we did for local thread configurations before. Then by construction of 𝐿𝑡 we know that there is a

thread execution of type 𝑡 that makes the same spawns in each segment as the group of one balloon

does. Those executions will all terminate after 𝐾 context switches, guaranteeing progressiveness,

and we can interleave them in the same way as the balloon segments to form an infinite progressive

run of A.

C PROOFS FOR SECTION 5
Balloons with Identity. In order to prove Lemma 5.1, we will work with runs which contain a

unique identity for every balloon i.e. with balloons-with-id. Formally, a balloon-with-id is a tuple

(𝑏, 𝑖) where 𝑏 is a balloon and 𝑖 ∈ N. A configuration-with-id 𝑑 is a tuple 𝑑 = (𝑞,m, 𝜈) where 𝜈 is a
multiset of balloons-with-id. For a VASSB V = (𝑄, 𝑃,Ω,Φ, 𝐸), the edges in 𝐸 define a transition

relation on configurations-with-id. For an edge 𝑞
op
−→ 𝑞′, and configurations-with-id 𝑑 = (𝑞,m, n)

and 𝑑 ′ = (𝑞′,m′, n′), we define 𝑑
op
−→ 𝑑 ′:

• If op = 𝛿 ∈ Z𝑃 and m′ = m + 𝛿 and n′ = n.
• If op = inflate(𝜎, 𝑆) and m′ = m and n′ = n + [[((𝜎, k), 𝑖)]] for some k ∈ 𝑆 and 𝑖 ∈ N. That is,
we create a new balloon with state 𝜎 , multiset k for some k ∈ 𝑆 and arbitrary id 𝑖 .

• If op = deflate(𝜎, 𝜎 ′, 𝜋, 𝑝) and there is a balloon-with-id (𝑏, 𝑖) = ((𝜎, k), 𝑖) ∈ Ω ×M[Φ] with
n(𝑏, 𝑖) ≥ 1 andm′ = m + k(𝜋) · [[𝑝]] and n′ = n − [[(𝑏, 𝑖)]] + [[((𝜎 ′, k′), 𝑖)]], where k′(𝜋) = 0

and k′(𝜋 ′) = k(𝜋 ′) for all 𝜋 ′ ∈ Φ \ {𝜋}. That is, we pick a balloon-with-id ((𝜎, k), 𝑖) from n,
transfer the contents in place 𝜋 from k to place 𝑝 in m, and update the state 𝜎 to 𝜎 ′ while
retaining its id. Here we say the balloon-with-id ((𝜎, k), 𝑖) was deflated.
• If op = burst(𝜎) and there is a balloon-with-id (𝑏, 𝑖) = ((𝜎, k), 𝑖) ∈ Ω × M[Φ] × N with

n(𝑏, 𝑖) ≥ 1 and m′ = m and n′ = n ⊖ [[(𝑏, 𝑖)]]. This means we pick some balloon-with-id

(𝑏, 𝑖) with state 𝜎 from our multiset n of balloons-with-id and remove it, making any tokens

still contained in its balloon places disappear as well. Here we say the balloon-with-id (𝑏, 𝑖)
is burst.

We often simply say ‘the balloon 𝑖’ was burst (or deflated) when balloon identities are unique. A

run-with-id 𝜏 = 𝑑0

op
1−−→ 𝑑1

op
1−−→ 𝑑2 · · · is a finite or infinite sequence of configurations-with-id. We

note that a semiconfiguration-with-id is just a semiconfiguration since there are no balloons.

Definition C.1. We associate a canonical run-with-id 𝜏 = 𝑑0

op
1−−→ 𝑑1

op
1−−→ 𝑑2 · · · to any given run

𝜌 = 𝑐0

op
1−−→ 𝑐1

op
2−−→ · · · as follows:

• If op𝑖 creates a balloon 𝑏 in 𝜌 , then it creates (𝑏, 𝑖) in 𝜏 . This implies that balloons are assigned

unique id’s since every operation creates only one balloon.

• If op𝑖 deflates (resp. bursts) a balloon 𝑏 in 𝜌 , then it deflates (resp. bursts) the balloon-with-id

(𝑏, 𝑗) in 𝜏 where 𝑗 =𝑚𝑖𝑛{𝑘 | 𝑑𝑖−1.𝜈 (𝑏, 𝑘) ≥ 1}.
We observe that the multiset 𝑑𝑖 .𝜈 of any configuration-with-id 𝑑𝑖 in a canonical run-with-id

𝜏 is infact a set. The set of id’s in 𝜏 is denoted 𝐼 (𝜏). A collection of balloons-with-id with the

same id 𝑖0 may be viewed as a particular balloon which undergoes a sequence of operations

seq𝑖1 = op𝑖0 , op𝑖1 , op𝑖2 , · · · . The balloons (𝑏 𝑗 , 𝑖0) resulting from the operations op𝑖 𝑗 are associated
with the id 𝑖0 and we will perform surgery on a run-with-id 𝜏 resulting in a modified run 𝜏 ′ by
replacing the balloon (𝑏1, 𝑖0) at its point of inflation op𝑖0 by (𝑏

′
1
, 𝑖0) in 𝜏 ′, with the implicit assumption

that the sequence of operations seq′𝑖0 in the modified run-with-id 𝜏 ′ now act on (𝑏 ′
1
, 𝑖0) instead.
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Note that we use the notation seq′𝑖 to represent the sequence of operations on id 𝑖 occuring in the

modified run 𝜏 ′. The sequences seq𝑖0 and seq𝑗0 are disjoint for 𝑖0 ≠ 𝑗0 and thus the set of sequences

{seq𝑖 | 𝑖 ∈ 𝜏} form a partition of the indices 𝐼𝐵 (𝜏) = {𝑖 | op𝑖 is a balloon operation }. We will write

𝑖 .𝜎, 𝑖 .k in short for (𝑏, 𝑖).𝜎 and (𝑏, 𝑖).k where (𝑏, 𝑖) is created by op𝑖 . The linear set used to create a

balloon with the id 𝑖 is denoted 𝐿𝑖 . A run-with-id 𝜏 corresponds to a run 𝜌 if 𝜌 is obtained from 𝜏 by

removing id’s. For a balloon 𝑏 in 𝜌 , the set {(𝑏, 𝑖) | 𝑖 ∈ 𝐼 (𝜏)} of balloons-with-id in a corresponding

𝜏 is called the balloon class of 𝑏.
The fact that reachability remains preserved whether considering runs or runs-with-id immedi-

ately follows from the definition of a canonical run-with-id:

Proposition C.2. GivenV and its semiconfigurations 𝑠1, 𝑠2, there exists a run 𝜌 = 𝑠1

∗−→ 𝑠2 ofV
iff there exists a corresponding run-with-id 𝜏 = 𝑠1

∗−→ 𝑠2.

The fact that progressivenss is also preserved is also not difficult to see. We first define the

obvious notion of progressiveness for a run-with-id.

Definition C.3. A progressive run-with-id 𝜏 = 𝑑0

op
1−−→ 𝑑1

op
1−−→ 𝑑2 · · · is one such that:

• for every balloon-with-id (𝑏, 𝑖) ∈ 𝑑 𝑗 for some 𝑑 𝑗 ∈ 𝜏 , there exists 𝑑𝑘 with 𝑘 > 𝑗 such that

𝑑𝑘
op𝑘−−→ 𝑑𝑘+1 where op𝑘 is a deflate or burst operation on id 𝑖 , and

• for every 𝑝 ∈ 𝑃 if 𝑑𝑖 .m(𝑝) > 0 then there exists 𝑗 > 𝑖 such that 𝑑 𝑗
𝛿−→ 𝑑 𝑗+1 where 𝛿 (𝑝) < 0.

The following proposition follows from the above definition.

Proposition C.4. In a progressive run-with-id 𝜏 , for any id 𝑖 , one of the following is true:

(1) seq𝑖 is finite and the final operation in seq𝑖 is a burst operation, or
(2) seq𝑖 is infinite.

If seq𝑖 is finite for all 𝑖 , we say ‘every balloon is burst in 𝜏 ’. The existence of progressive runs

and progressive runs-with-id also coincide.

Proposition C.5. For any givenV and its semiconfiguration 𝑠 , there exists a progressive run 𝜌
from 𝑠 iff there exists a corresponding progressive run-with-id 𝜏 ′ from 𝑠 .

Proof. Clearly a progressive run 𝜌 can be obtained from a progressive run-with-id 𝜏 by id-

removal. For the converse direction, consider the canonical 𝜏 = 𝑑0

op
1−−→ 𝑑1

op
1−−→ 𝑑2 · · · corresponding

to 𝜌 = 𝑐0

op
1−−→ 𝑐1

op
2−−→ 𝑐2 · · · . The canonical 𝜏 satisfies all progressiveness conditions except for one

special case: a balloon𝑏 in 𝜌 which undergoes an infinite sequence of trivial deflates at 𝑗1, 𝑗2, · · · may

result in 𝜏 which contains multiple balloons-with-id in the balloon class of 𝑏 at every configuration

𝑑 𝑗1 , 𝑑 𝑗2 , · · · . By construction, 𝜏 always chooses the least id and hence 𝜏 is not progressive for other

id’s in the balloon class of 𝑏. The progressive 𝜏 ′ is obtained by modifying 𝜏 to ‘dovetail’ through all

possible choices in the balloon class of 𝑏 (i.e. if the id’s in the balloon class are 𝑖1 < 𝑖2 < 𝑖3 · · · , then
the choices made are 𝑖1, 𝑖1, 𝑖2, 𝑖1, 𝑖2, 𝑖3, 𝑖1 · · · ). We note that 𝜏 ′ agrees with 𝜏 on all inflate and burst

operations.

We now consider the two properties assumed in the proof of Lemma 5.1, namely that of being

zero-base and being typed and show that it is possible to construct aVASSBV ′with these properties
from a given VASSBV while preserving reachability and progressiveness.
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Balloon Types and Surgeries on Balloons. A deflate operation transferring a non-zero number of

tokens is called a non-trivial deflate, otherwise it is a trivial deflate. Clearly, a non-trivial deflate
moving tokens from a balloon place 𝜋 must be the first deflate which transfers tokens from 𝜋 ,

motivating the following definition. For an id 𝑖 , define

typeseq𝑖 ={(𝜋, 𝑝, 𝑗) | ∃𝜎, 𝜎 ′ ∈ Ω ∃ 𝑗 ∈ seq𝑖 : op 𝑗 = deflate(𝜎, 𝜎 ′, 𝜋, 𝑝) and
∀𝜎 ′′, 𝜎 ′′′ ∈ Ω ∀𝑝 ′ ∈ 𝑃 ∀𝑗 ′ ∈ seq𝑖 , 𝑗 ′ < 𝑗 : op 𝑗 ′ ≠ deflate(𝜎 ′′, 𝜎 ′′′, 𝜋, 𝑝 ′)}

We write 𝑖 <𝑡 𝑗 for id’s 𝑖, 𝑗 if 𝑖 < 𝑗 , 𝐿𝑖 = 𝐿 𝑗 where 𝐿𝑖 (resp. 𝐿 𝑗 ) is the linear set used to inflate balloon

𝑖 (resp. 𝑗 ) and for every (𝜋, 𝑝) ∈ Φ × 𝑃 , there exists 𝑘 ∈ seq𝑖 such that (𝜋, 𝑝, 𝑘) ∈ typeseq𝑖 iff there

exists 𝑘 ′ ∈ seq𝑗 with 𝑘 ′ > 𝑘 such that (𝜋, 𝑝, 𝑘 ′) ∈ typeseq𝑗 .
A deflate-sequence 𝑆 = (𝜋1, 𝑝1), (𝜋2, p2), · · · , (𝜋𝑛, 𝑝𝑛) is a finite sequence of elements from Φ × 𝑃

which satisfies the property that for all 𝑖, 𝑗 ∈ [1, 𝑛], we have 𝜋𝑖 ≠ 𝜋 𝑗 . We write 𝑛 = |𝑆 | and also write
set(𝑆) for the set of tuples (𝜋𝑖 , 𝑝𝑖 ) obtained from 𝑆 by ignoring the order. A marked deflate-sequence

𝑀 = (𝑆, 𝑖) is a tuple consisting of a deflate-sequence 𝑆 and 𝑖 ∈ [0, · · · , |𝑆 |]. We write𝑀.𝑆 and𝑀.𝑖

for the two components of𝑀 . If𝑀 ′ = (𝑆, 𝑖 + 1) and𝑀 = (𝑆, 𝑖), we write𝑀 ′ = 𝑀 + 1. The set of all

marked deflate-sequences is denoted byM.

Let typeseq𝑖 ⇂ = (𝜋1, 𝑝1), (𝜋2, 𝑝2), · · · , (𝜋𝑛, 𝑝𝑛) be the deflate-sequence obtained by projecting

typeseq𝑖 to the first two components, in increasing order of the third component. We write 𝑘 =

typeseq𝑖 ( 𝑗) if (𝜋 𝑗 , 𝑝 𝑗 , 𝑘) ∈ typeseq𝑖 . We write 𝑖 ∼𝑡 𝑗 if typeseq𝑖⇂ = typeseq𝑗⇂ and 𝐿𝑖 = 𝐿 𝑗 . A tuple

𝑡 = (𝐿𝑖 , typeseq𝑖⇂) is called a type and only depends onV . The set of finitely many types associated

withV is denoted TV ; we drop the subscript whenV is clear from the context.

Given any VASSBV = (𝑄, 𝑃,Ω,Φ, 𝐸𝑝 ∪ 𝐸𝑛 ∪ 𝐸𝑑 ∪ 𝐸𝑏), its typed extensionV ′ = (𝑄, 𝑃,Ω′,Φ, 𝐸𝑝 ∪
𝐸 ′𝑛 ∪ 𝐸 ′𝑑 ∪ 𝐸

′
𝑏
) is given by Ω′ = Ω ×M and set of balloon edges is given as:

(1) For each 𝑒 = 𝑞
inflate(𝜎,𝐿)
−−−−−−−−−→ 𝑞′ in 𝐸𝑛 , for each𝑀 ∈ M such that𝑀.𝑖 = 0, add

𝑞
inflate( (𝜎,𝑀),𝐿)
−−−−−−−−−−−−→ 𝑞′ to 𝐸 ′𝑛 ,

(2) for each 𝑒 = 𝑞
deflate(𝜎,𝜎′,𝜋,𝑝)
−−−−−−−−−−−−→ 𝑞′ in 𝐸𝑑 and for each 𝑀 ∈ M such that (𝜋, 𝑝) = (𝜋 𝑗 , 𝑝 𝑗 ) ∈ 𝑀

for some 𝑗 ∈ [1, · · · , |𝑀.𝑆 |]
(a) if 𝑗 ≤ 𝑀.𝑖 then add

𝑞
deflate( (𝜎,𝑀),(𝜎′,𝑀),𝜋,𝑝)
−−−−−−−−−−−−−−−−−−−−→ 𝑞′ to 𝐸 ′

𝑑
,

(b) else if 𝑗 = (𝑀.𝑖) + 1 then add 𝑞
deflate( (𝜎,𝑀),(𝜎′,𝑀+1),𝜋,𝑝)
−−−−−−−−−−−−−−−−−−−−−→ 𝑞′ to 𝐸 ′

𝑑
, and

(3) for each 𝑒 = 𝑞
burst(𝜎)
−−−−−−→ 𝑞′ in 𝐸𝑏 and for each𝑀 ∈ M with𝑀.𝑖 = |𝑀.𝑆 |, add 𝑞

burst(𝜎,𝑀)
−−−−−−−−→ 𝑞′ to

𝐸 ′
𝑏
.

Lemma C.6. Given any VASSBV and two semiconfigurations 𝑠1, 𝑠2 ofV , its typed extension VASSB
V ′ satisfies the following properties:
(1) V has a progressive run starting from 𝑠1 iffV ′ has a progressive run starting from 𝑠1 and
(2) (V, 𝑠1, 𝑠2) ∈ REACH iff (V ′, 𝑠1, 𝑠2) ∈ REACH.

Proof. Given a run 𝜌 ′ = 𝑐 ′
0

op′
1−−→ 𝑐 ′

1

op′
2−−→ · · · ofV ′ starting from a semiconfiguration 𝑐 ′

0
, it is clear

that there exists a run 𝜌 = 𝑐 ′
0

op
1−−→ 𝑐1

op
2−−→ · · · ofV where for each 𝑘 ≥ 1,

• if op′
𝑘
∈ 𝐸𝑝 then op𝑘 = op′

𝑘
,

• else if op′
𝑘
creates a balloon 𝑏 ′ with state (𝜎,𝑀), then op𝑘 creates a balloon 𝑏 such that

𝑏.k = 𝑏 ′.k and 𝑏.𝜎 = 𝜎 ,

• otherwise op′
𝑘
is a deflate or burst operation on a balloon 𝑏 ′ with state (𝜎,𝑀) and op𝑘 applies

the corresponding deflate or burst operation to a balloon 𝑏 with 𝑏.k = 𝑏 ′.k and 𝑏.𝜎 = 𝜎 .
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By induction on length of the run, we see that 𝑐𝑘 .m = 𝑐 ′
𝑘
.m for each 𝑘 ≥ 0 and further, there is a

bijection between 𝑐𝑘 .𝜈 and 𝑐
′
𝑘
.𝜈 which preserves the balloon contents with the state of a balloon in

𝑐𝑘 obtained by projecting the state of the corresponding balloon to the first component. If 𝜌 ′ is a
finite run ending in a semiconfiguration, this implies that 𝜌 also ends in the same semiconfiguration.

Since 𝜌 ′ is progressive with respect to balloon states of the form (𝜎,𝑀), clearly 𝜌 is progressive

with respect to the balloon states 𝜎 .

For the converse direction, we argue using runs-with-id. Let 𝜏 = 𝑑0

op
1−−→ 𝑑1

op
2−−→ · · · be the

canonical run-with-id ofV starting from a semiconfiguration 𝑑0 for a given 𝜌 ofV . We define the

run-with-id 𝜏 ′ = 𝑑0

op′
1−−→ 𝑑1

op′
2−−→ · · · ofV ′ where for each 𝑘 ≥ 1,

• if op𝑘 ∈ 𝐸𝑝 then op′
𝑘
= op𝑘 ,

• if op𝑘 ∈ 𝐸𝑛 creates (𝑏, 𝑖) then op′
𝑘
creates (𝑏 ′, 𝑖) where 𝑏 ′.𝜎 = (𝑏.𝜎,𝑀) with𝑀 = (typeseq𝑖 ⇂

, 0) and 𝑏 ′.k = 𝑏.k, and
• if op𝑘 ∈ 𝐸𝑑 ∪ 𝐸𝑏 and op𝑘 ∈ seq𝑖 for some id 𝑖 , then op′

𝑘
∈ seq′𝑖 . Here seq′𝑖 (resp. seq𝑖 ) refers to

the sequence of operations on id 𝑖 in 𝜏 ′ (resp. 𝜏).

If 𝜏 is a finite run between semiconfigurations 𝑠1 and 𝑠2, then so is 𝜏 ′ and thus we have (2) of the

lemma. If 𝜏 is a progressive run-with-id from 𝑠1 then so is 𝜏 ′ and by Proposition C.5, we conclude

(1) of the lemma.

In the remainder of this section, we assume that any VASSB is typed.

A VASSBV is said to be zero-base if every linear set inV has base vector ∅.

Lemma C.7. Given any VASSBV , we can construct a zero-base VASSBV ′ such that for any two
semiconfigurations 𝑠1, 𝑠2 ofV ,

(1) V has a progressive run starting from 𝑠1 iffV ′ has a progressive run starting from 𝑠1 and
(2) (V, 𝑠1, 𝑠2) ∈ REACH iff (V ′, 𝑠1, 𝑠2) ∈ REACH.

Proof. Wemay assume that there exists a unique linear set 𝐿𝜎 associated with any given balloon

state 𝜎 ofV such that any balloon 𝑏 inflated with state 𝜎 has 𝑏.k ∈ 𝐿𝜎 , by applying the following

modification toV . LetL be the finite set of linear sets used inV . We replace the set of balloon states

Ω by the cartesian product Ω×L and for each inflate operation inflate(𝜎, 𝐿) we use inflate((𝜎, 𝐿), 𝐿)
in the modified VASSB. This modification is easily seen to preserve progressiveness and reachability.

We also assume that the givenV is typed and instead of writing balloon states as tuples (𝜎,𝑀), we
assume that every state 𝜎 comes with an associated𝑀𝜎 .

Let V = (𝑄, 𝑃,Ω,Φ, 𝐸𝑝 ∪ 𝐸𝑛 ∪ 𝐸𝑑 ∪ 𝐸𝑏) and b𝜎 be the base vector of a balloon state 𝜎 ∈ Ω.
V ′ = (𝑄 ′, 𝑃,Ω′,Φ, 𝐸 ′𝑝 ∪ 𝐸 ′𝑛 ∪ 𝐸 ′𝑑 ∪ 𝐸𝑏) is constructed fromV as follows:

(1) 𝑄 ′ = 𝑄 ∪ 𝐸𝑑 × 𝑃 ,
(2) Ω′ = Ω contains a state 𝜎 ′ for each 𝜎 such that 𝐿𝜎′ is obtained from 𝐿𝜎 by removing the base

vector b𝜎 ,

(3) 𝐸 ′𝑝 = 𝐸𝑝 ∪𝐸 ′′𝑝 , where 𝐸 ′′𝑝 contains for each edge 𝑒 = 𝑞
deflate(𝜎1,𝜎2,𝜋,𝑝)−−−−−−−−−−−−−→ 𝑞′ in 𝐸𝑑 with𝑀𝜎1

≠ 𝑀𝜎2
,

the edge (𝑒, 𝑝) 𝛿−→ 𝑞′ where 𝛿 (𝑝) = b𝜎 (𝑝) and 𝛿 (𝑝 ′) = 0 for 𝑝 ′ ≠ 𝑝 ,

(4) 𝐸 ′𝑛 contains an edge 𝑞
inflate(𝜎′,𝐿𝜎′ )−−−−−−−−−−−→ 𝑞′ for each edge 𝑞

inflate(𝜎,𝐿𝜎 )−−−−−−−−−−→ 𝑞′ in 𝐸𝑛 , and

(5) 𝐸 ′
𝑑
contains the following edges for each 𝑒 = 𝑞

deflate(𝜎1,𝜎2,𝜋,𝑝)−−−−−−−−−−−−−→ 𝑞′ in 𝐸𝑑 :

(a) if𝑀𝜎1
≠ 𝑀𝜎2

then we add 𝑞
deflate(𝜎′

1
,𝜎′

2
,𝜋,𝑝)

−−−−−−−−−−−−−→ (𝑒, 𝑝) to 𝐸 ′
𝑑
,

(b) else we add 𝑞
deflate(𝜎′

1
,𝜎′

2
,𝜋,𝑝)

−−−−−−−−−−−−−→ 𝑞′ to 𝐸 ′
𝑑
.
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Given a finite run 𝜌 = 𝑐0 −→ 𝑐1 −→ 𝑐2 · · · 𝑐𝑘 ofV between semiconfigurations, there exists a finite run

𝜌 ′ = 𝑐 ′
0

∗−→ 𝑐 ′
1

∗−→ 𝑐 ′
2
· · · 𝑐 ′

𝑘
where for every inflate(𝜎, 𝐿) operation in 𝜌 , we perform a inflate(𝜎 ′, 𝐿)

operation in 𝜌 ′, creating a balloon which is identical except for the base vector. The missing base

vector tokens are then transferred to the appropriate place via edges of the form (𝑒, 𝑝) 𝛿−→ 𝑞′ from
(2). Note that the extra base-vector tokens are only added during non-trivial deflates, which is

information that can be obtained from the type information in𝑀𝜎 .

Conversely if 𝜌 ′ is a a finite run ofV ′ between semiconfigurations ofV , we observe that the

states use to add the missing tokens are sandwiched between the states of a deflate operation and

we obtain a run 𝜌 from 𝜌 ′ by replacing the inflate(𝜎 ′, 𝐿) operations by inflate(𝜎, 𝐿) operations and
replacing every chain of edges 𝑞 → (𝑒, 𝑝) → 𝑞′ by the corresponding deflate edge 𝑞 → 𝑞′ ofV .

Thus reachability is preserved. It is easy to see that the construction also preserves progressiveness

since any infinite run of V ′ can also be decomposed into segments which are runs between

semiconfigurations ofV .

Henceforth we assume that any VASSB is zero-base.

Token-shifting Surgery. Fix a run-with-id 𝜏 = 𝑑0

op
1−−→ 𝑑1

op
2−−→ 𝑑2 · · · of a zero-base VASSBV . Let 𝑖

be an id and 𝐼 a finite set of id’s with the property that for each 𝑗 ∈ 𝐼 we have 𝑖 <𝑡 𝑗 . Let 𝑁 =
∑

k∈𝐾 k
where 𝐾 = {k | ∃ 𝑗 ∈ 𝐼 , op 𝑗 creates balloon 𝑗 with k = 𝑗 .k}. The token-shifting surgery S𝑖←𝐼 on 𝜏

yielding S𝑖←𝐼 (𝜏) = 𝜏 ′ = 𝑑 ′0
op′

1−−→ 𝑑 ′
1

op′
2−−→ 𝑑 ′

2
· · · is defined as, for each 𝑘 ≥ 1:

(1) If 𝑘 ∉ 𝐼 ∪ {𝑖}, then op′
𝑘
= op𝑘 ,

(2) else if 𝑘 = 𝑖 then if op𝑖 creates (𝑏, 𝑖) then op′𝑖 creates (𝑏 ′, 𝑖) where𝑏 ′.𝜎 = 𝑏.𝜎 and𝑏 ′.k = 𝑏.k+𝑁 ,

(3) else 𝑘 ∈ 𝐼 and if op𝑘 creates (𝑏𝑘 , 𝑘) then op′
𝑘
creates (𝑏 ′, 𝑘) where 𝑏 ′.𝜎 = 𝑏.𝜎 and 𝑏 ′.k = ∅.

In other words, the only difference between 𝜏 ′ and 𝜏 is the content of balloons created at 𝐼 ∪ {𝑖}
and the resulting changes in the configurations.

Proposition C.8. For any 𝜏 = 𝑑0

op
1−−→ 𝑑1

op
2−−→ 𝑑2 · · · and any S𝑖←𝐼 , the run S𝑖←𝐼 (𝜏) = 𝜏 ′ = 𝑑 ′0

op′
1−−→

𝑑 ′
1

op
2−−→ 𝑑 ′

2
· · · is a valid run. Further, if 𝜏 is a progressive run from 𝑠 then so is S𝑖←𝐼 (𝜏). If 𝜏 = 𝑠

∗−→ 𝑠 ′

is a finite run between two semiconfigurations, then S𝑖←𝐼 (𝜏) is also a run from 𝑠 to 𝑠 ′.

Proof. The fact thatV is zero-base ensures that 𝑏 ′.k as defined in (2) belongs to the linear set

𝐿𝑖 . The condition 𝑖 <𝑡 𝑗 for each 𝑗 ∈ 𝐼 implies that the balloon 𝑖 makes its non-trivial deflates

before any of the balloons with an id from 𝐼 . This implies that for each 𝑘 ≥ 1 we have 𝑑𝑘 .m ≤ 𝑑 ′𝑘 .m
since the total number of tokens transferred from 𝜋 to 𝑝 for any 𝜋 ∈ Φ, 𝑝 ∈ 𝑃 in 𝜏 ′ remains greater

than that in 𝜏 for every prefix 𝜏 [0, 𝑘]. By monotonicity, every operation remains enabled in 𝜏 ′.
Progressiveness is preserved since the only change is in the content of some of the newly created

balloons. Since the total number of tokens transferred in the entire run is the same in 𝜏 and 𝜏 ′ for
each (𝜋, 𝑝) in a finite run between two semiconfigurations 𝑠, 𝑠 ′, and there are no balloons in 𝑠 ′, this
implies that 𝜏 ′ reaches the same semiconfiguration 𝑠 ′.

C.1 Proof of Lemma 5.1
We have now introduced all of the machinery required to prove Lemma 5.1. We will constructV ′
fromV such that the following are equivalent:

(S1) there exists a progressive run-with-id 𝜏 = 𝑠 → 𝑑1 → 𝑑2 · · · ofV ,

(S2) there exists a progressive run-with-id 𝜏 ′ = 𝑠 → 𝑑 ′
1
→ 𝑑 ′

2
· · · of V ′ which bursts every

balloon, and

(S3) there exists an 𝐴, 𝐵-witness 𝜌 ′
𝐴,𝐵

= 𝑠
∗−→ 𝑐

∗−→ 𝑐 ′ ofV ′ for some 𝐴 ⊆ 𝑃 ′, 𝐵 ⊆ Ω′.

, Vol. 1, No. 1, Article . Publication date: October 2020.



42 Pascal Baumann, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche

We will first show (S1) iff (S2) and then show (S2) iff (S3). By Lemmas C.7 and C.6 we assume that

VASSBV is zero-base and typed, and that every 𝜎 ∈ Ω comes with an associated marked deflate-

sequence𝑀𝜎 and do not write balloon states explicitly as (𝜎,𝑀𝜎 ). FromV = (𝑄, 𝑃,Ω,Φ, 𝐸𝑝 ∪ 𝐸𝑛 ∪
𝐸𝑑 ∪ 𝐸𝑏), we constructV ′ = (𝑄 ′, 𝑃 ′,Ω,Φ, (𝐸𝑝 ∪ 𝐸 ′′𝑝 ) ∪ 𝐸𝑛 ∪ 𝐸 ′𝑑 ∪ 𝐸

′
𝑏
) as follows:

• 𝑄 ′ = 𝑄 ∪ (𝐸 × {0, 1}),
• 𝑃 ′ = 𝑃 ∪ (Ω × {0, 1}),
• 𝐸 ′ is defined as follows:

(1) For each 𝑒 = 𝑞
deflate(𝜎,𝜎′,𝜋,𝑝)
−−−−−−−−−−−−→ 𝑞′ in 𝐸𝑑 where (𝜋, 𝑝) = (𝜋 𝑗 , 𝑝 𝑗 ) ∈ 𝑀𝜎 ,

(a) if𝑀𝜎 .𝑖 ≤ |𝑀𝜎 .𝑆 | − 1 then add,

𝑞
deflate(𝜎,𝜎′,𝜋,𝑝)
−−−−−−−−−−−−→ 𝑞′ to 𝐸 ′

𝑑
,

(b) else if𝑀𝜎 .𝑖 = |𝑀𝜎 .𝑆 |,
(i) 𝑞

deflate(𝜎,𝜎′,𝜋,𝑝)
−−−−−−−−−−−−→ 𝑞′ to 𝐸 ′

𝑑
,

(ii) 𝑞
deflate(𝜎,𝜎′,𝜋,𝑝)
−−−−−−−−−−−−→ (𝑒, 0) to 𝐸 ′

𝑑
,

(iii) (𝑒, 0)
burst(𝜎′)
−−−−−−−→ (𝑒, 1) to 𝐸 ′

𝑏
,

(iv) (𝑒, 1) 𝜎
′+
−−→ 𝑞′ to 𝐸 ′′𝑝 .

(v) if 𝜎 = 𝜎 ′, for (𝑖, 𝑗) ∈ {(0, 1), (1, 0)} add 𝑞
(𝜎,𝑖)+ (𝜎,𝑗)−
−−−−−−−−−→ 𝑞′ to 𝐸 ′′𝑝 ,

(vi) else for each 𝑖, 𝑗 ∈ {0, 1} add 𝑞
(𝜎,𝑖)− (𝜎′, 𝑗)+
−−−−−−−−−−→ 𝑞′ to 𝐸 ′′𝑝

(2) For each 𝑒 = 𝑞
burst(𝜎)
−−−−−−→ 𝑞′ in 𝐸𝑏 , add 𝑞

burst(𝜎)
−−−−−−→ 𝑞′ to 𝐸 ′

𝑏
.

For 𝑘, 𝑘 ′ ∈ seq𝑖 , we write 𝑘 ⋖𝑖 𝑘 ′ to denote the successor relation in seq𝑖 . Let𝑚 be the smallest

id in 𝜏 such that seq𝑚 is infinite. Since there can be at most finitely many indices in seq𝑚 where

a non-trivial deflate occurs, there exists 𝑛 ∈ seq𝑚 which is the last such index. Intuitively, V ′
uses the edges in (1 b ii) to (1 b vi) to burst the balloon with id𝑚 at operation 𝑛 where the last

non-trivial deflate occurs and uses a VASS token to simulate the effect of the infinite suffix of seq𝑚
which performs only trivial deflates. We use the notation 𝑝+(resp. 𝑝−) to indicate that the place 𝑝 is

incremented (resp. decremented). For example, for 𝑝1, 𝑝2 ∈ 𝑃 , we write 𝑝+1 , 𝑝−2 , and 𝑝−1 𝑝+2 for the

vectors mapping 𝑝1 to +1 and all other places to 0, 𝑝2 to −1 and all other places to 0, and 𝑝1 to −1,

𝑝2 to +1, and all other places to 0, respectively.

From the given progressive 𝜏 = 𝑠
op

1−−→ 𝑑1

op
2−−→ 𝑑2 · · · ofV , we construct a progressive 𝜏 ′

1
= 𝑑 ′

0

∗−→
𝑑 ′𝑖1

∗−→ 𝑑 ′𝑖2 · · · forV
′
. We set 𝑑 ′

0
= 𝑠 and for every 𝑘 , the run 𝑑 ′𝑖𝑘−1

∗−→ 𝑑 ′𝑖𝑘 is defined as follows:

(I) If 𝑘 ∉ seq𝑚 or 𝑘 < 𝑛 then

(a) if op𝑘 = 𝛿 then 𝑖𝑘 = 𝑖𝑘−1 + 1 and 𝑑 ′𝑖𝑘−1

𝛿−→ 𝑑 ′𝑖𝑘 ,
(b) if op𝑘 = inflate(𝜎, 𝐿) creates balloon (𝑏, 𝑘), then 𝑖𝑘 = 𝑖𝑘−1 + 1 and

𝑑 ′𝑖𝑘−1

inflate(𝜎,𝐿)
−−−−−−−−−→ 𝑑 ′𝑖𝑘 creates (𝑏 ′, 𝑖𝑘 ) with 𝑏 ′.k = 𝑏.k,

(c) else if op𝑘 = deflate(𝜎, 𝜎 ′, 𝜋, 𝑝) deflates balloon 𝑘 ′, then 𝑖𝑘 = 𝑖𝑘−1 + 1 and

𝑑 ′𝑖𝑘−1

deflate(𝜎,𝜎′,𝜋,𝑝)
−−−−−−−−−−−−→ 𝑑 ′𝑖𝑘 deflates balloon 𝑖𝑘′ ,

(d) else op𝑘 = burst(𝜎) bursts balloon 𝑘 ′, then 𝑖𝑘 = 𝑖𝑘−1 + 1 and

𝑑 ′𝑖𝑘−1

burst(𝜎)
−−−−−−→ 𝑑 ′𝑖𝑘 bursts balloon 𝑖𝑘′ ,

(II) otherwise we have 𝑘 ∈ seq𝑚 and 𝑘 ≥ 𝑛, in which case,

(a) if 𝑘 = 𝑛 and op𝑘 = deflate(𝜎, 𝜎 ′, 𝜋, 𝑝) deflates𝑚, then 𝑖𝑛 = 𝑖𝑛−1 + 3 and

𝑑 ′𝑖𝑛−1

op′𝑖𝑛−1
+1

−−−−−−→ 𝑑 ′𝑖𝑛−1+1
op′𝑖𝑛−1

+2
−−−−−−→ 𝑑 ′𝑖𝑛−1+2

op′𝑖𝑛−1
+3

−−−−−−→ 𝑑 ′𝑖𝑛−1+3 where
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• op′𝑖𝑛−1+1 = deflate(𝜎, 𝜎 ′, 𝜋, 𝑝) deflates balloon 𝑖𝑚 where 𝑛′ ⋖𝑚 𝑛,
• op′𝑖𝑛−1+2 = burst(𝜎), and
• op′𝑖𝑛−1+3 = (𝜎, 0)

+
,

(b) else if 𝑘 > 𝑛 and op𝑘 = deflate(𝜎, 𝜎 ′, 𝜋, 𝑝) then 𝑖𝑘 = 𝑖𝑘−1 + 1 and

(i) if 𝜎 = 𝜎 ′ and ∃𝑘 ′ <𝑚 𝑘 such that op′𝑖𝑘′ = (𝜎, 1)
+ (𝜎, 0)− then

op′𝑖𝑘 = (𝜎, 0)+ (𝜎, 1)− else
op′𝑖𝑘 = (𝜎, 1)+ (𝜎, 0)−,

(ii) else if 𝜎 ≠ 𝜎 ′ and 𝑘 ′ ⋖𝑚 𝑘 is such that op′𝑖𝑘′ = (𝜎, 0)
+ (𝜎 ′, 0)− then

op′𝑖𝑘 = (𝜎, 0)+ (𝜎 ′, 0)− else
op′𝑖𝑘 = (𝜎, 1)+ (𝜎 ′, 1)−.

We repeat the construction starting with 𝜏1, picking the next higher index𝑚1 > 𝑚 such that

seq(𝑖1) is infinite and obtain a sequence of runs 𝜏1, 𝜏2, 𝜏3 · · · which agree on increasingly larger

prefixes (since the id’s are chosen in order). Thus we may define 𝜏 ′ as the limit of this sequence

having the property that every balloon is burst in 𝜏 ′. This implies that 𝜏 ′ satisfies the progressiveness
conditions for all places 𝑝 ∈ 𝑃 and all balloons. Our choices in (II b i) and (II b ii) imply that 𝜏 ′ also
satisfies progressiveness conditions for the places Ω × {0, 1}.

Conversely, consider an arbitrary progressive run-with-id 𝜏 ′ ofV ′ which bursts all balloons. It

may be decomposed as 𝜏 ′ = 𝑑 ′
0

∗−→ 𝑑 ′𝑖1
∗−→ 𝑑 ′𝑖2 · · · where each segment 𝑑 ′𝑖𝑘−1

∗−→ 𝑑 ′𝑖𝑘 is either an edge

from 𝐸𝑝 , (1 a),(1 b i),(1 b v),(1 b vi) or (2), or a sequence of edges (1 b ii,1 b iii,1 b iv). Choosing the

balloon with least index𝑚 such that there exists a burst operation (1 b iii), we know there exists an

infinite sequence of corresponding token transfers (1 b v,1 b vi) by progressiveness. By construction,

there exist trivial deflates (1 b i) corresponding to these token transfers and by replacing the

transfers by (1 b i) edges, we obtain 𝜏 ′
1
.

Repeating the construction with 𝜏 ′
1
we obtain a sequence of runs 𝜏 ′

1
, 𝜏 ′

2
, · · · which agree on

increasingly larger prefixes and we obtain a progressive run 𝜏 ′′ ofV ′ as the limit of these runs.

Since no edges from (1 b ii) to (1 b vi) exist in 𝜏 ′′, this implies that 𝜏 ′′ is infact a progressive 𝜏 ofV .

This concludes the proof that (S1) iff (S2).

We now take up (S2) iff (S3), beginning with the only-if direction. Let 𝜏 ′ = 𝑑 ′
0
−→ 𝑑 ′

1
−→ 𝑑 ′

2
· · ·

be a progressive run ofV ′ which bursts every balloon. We explain the idea behind constructing

the required witness for (S3): We pick a set of id’s 𝐼1 which contains one balloon for each 𝜎 ′ ∈ Ω′.
We then inductively pick sets 𝐼𝑘 for each 𝑘 > 1 such that all balloons in 𝐼𝑘−1 have been burst

before the creation of any balloon in 𝐼𝑘 . This divides 𝜏
′
into segments such that the tokens of all

balloons created in the 𝑘𝑡ℎ segment excluding those from 𝐼𝑘 can be shifted to the balloons in 𝐼𝑘−1.

In particular, this creates a infinite sequence of configurations which contain only empty balloons,

which can be used to construct the required witness. Recall that 𝐼 (𝜏) denotes the set of id’s in 𝜏
while 𝐼𝐵 (𝜏) denotes the indices of the operations in 𝜏 which are balloons operations. Formally, for

each 𝜎 ′ ∈ Ω′ we define
𝑖1,𝜎′ = min{𝑖 ∈ 𝐼 (𝜏 ′) | op𝑖 = inflate(𝜎 ′, 𝐿𝜎′)},
𝐼1 = {𝑖1,𝜎′ | 𝜎 ′ ∈ Ω′} and
𝐵1 = { 𝑗1,𝜎′ ∈ 𝐼𝐵 (𝜏 ′) | ∃𝑖1,𝜎′ ∈ 𝐼1, op 𝑗

1,𝜎′
= burst(𝜎 ′), 𝑗1,𝜎′ ∈ seq𝑖

1,𝜎′
}.

Inductively, we define for 𝑘 > 1:

𝑖𝑘,𝜎′ = min{𝑙 ∈ 𝐼 (𝜏 ′) | op𝑙 = inflate(𝜎 ′, 𝐿𝜎′), 𝑙 > max(𝐵𝑘−1)},
𝐼𝑘 = {𝑖𝑘,𝜎′ | 𝜎 ′ ∈ Ω′} and
𝐵𝑘 = { 𝑗𝑘,𝜎′ ∈ 𝐼𝐵 (𝜏 ′) | ∃𝑖𝑘,𝜎′ ∈ 𝐼𝑘 , op 𝑗𝑘,𝜎′ = burst(𝜎 ′), 𝑗𝑘,𝜎′ ∈ seq𝑖𝑘,𝜎′ }.

We also define, for 𝑘 ≥ 1,

𝐼𝑘,𝑘+1,𝜎′ = {𝑙 ∈ 𝐼 (𝜏 ′) | 𝑙 ∉ 𝐼𝑘+1, op𝑙 = inflate(𝜎 ′, 𝐿𝜎′) and max(𝐵𝑘 ) < 𝑙 < max(𝐵𝑘+1) and
𝐼𝑘,𝑘+1 =

⋃
𝜎′∈Ω′ 𝐼𝑘,𝑘+1,𝜎′ .
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We note that by construction, for each 𝑘 ≥ 1, the id 𝑖𝑘,𝜎′ and the set of id’s 𝐼𝑘,𝑘+1,𝜎′ satisfy the

requirements for a token-shifting surgery. Applying the surgeries S𝑖𝑘,𝜎′←𝐼𝑘,𝑘+1,𝜎′ to 𝜏 ′, we obtain
𝜏 ′′ = 𝑑 ′′

0
−→ 𝑑 ′′

1
−→ 𝑑 ′′

2
· · · which bursts every balloon. Therefore there exists 𝑛 ∈ N such that

for any id 𝑖 satisfying 𝑖 < max(𝐵1), balloon 𝑖 is burst before 𝑑 ′′𝑛 . By construction, for every

𝑘 > 𝑛 the configuration 𝑑 ′′max(𝐵𝑘 ) contains only empty balloons i.e. for every (𝑏, 𝑗) such that

𝑑 ′′max(𝐵𝑘 ) .𝜈 (𝑏, 𝑗) = 1, we have (𝑏, 𝑗).k = ∅.
Let 𝑆 = 𝑑 ′′𝑗1 , 𝑑

′′
𝑗2
, · · · be the infinite sequence of configurations in 𝜏 ′′ such that they only contain

empty balloons i.e. satisfy condition (3) of an 𝐴, 𝐵-witness. There exists an infinite subsequence

𝑆 ′ = 𝑑 ′′
𝑘1

, 𝑑 ′′
𝑘2

, · · · of 𝑆 such that the corresponding id-removals 𝑐 ′′
𝑘1

, 𝑐 ′′
𝑘2

, · · · satisfy 𝑐 ′′
𝑘1

≤ 𝑐 ′′
𝑘2

≤ · · ·
due to the fact that ≤ is a Well-Quasi-Order. Further, by the Pigeonhole principle, we may assume

that they all have the same set of occupied places and same set of balloon states 𝐵, thus satisfying

condition (5) of an 𝐴, 𝐵-witness. We pick 𝐴 = 𝑃∞ = {𝑝 ∈ 𝑃 | ∀𝑖 ≥ 0∃ 𝑗 > 𝑖 : 𝑑 ′′𝑗 .m(𝑝) > 0}, ensuring
that supp(𝑐 ′′

𝑘𝑙
) ⊆ 𝐴 as required. By progressiveness, there exists 𝑘𝑚, 𝑘𝑛 with 𝑘𝑚 < 𝑘𝑛 such that

conditions (2) and (4) of an 𝐴, 𝐵-witness are satisfied for 𝑐𝑘𝑚 and 𝑐𝑘𝑛 . Thus the run 𝜌
′′ = 𝑐0

∗−→
𝑐 ′′
𝑘𝑚

∗−→ 𝑐 ′′
𝑘𝑛

is the required 𝐴, 𝐵-witness.

Conversely, given an 𝐴, 𝐵-witness 𝜌 ′′ = 𝑐0

∗−→ 𝑐
∗−→ 𝑐 ′ let 𝜌 ′ = 𝑐0

∗−→ 𝑐1

∗−→ 𝑐2

∗−→ 𝑐3 · · · be its
‘unrolling’ where 𝑐1 = 𝑐, 𝑐2 = 𝑐

′
and for each 𝑘 ≥ 3, the configuration 𝑐𝑘 is obtained from 𝑐𝑘−1 by

applying the sequence of operations 𝑐1

∗−→ 𝑐2. Clearly the unrolling satisfies all the progressiveness

conditions. Consider a corresponding progressive run-with-id 𝜏 ′ = 𝑑 ′
0

∗−→ 𝑑 ′
1

∗−→ 𝑑 ′
2

∗−→ 𝑑 ′
3
· · · given

by Proposition C.5. By Proposition C.4, every id created is either burst or, seq𝑖 is infinite with seq𝑖
containting an infinite suffix of trivial deflates. By applying the construction in (S1) iff (S2), we

replace every id 𝑖 which has an infinite seq𝑖 in 𝜏
′
by a VASS token to obtain a progressive 𝜏 ′′ where

every balloon is burst. This concludes the proof of Lemma 5.1.

C.2 Proof of Lemma 5.3
The detailed construction of the VASSBV(𝑇 ) corresponding to an𝐴, 𝐵-witness is given below. The

VASSBV(𝑇 ) consists of five total stages broken up into three main stages and two auxiliary stages.

First Main Stage: Simulating two copies.We define a VASSBV1 that simulates two identical copies

of the run ofV . The two copies share the global state in VASSBV1. It maintains two copies of the

places, one for each run, and in addition, uses a pair of places Ω × {1, 2} for each balloon state in

order to count the total number of balloons of a given balloon state. An extra pair of places Ω×{3, 4}
for each balloon state remain unused in this stage and are used by later stages for checking the

emptiness of balloons. Each step ofV is simulated byV1 by updating two copies of the places and

conceptually maintaining two copies of the balloons. The only non-trivial point is that we cannot

maintain two balloons separately, because two different steps executing inflate(𝜎, 𝐿) may pick two

different contents from the linear set 𝐿. We avoid this by maintaining one balloon with two sets of

balloon places and extend the linear set 𝐿 so that it has two identical copies of the same multiset

for each set of places.

We introduce some notation. For a 𝑣 ∈ N𝑃 (resp. 𝛿 ∈ Z𝑃 ), we write the “doubling” 𝑣 ⊙ 𝑣 (resp.
𝛿 ⊙ 𝛿) for the function in N𝑃×{1,2} such that 𝑣 ⊙ 𝑣 (𝑝, 1) = 𝑣 ⊙ 𝑣 (𝑝, 2) = 𝑣 (𝑝) (resp. Z𝑃×{1,2} such
that 𝛿 ⊙ 𝛿 (𝑝, 1) = 𝛿 ⊙ 𝛿 (𝑝, 2) = 𝛿 (𝑝)). For a linear set 𝐿 ⊆ N𝑃 , we similarly write 𝐿 ⊙ 𝐿 ⊆ N𝑃×{1,2}
for the “doubling” of 𝐿: 𝑣 ⊙ 𝑣 ∈ 𝐿 ⊙ 𝐿 iff 𝑣 ∈ 𝐿. A representation of 𝐿 ⊙ 𝐿 can be obtained from the

representation of 𝐿 by doubling the base and period vectors. We also write 0◦𝑣 (resp. 0◦𝐿) to denote
the extension of 𝑣 ∈ N𝑃 (resp. 𝐿 ⊆ N𝑃 ) to N𝑃×{1,2}: we define 0 ◦ 𝑣 (𝑝, 1) = 0 and 0 ◦ 𝑣 (𝑝, 2) = 𝑣 (𝑝),
and 0 ◦ 𝑣 ∈ 0 ◦ 𝐿 iff 𝑣 ∈ 𝐿. Finally, we write a function 𝛿 ∈ Z𝑃 by explicitly mentioning the

components that change.
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Formally,V1 = (𝑄 ∪ 𝐸 × {1, 2}, 𝑃 × {1, 2} ∪ Ω × {1, 2, 3, 4},Ω × Ω ∪ Ω,Φ × {1, 2}, 𝐸1), where we
add the following edges to 𝐸1:

(1) For each 𝑒 = 𝑞
𝛿−→ 𝑞′ in 𝐸 there is 𝑞

𝛿⊙𝛿−−−→ 𝑞′ in 𝐸1.

(2) For each 𝑒 = 𝑞
inflate(𝜎,𝐿)
−−−−−−−−−→ 𝑞′ in 𝐸 the edges 𝑞

inflate( (𝜎,𝜎),𝐿⊙𝐿)
−−−−−−−−−−−−−−→ (𝑒, 1) and (𝑒, 1)

(𝜎,1)+ (𝜎,2)+
−−−−−−−−−→ 𝑞′

are in 𝐸1. The second edge keeps track of the number of balloons in state 𝜎 . Note that the

first stage only creates balloons with states in Ω × Ω.

(3) For each 𝑒 = 𝑞
deflate(𝜎,𝜎′,𝜋,𝑝)
−−−−−−−−−−−−→ 𝑞′ in 𝐸, the following edges are in 𝐸1:

𝑞
deflate( (𝜎,𝜎),(𝜎′,𝜎),(𝜋,1),(𝑝,1))
−−−−−−−−−−−−−−−−−−−−−−−−→ (𝑒, 1), (𝑒, 1)

deflate( (𝜎′,𝜎),(𝜎′,𝜎′),(𝜋,2),(𝑝,2))
−−−−−−−−−−−−−−−−−−−−−−−−−→ (𝑒, 2),

(𝑒, 2)
(𝜎,1)−,(𝜎′,1)+,(𝜎,2)−,(𝜎′,2)+
−−−−−−−−−−−−−−−−−−−−−→ 𝑞′. The first two edges transfer the balloon tokens to

(𝑝, 1) and (𝑝, 2), respectively. The last edge tracks the new number of balloons in each

balloon state.

(4) For each 𝑒 = 𝑞
burst(𝜎)
−−−−−−→ 𝑞′ in 𝐸, the edges 𝑞

burst(𝜎,𝜎)
−−−−−−−−→ (𝑒, 1) and (𝑒, 1)

(𝜎,1)− (𝜎,2)−
−−−−−−−−−→ 𝑞′ are in

𝐸 ′. The second edge maintains the count of the number of balloons with balloon state 𝜎 .

For an initial (semi-)configuration 𝑐0 = (𝑞0,m0, ∅) ofV , one can construct a configuration ofV1

that makes two identical copies on to the places and initializes the places 𝜎 × {1, 2, 3, 4} to zero. A

run ofV1 decomposes into two identical runs ofV , and for any reachable configuration, the places

𝑃 × {1} and 𝑃 × {2} have identical number of tokens. So do the places Ω × {1} and Ω × {2} which
track the number of balloons in each copy for a given balloon state. The places in Ω × {3, 4} remain

empty. Each balloon can be divided into two identical balloons by focusing on the two copies of

the places.

First Auxilliary Stage: Checking Emptiness of Balloons in 𝑐1 . The first auxiliary stage uses a VASSB
V1→2 which is used to check balloons in 𝑐1 for emptiness while at the same time transferring tokens

from the copy Ω× {1} to the copy Ω× {3}. The only places used in this stage are those in Ω× {1, 3}.
The states used byV1→2 are two copies of the states ofV together with states of the form (𝑞, 𝜎, 𝜋)
used to perform the emptiness check. We also have two marked copies of balloon states Ω̃ × {1, 2}.
The VASSBV1→2 picks a balloon 𝑏 from 𝑐1 and performs one deflate operation for each 𝜋 ∈ Φ on 𝑏,

sending all tokens to a special place 𝑝check. During the check, the balloon is put into the first special

marked copy of its state to ensure that all of the checks are performed on the balloon 𝑏 picked. At

the end of the check, a token is transferred indicating that 𝑏 has been checked for emptiness and

the balloon state is put into the second marked copy. The series of checks forms a loop starting and

ending at a state (𝑞, 1) while passing through states of the form (𝑞, 𝜎, 𝜋), with one loop per balloon

checked. In the event of a correct check on all balloons in 𝑐1, the place 𝑝check remains empty, all the

tokens have been transferred and control is passed to the second main stage. In checking emptiness

only the first copy of 𝑄 is used.V1→2 then non-deterministically guesses that all the balloons have

been checked for emptiness and moves from a state (𝑞, 1) to the state (𝑞, 2) in the second copy

of 𝑄 . It then converts the balloon states of all the balloons from the second marked copy to the

normal balloon state. Note that this conversion cannot be done before all the balloons are checked

for emptiness since we could otherwise make the mistake of checking only one balloon repeatedly

for emptiness.

Let Φ = {𝜋1, 𝜋2, · · · , 𝜋𝑛} be an arbitrary enumeration. Formally, V1→2 = (𝑄1→2, 𝑝check ∪ Ω ×
{1, 2, 3, 4}, ((Ω × Ω) ∪ (Ω̃ × Ω̃ × {1, 2})),Φ × {1, 2}, 𝐸1→2) where Ω̃ is a decorated copy of Ω. The
set global of states is 𝑄1→2 = (𝑄 × {1, 2}) ∪ (𝑄 × Ω × Φ) and we add the following edges to 𝐸1→2

for each 𝑞 ∈ 𝑄 and 𝜎 ∈ Ω:

(1) (𝑞, 1)
deflate( (𝜎,𝜎),(�̃�,�̃�,1),(𝜋1,1),𝑝check)−−−−−−−−−−−−−−−−−−−−−−−−−−→ (𝑞, 𝜎, 𝜋1),
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(2) for each 𝑘 ∈ [1, 𝑛 − 2] add
(𝑞, 𝜎, 𝜋𝑘 )

deflate( (�̃�,�̃�,1),(�̃�,�̃�,1),(𝜋𝑘+1,1),𝑝check)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (𝑞, 𝜎, 𝜋𝑘+1),
(3) (𝑞, 𝜎, 𝜋𝑛−1)

deflate( (�̃�,�̃�,1),(�̃�,�̃�,2),(𝜋𝑛,1),𝑝check)−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (𝑞, 𝜎, 𝜋𝑛) and
(4) (𝑞, 𝜎, 𝜋𝑛)

(𝜎,1)−,(𝜎,3)+
−−−−−−−−−−→ (𝑞, 1). A token is transferred from (Ω, 1) to (Ω, 3).

(5) (𝑞, 1) 0−→ (𝑞, 2),
(6) (𝑞, 2)

deflate( (�̃�,�̃�,2),(𝜎,𝜎),(𝜋𝑛,1),𝑝check)−−−−−−−−−−−−−−−−−−−−−−−−−−→ (𝑞, 2).

Second Main Stage: Simulating 𝑐1

∗−→ 𝑐2. At this point, we note that the first copy of 𝑐1 resides in

the first copy of places and the third copy of balloon states. The second main stage is given by a

VASSBV2 which keeps the first copy of 𝑐1 frozen and simulates the VASSBV on the second copy.

It additionally performs verification of the progress constraints. Thus, a state consists of a triple

(𝑞, 𝑞′, 𝑀) ∈ 𝑄 ×𝑄 × 2
𝐴∪𝐵

, where 𝑞 keeps the state of 𝑐1, 𝑞
′
is the current state of the simulation,

and𝑀 is a subset of 𝐴 ∪ 𝐵. When control moves from state 𝑞 inV1→2 toV2, we start at (𝑞, 𝑞, ∅),
where the ∅ denotes none of the progress constraints have been checked.

The simulation only updates the second copy of the places. New balloons now use the states of

V and we continue to track the number of balloons for each balloon state but only in the second

copy i.e. the places Ω × {2}. The other copies Ω × {1, 3, 4} remain untouched. A deflate or a burst
operation may be performed on double-balloons with state 𝜎 × 𝜎 or on normal balloons with state

𝜎 . On double-balloons, deflate works on the second component only.

Formally, V2 = (𝑄2, 𝑃 × {1, 2} ∪ Ω × {1, 2, 3, 4},Ω × Ω ∪ Ω,Φ × {1, 2}, 𝐸2) consists of states
𝑄2 = {(𝑞, 𝑞′, 𝑀) | 𝑞 ∈ 𝑄,𝑞′ ∈ 𝑄 ∪ 𝐸,𝑀 ⊆ 𝐴 ∪ 𝐵}, and the following edges in 𝐸2:

(1) Let 𝑒 = 𝑞
𝛿−→ 𝑞′. Let 𝑃𝛿 = {𝑝 ∈ 𝐴 | 𝛿 (𝑝) < 0}. If supp(𝛿) ⊆ 𝐴, then for each 𝑞1 ∈ 𝑄 ,𝑀 ⊆ 𝐴∪𝐵,

and 𝑝 ∈ 𝑃 , add (𝑞1, 𝑞, 𝑀)
0◦𝛿−−→ (𝑞1, 𝑞

′, 𝑀) if 𝑝 ∈ 𝑃 \ 𝑃𝛿 and (𝑞1, 𝑞, 𝑀) −→ (𝑞1, 𝑞
′, 𝑀 ∪ 𝑃𝛿 ) if

𝑝 ∈ 𝑃𝛿 . The 𝛿 edges are restricted to those whose support is in 𝐴. We track the place progress

condition.

(2) For each 𝑒 = 𝑞
inflate(𝜎,𝐿)
−−−−−−−−−→ 𝑞′ in 𝐸, for each 𝑞1 ∈ 𝑄 , 𝑀 ⊆ 𝐴 ∪ 𝐵, add (𝑞1, 𝑞, 𝑀)

inflate(𝜎,0◦𝐿)
−−−−−−−−−−→

(𝑞1, 𝑒, 𝑀) and (𝑞1, 𝑒, 𝑀)
(𝜎,2)+
−−−−→ (𝑞1, 𝑞

′, 𝑀).
(3) For each 𝑒 = 𝑞

deflate(𝜎,𝜎′,𝜋,𝑝)
−−−−−−−−−−−−→ 𝑞′ in 𝐸, for each 𝑞1 ∈ 𝑄 , 𝑀 ⊆ 𝐴 ∪ 𝐵, 𝜎 ′′ ∈ Ω add:

(𝑞1, 𝑞, 𝑀)
deflate( (𝜎′′,𝜎),(𝜎′′,𝜎′),(𝜋,2),(𝑝,2))
−−−−−−−−−−−−−−−−−−−−−−−−−−→ (𝑞1, 𝑒, 𝑀

′), (𝑞1, 𝑞, 𝑀)
deflate(𝜎,𝜎′,(𝜋,2),(𝑝,2))
−−−−−−−−−−−−−−−−−−→ (𝑞1, 𝑒, 𝑀),

(𝑞1, 𝑒, 𝑀)
(𝜎,2)−,(𝜎′,2)+
−−−−−−−−−−→ (𝑞1, 𝑞

′, 𝑀 ′), where𝑀 ′ = 𝑀 ∪ {𝜎} if 𝜎 ∈ 𝐵 and𝑀 ′ = 𝑀 otherwise. The

first edge deflates doubled balloons left over from the first main stage, but only to the second

copy of 𝑃 . We track the balloon progress condition only for balloons from the first main stage.

(4) For each 𝑒 = 𝑞
burst(𝜎)
−−−−−−→ 𝑞′ in 𝐸, for each 𝑞1 ∈ 𝑄 ,𝑀 ⊆ 𝐴∪𝐵, 𝜎 ′ ∈ Ω, add (𝑞1, 𝑞, 𝑀)

burst( (𝜎′,𝜎))
−−−−−−−−−−→

(𝑞1, 𝑒, 𝑀
′), (𝑞1, 𝑞, 𝑀)

burst(𝜎)
−−−−−−→ (𝑞1, 𝑒, 𝑀), and (𝑞1, 𝑒, 𝑀)

(𝜎,2)−
−−−−−→ (𝑞1, 𝑞

′, 𝑀), where𝑀 ′ = 𝑀∪{𝜎}
if 𝜎 ∈ 𝐵 and𝑀 ′ = 𝑀 otherwise.

Second Auxiliary Stage: Checking Emptiness of Balloons in 𝑐2. The difference between the first

auxiliary stage and second auxiliary stage is that the emptinessmust be checked for both the balloons

produced in the first main stage as well as the second main stage in the latter, since there may be a

double-balloon that continues to exist at 𝑐2. The emptiness check transfers tokens from the copy

Ω×{2} to the copy Ω×{4}. As in the first auxiliary stage, we pick an enumeration {𝜋1, 𝜋2, · · · , 𝜋𝑛} of
Φ. Formally,V2→3 = (𝑄2→3, 𝑝check∪Ω×{1, 2, 3, 4}, (Ω×Ω∪Ω)∪((Ω̃×Ω̃∪Ω̃)×{1, 2}),Φ×{1, 2}, 𝐸2→3)
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where Ω̃ is a decorated copy of Ω. The set of global states is𝑄2→3 = (𝑄×{1, 2})∪𝑄×Φ×(Ω∪Ω×Ω)
and we add the following edges to 𝐸2→3 for each 𝑞 ∈ 𝑄 , (𝜎, 𝜎 ′) ∈ Ω × Ω and 𝜎 ∈ Ω:

(1) (𝑞, 1)
deflate( (𝜎,𝜎′),(�̃�,𝜎′,1),𝜋1,𝑝check)−−−−−−−−−−−−−−−−−−−−−−−−→ (𝑞, 𝜋1, 𝜎, 𝜎

′),
𝑞

deflate(𝜎,(�̃�,1),𝜋1,𝑝check)−−−−−−−−−−−−−−−−−−→ (𝑞, 𝜋1, 𝜎),
(2) for each 𝑘 ∈ [1, 𝑛 − 2] add

(𝑞, 𝜋𝑘 , 𝜎, 𝜎 ′)
deflate( (�̃�,𝜎′,1),(𝜎′,𝜎′,1),𝜋𝑘+1,𝑝check)−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (𝑞, 𝜋𝑘+1, 𝜎, 𝜎 ′),

(𝑞, 𝜋𝑘 , 𝜎)
deflate( (�̃�,1),(�̃�,1),𝜋𝑘+1,𝑝check)−−−−−−−−−−−−−−−−−−−−−−−→ (𝑞, 𝜋𝑘+1, 𝜎),

(3) (𝑞, 𝜋𝑛−1, 𝜎, 𝜎
′)

deflate( (�̃�,𝜎′,1),�̃�,𝜎′,2),𝜋𝑛,𝑝check)−−−−−−−−−−−−−−−−−−−−−−−−−→ (𝑞, 𝜋𝑛, 𝜎, 𝜎 ′),
(𝑞, 𝜋𝑛−1, 𝜎)

deflate( (�̃�,1) (�̃�,2),𝜋𝑛,𝑝check)−−−−−−−−−−−−−−−−−−−−−→ (𝑞, 𝜋𝑛, 𝜎) and
(4) (𝑞, 𝜋𝑛, 𝜎, 𝜎 ′)

(𝜎′,2)−,(𝜎′,4)+
−−−−−−−−−−−→ (𝑞, 1), (𝑞, 𝜋𝑛, 𝜎)

(𝜎,2)−,(𝜎,4)+
−−−−−−−−−−→ (𝑞, 1) . A token is transferred from

(Ω, 2) to (Ω, 4).
(5) (𝑞, 1) 0−→ (𝑞, 2),

(6) (𝑞, 2)
deflate( (�̃�,𝜎′,2),(𝜎,𝜎′),𝜋𝑛,𝑝check)−−−−−−−−−−−−−−−−−−−−−−−−→ (𝑞, 2),

(𝑞, 2)
deflate( (�̃�,2),𝜎,𝜋𝑛,𝑝check)−−−−−−−−−−−−−−−−−−−→ (𝑞, 2).

Third Main Stage: Verification. At this point, the first copy of 𝑐1 uses balloon places Ω × {3} while 𝑐2

uses the balloon places Ω × {4}. In the third main stage, verification non-deterministically removes

the same number of tokens from the two copies for each place in 𝐴 and for each place in 𝐵 in the

copies Ω × {3, 4}. Additionally, all balloons are burst. Finally, all places in 𝑃 × {2} and Ω × {4} are
emptied. Formally, VASSBV3 = ({𝑞ver, 𝑞𝑓 }, 𝑃 × {1, 2} ∪ Ω × {1, 2, 3, 4},Ω ∪ Ω × Ω,Φ × {1, 2}, 𝐸3)
contains the following edges:

(1) For each 𝑝 ∈ 𝐴, there is an edge 𝑞ver
(𝑝,1)− (𝑝,2)−
−−−−−−−−−→ 𝑞ver and for each 𝜎 ∈ 𝐵, the edge

𝑞ver
(𝜎,3)− (𝜎,4)−
−−−−−−−−−→ 𝑞ver. For each 𝜎 ∈ Ω, the edge 𝑞ver

burst(𝜎)
−−−−−−→ 𝑞ver and for each (𝜎, 𝜎 ′) ∈ Ω × Ω

the edge 𝑞ver
burst(𝜎,𝜎′)
−−−−−−−−→ 𝑞ver

(2) 𝑞ver
0−→ 𝑞𝑓 and for each 𝑝 ∈ 𝐴, the edge 𝑞𝑓

(𝑝,2)−
−−−−→ 𝑞𝑓 and for each 𝜎 ∈ 𝐵, the edge 𝑞𝑓

(𝜎,4)−
−−−−−→ 𝑞𝑓 .

The edges in (1) ensure p(𝑐1) ≤𝑝 p(𝑐2) in the places 𝐴 ∪ 𝐵 and that all remaining balloons are

removed. The edges in (2) remove extra tokens in case p(𝑐1) <𝑝 p(𝑐2).
Overall VASSB and Transitions between Stages. The VASSB V(𝑇 ) is a composition of the five

stages V1, V1→2, V2, V2→3 and V3. A set of glue transitions connect the five stages: these non-

deterministically guess when to move fromV1 toV1→2,V1→2 toV2,V2 toV2→3 and fromV2→3

toV3. Transfers between stages do not perform any operations and use the following edges:

• FromV1 toV1→2, for each 𝑞 ∈ 𝑄 ofV1 to the corresponding first copy (𝑞, 1) inV1→2,

• fromV1→2 toV2, for each (𝑞, 2) ∈ 𝑄 × {2} ofV1→2 to the corresponding (𝑞, 𝑞, ∅) ofV2,

• fromV2 toV2→3, for each (𝑞, 𝑞,𝐴 ∪ 𝐵) ofV2 to the corresponding (𝑞, 1) ofV2→3, and

• fromV2→3, for each (𝑞, 2) ∈ 𝑄 × {2} ofV2→3 to 𝑞ver ofV3.

Correctness. A correct simulation of the progressiveness witness results in V(𝑇 ) reaching the

configuration (𝑞𝑓 , ∅, 0̄). Conversely, supposeV(𝑇 ) reaches (𝑞𝑓 , ∅, 0̄). This implies that it reaches

a configuration (𝑞ver,m, 𝜈) where m only contains tokens in the second copy of 𝐴 and the fourth

copy of 𝐵. This implies that all the balloons of 𝑐2 were correctly checked for emptiness inV2→3

since no tokens remain in the second copy of Ω and there are no tokens in 𝑝check. Similarly, the

emptiness check performed byV1→2 is also correct. Thus, the configuration 𝑐1 at the end ofV1
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and 𝑐2 at the end ofV2 satisfy p(𝑐1) ≤ p(𝑐2) and they both only contain empty balloons with state

𝐵 and have non-zero tokens in places in 𝐴. Further, the transition betweenV2 andV2→3 ensures

the progressivenes conditions on 𝐴 and 𝐵 have been checked.

D PROOFS FOR SECTION 5.3
The proofs of Lemmas 5.4 and 5.5 both assume that the VASSB considered is both zero-base (by

Lemma C.7) and typed (by Lemma C.6). Further, the notion of runs-with-id introduced in Appendix

C is used in the proof of Lemma 5.4.

D.1 Proof of Lemma 5.4
In any finite run-with-id𝜏 , let 𝐼𝜎 (𝜏) be the set of id’s of non-empty balloons inflatedwith state𝜎 . Note

that by definition,𝑀𝜎 .𝑖 = 0 for any newly created balloon. Let 𝜏 ′ = 𝑠1

∗−→ 𝑠2 = 𝑑
′
0

op′
1−−→ 𝑑 ′

1

op′
2−−→ 𝑑 ′

2
· · ·

be an arbitrary canonical run-with-id which is 𝑁 -balloon bounded i.e. inflates at most 𝑁 non-

empty balloons. We equivalently assume that the bound applies to each balloon state since this

implies a bound of |Ω |𝑁 on the total number of balloons. Suppose there exists a state 𝜎0 with

|𝐼𝜎0
(𝜏 ′) | > 𝑁 . We will show that there exists 𝜏 = 𝑠1

∗−→ 𝑠2 of V with |𝐼𝜎 (𝜏) | = |𝐼𝜎 (𝜏 ′) | for 𝜎 ≠ 𝜎0

and |𝐼𝜎0
(𝜏) | < |𝐼𝜎0

(𝜏 ′) |. Clearly, this suffices to prove the lemma.

For any deflate sequence 𝑆 = (𝜋1, 𝑝1), · · · , (𝜋𝑛, 𝑝𝑛), let 𝑠 (𝑆) be the set {(𝜋1, 𝑝1), · · · , (𝜋𝑛, 𝑝𝑛)}. For
id’s 𝑖, 𝑗 ∈ 𝐼𝜎0

(𝜏 ′) with 𝑖 < 𝑗 , let color𝑖, 𝑗 : (𝑠 (𝑀𝜎0
.𝑆)) → {green, red} be defined by

color𝑖, 𝑗 (𝜋, 𝑝) =
{
green if ∃𝑘 < 𝑘 ′, (𝜋, 𝑝, 𝑘) ∈ typeseq𝑖 , (𝜋, 𝑝, 𝑘 ′) ∈ typeseq𝑗
red otherwise

The color green (resp. red) indicates that a deflate (𝜋, 𝑝) of the balloon 𝑖 occurs before (resp. after)
the corresponding deflate of balloon 𝑗 . We write 𝑘 = typeseq𝑖 (𝜋, 𝑝) if (𝜋, 𝑝, 𝑘) ∈ typeseq𝑖 . The
set C𝜎0

= {color𝑖, 𝑗 | 𝑖, 𝑗 ∈ 𝐼𝜎0
(𝜏 ′)} of functions is finite since both the domain and range of the

functions is finite. Let 𝐺𝜎0
be the graph with 𝐼𝜎0

as the set of vertices and edges colored by C𝜎0
.

Note that the color color𝑖, 𝑗 of the edge between vertices 𝑖 and 𝑗 is a finite word from {green, red}∗.
Let 𝑟 = |C𝜎0

| ≤ 2
|Φ |

and 𝑛 = |Ω | |Φ | + 1. Then by Ramsey’s theorem [Ramsey 1930, Theorem B] there

exists 𝑅(𝑟 ;𝑛) ∈ N such that for any 𝑟 -colored graph with at least 𝑅(𝑟 ;𝑛) vertices, there exists a
monochromatic subgraph of size at least 𝑛. Further, by the result of Erdős and Rado [Erdős and Rado

1952, Theorem 1] we know that 𝑅(𝑟 ;𝑛) ≤ 𝑟𝑟 (𝑛−2)+1 ≤ 𝑂 (exp
4
( |V|)). Choosing 𝑁 = 𝑟𝑟 (𝑛−2)+1

, this

implies that |𝐼𝜎0
| > 𝑟𝑟 (𝑛−2)+1

and therefore there exists a monochromatic subgraph𝐺 ′ of𝐺𝜎0
with at

least 𝑛 many vertices. Let 𝑐 be the color of every edge in the graph induced by𝐺 ′. A red-block 𝑐 [𝑖, 𝑗]
of 𝑐 is a maximal contiguous subsequence (𝜋𝑖 , 𝑝𝑖 ), (𝜋𝑖+1, 𝑝𝑖+1), · · · , (𝜋 𝑗 , 𝑝 𝑗 ) of𝑀𝜎0

.𝑆 such that 𝑐 takes

value red on each (𝜋𝑘 , 𝑝𝑘 ) for 𝑖 ≤ 𝑘 ≤ 𝑗 and value green on (𝜋 𝑗+1, 𝑝 𝑗+1) (if 𝑗 < 𝑛) and (𝜋𝑖−1, 𝑝𝑖−1) (if
𝑖 > 1). Let 𝑐 [ 𝑗1,1, 𝑗1,2], 𝑐 [ 𝑗2,1, 𝑗2,2], · · · , 𝑐 [ 𝑗𝑙,1, 𝑗𝑙,2] be the red-blocks of 𝑐 with 𝑗𝑘,2 < 𝑗𝑘+1,1 for each 𝑘 .

Intuitively, deflates of balloons from 𝐺 ′ in a particular red-block happen in the reverse order

as compared to their id’s. That is, if 𝑖0 < 𝑗0 < 𝑘0 < 𝑙0 are id’s which are present in 𝐺 ′, then in a

red-block, 𝑙0 is deflated first, followed by 𝑘0, then 𝑗0 and finally 𝑖0. In Figure 3, one such red-block

(called 1-block in the main body) is formed by the second and third deflates where the magenta

outlined balloon corresponding to 𝑙0 is deflated first at 𝑙2 and 𝑙3, followed by the green, orange and

cyan outlined balloons.

Formally, let min(𝐺 ′) (resp. max(𝐺 ′)) be the least (resp. greatest) id in𝐺 ′. For each 𝑖 ∈ 𝐺 ′ and
for each 𝑘 with 1 ≤ 𝑘 ≤ 𝑙 , we have typeseqmax(𝐺′) ( 𝑗𝑘,1) ≤ typeseq𝑖 ( 𝑗𝑘,1) and typeseq𝑖 ( 𝑗𝑘,2) ≤
typeseqmin(𝐺′) ( 𝑗𝑘,2) by construction. In other words, for any red-block 𝑐 [ 𝑗𝑘,1, 𝑗𝑘,2] of 𝑐 , all non-trivial
deflates made by balloons in𝐺 ′ happen in 𝜏 ′[𝑚𝑘,1,𝑚𝑘,2] where𝑚𝑘,1 = typeseqmax(𝐺′) ( 𝑗𝑘,1) − 1 and
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𝑚𝑘,2 = typeseqmin(𝐺′) ( 𝑗𝑘,2) and further, no other non-trivial deflates of balloons in 𝐺 ′ other than
the ones in 𝑐 [ 𝑗𝑘,1, 𝑗𝑘,2] occur in 𝜏 ′[𝑚𝑘,1,𝑚𝑘,2]. Let 𝜏 ′[𝑚1,1,𝑚1,2], 𝜏 ′[𝑚2,1,𝑚2,2], · · · , 𝜏 ′[𝑚𝑙,1,𝑚𝑙,2] be
the infixes of 𝜏 ′ corresponding to 𝑐 [ 𝑗1,1, 𝑗1,2], 𝑐 [ 𝑗2,1, 𝑗2,2], · · · , 𝑐 [ 𝑗𝑙,1, 𝑗𝑙,2]. We observe that the total

number of points 𝑗1,1, 𝑗1,2, 𝑗2,1, · · · 𝑗𝑙,2 is at most |Φ| since the 𝜋 values at all these points is distinct and

therefore, the same bound applies to𝑚1,1,𝑚1,2,𝑚2,1,𝑚2,2, · · · ,𝑚𝑙,1,𝑚𝑙,2. Let𝑀 =
⋃

1≤𝑘≤𝑙 [𝑚𝑘,1,𝑚𝑘,2].
By construction, |𝐺 ′ | = 𝑛 ≥ |Ω | |Φ | + 1, which implies that there exist 𝑖, 𝑗 ∈ 𝐺 ′ with 𝑖 < 𝑗 such

that for each 𝑘 ≥ 1 and each 𝑙 ∈ {1, 2} we have 𝑑 ′𝑚𝑘,𝑙
.𝑖 .𝜎 = 𝑑 ′𝑚𝑘,𝑙

. 𝑗 .𝜎 i.e. the balloons 𝑖 and 𝑗 have

the same balloon state at each of the configurations 𝑑 ′𝑚𝑘,𝑙
. Let op′𝑖 (resp. op

′
𝑗 ) in 𝜏

′
create a balloon

(𝑏 ′, 𝑖) (resp. (𝑏 ′′, 𝑗)) with 𝑏 ′.k = k𝑖 (resp. 𝑏 ′′.k = k𝑗 ). We now construct 𝜏 = 𝑑0

op
1−−→ 𝑑1

op
2−−→ 𝑑2 · · ·

from 𝜏 ′ by an id-switching surgery in which all operations in 𝜏 are retained by 𝜏 ′ with the exception

of those in seq′𝑖 and seq′𝑗 , which are replaced by seq𝑖 and seq𝑗 as follows:

(1) op𝑖 creates (𝑏𝑖 , 𝑖) where 𝑏𝑖 .k = k𝑖 + k𝑗 and 𝑏𝑖 .𝜎 = 𝑏 ′.𝜎 and op 𝑗 creates (𝑏 𝑗 , 𝑗) where 𝑏 𝑗 .k = ∅
and 𝑏 𝑗 .𝜎 = 𝑏 ′′.𝜎 ,

(2) for each 𝑘 ∈ seq′𝑖 (resp. 𝑘 ∈ seq′𝑗 ) where 𝑘 ∈ 𝑀 , 𝑘 ∈ seq𝑗 (resp. 𝑘 ∈ seq𝑖 ) and
(3) for each 𝑘 ∈ seq′𝑖 (resp. 𝑘 ∈ seq′𝑗 ) where 𝑘 ∉ 𝑀 , 𝑘 ∈ seq𝑖 (resp. 𝑘 ∈ seq𝑗 ).

Intuitively, all operations in 𝜏 ′ belonging to the segments in 𝑀 on balloon 𝑖 are reinterpreted as

being performed on balloon 𝑗 in 𝜏 and vice versa, while operations outside of the segments in𝑀

are retained as before. First we observe that this reinterpretation results in a valid sequence of

operations seq𝑖 and seq𝑗 in 𝜏 since we have chosen 𝑖, 𝑗 such that the balloon states match at every

boundary point of𝑀 . This implies that 𝑖 <𝑡 𝑗 in 𝜏 and hence (1) which is a token-shifting operation

ensures that 𝜏 is valid by Proposition C.8 and is a run from 𝑠1 to 𝑠2. Since balloon 𝑗 is empty in 𝜏 ,

this implies |𝐼𝜎0
(𝜏) | < |𝐼𝜎0

(𝜏 ′) |.

D.2 Proof of Lemma 5.5
Given VASSB V = (𝑄, 𝑃,Ω,Φ, 𝐸) and its semiconfigurations 𝑠1, 𝑠2, we construct a VASS V ′ =
(𝑄 ′, 𝑃 ′, 𝐸 ′) and its configurations 𝑠 ′

1
, 𝑠 ′

2
such that there exists an 𝑁 -balloon-bounded run 𝜌 = 𝑠1

∗−→ 𝑠2

ofV (where 𝑁 is given by Lemma 5.4) iff (V ′, 𝑠 ′
1
, 𝑠 ′

2
) ∈ REACH.

We assume thatV ′ can have edges of the form 𝑒 = 𝑞
+Δ𝐿−−−→ 𝑞′ where +Δ𝐿 is an operation which

non-determinstically adds an element from a linear set 𝐿 to the set of places, since reducing such

an extension to a normal VASS is a standard construction. We similarly have operations −Δ𝐿 which
remove a vector v ∈ 𝐿 from the set of places. For sets Φ = {𝜋1, · · · , 𝜋𝑛} and Φ′ = {𝜋 ′

1
, · · · , 𝜋 ′𝑛},

for 𝐿 ⊆ M[Φ], we write 𝐿(Φ ← Φ′) ⊆ M[Φ′] for the corresponding linear set of vectors v′

where v′(𝜋 ′𝑖 ) = v(𝜋𝑖 ) for each 𝑖 where v ∈ 𝐿. For 𝐿 ⊆ M[{𝜋}] and 𝑝 ∈ 𝑃 , we also define

the multiset 𝐿(𝜋 ⊙ (−𝑝)) ⊆ M[{𝜋, 𝑝}] consisting of vectors v− ⊙ v(𝑝) obtained from v ∈ 𝐿 as

(v− ⊙ v(𝑝)) (𝜋) = −(v− ⊙ v(𝑝)) (𝑝) = −v(𝜋). The projection 𝐿 ⇂𝜒 of 𝐿 to a subset 𝜒 ⊆ Φ is obtained

by retaining the values of vectors for the 𝜒 component and setting the rest to 0. All of the above

defined operations enable us to simulate balloon operations by addition and subtraction operations

on VASS places.

Let 𝐻 be the set of all functions 𝜂 : Ω × {1, · · · , 𝑁 } → Ω ∪ {#, †}. A function 𝜂 ∈ 𝐻 is used in the

following construction to track the state of a non-empty balloon ofV in the global state ofV ′. The
# symbol indicates that a balloon has non yet been inflated and † indicates that it has been burst.

Let 𝐺 be the set of vectors w : Ω → {0, 1, · · · , 𝑁 }. A vector w ∈ 𝐺 is used to store the number

of non-empty balloons of a particular balloon state inV in the global state ofV ′. Increments 𝑝+

(resp. decrements 𝑝−) to a place 𝑝 are used as before. For a type sequence 𝑆 = (𝜋1, 𝑝1), · · · , (𝜋𝑛, 𝑝𝑛),
we write set1 (𝑆) for the set {𝜋1, · · · , 𝜋𝑛}.
V ′ is defined as:
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• 𝑄 ′ = 𝑄 ×𝐺 × 𝐻 ∪ {𝑞𝑓 },
• 𝑃 ′ = 𝑃 ∪ Ω × {1, · · · , 𝑁 } × Φ ∪ Ω,
• 𝐸 ′ contains the following edges:
(1) for each 𝑞

𝛿−→ 𝑞′ in 𝐸, for each w ∈ 𝐺 and 𝜂 ∈ 𝐻 add

(𝑞,w, 𝜂) 𝛿−→ (𝑞′,w, 𝜂) to 𝐸 ′,
(2) for each 𝑞

inflate(𝜎1,𝐿)−−−−−−−−−→ 𝑞′ in 𝐸,

(a) for each w ∈ 𝐺 and 𝜂 ∈ 𝐻 add (𝑞,w, 𝜂)
𝜎+

1−−→ (𝑞′,w, 𝜂) to 𝐸 ′,
(b) for each 𝜂 ∈ 𝐻 and for each w ∈ 𝐺 such that w(𝜎1) < 𝑁 , add

(𝑞,w, 𝜂)
Δw,𝜎

1−−−−→ (𝑞′,w′, 𝜂 ′) to 𝐸 ′ where
Δw,𝜎1

adds a vector from 𝐿𝜎1
(Φ← {𝜎1} × {w(𝜎1) + 1} × Φ),

the vector w′ satisfies w′(𝜎1) = w(𝜎1) + 1 and w′(𝜎) = w(𝜎) for 𝜎 ≠ 𝜎1, and

𝜂 ′ satisfies 𝜂 ′(𝜎1,w(𝜎1) + 1) = 𝜎1 and for all (𝜎, 𝑖) ≠ (𝜎1,w(𝜎1) + 1) we have 𝜂 ′(𝜎, 𝑖) =
𝜂 (𝜎, 𝑖),

(3) for each 𝑞
deflate(𝜎,𝜎′,𝜋,𝑝)
−−−−−−−−−−−−→ 𝑞′ in 𝐸,

(a) for each w ∈ 𝐺 and 𝜂 ∈ 𝐻 add (𝑞,w, 𝜂) 𝜎
′+,𝜎−−−−−−→ (𝑞′,w, 𝜂) to 𝐸 ′,

(b) for each w ∈ 𝐺 , for each 𝜂 ∈ 𝐻 and (𝜎1, 𝑖) ∈ Ω × {1, · · · , 𝑁 } such that 𝜂 (𝜎1, 𝑖) = 𝜎 ,
(i) if𝑀𝜎′ .𝑖 = 𝑀𝜎 .𝑖 + 1 then add

(𝑞,w, 𝜂)
Δ𝜎

1
,𝑖,𝜋,𝑝

−−−−−−→ (𝑞′,w, 𝜂 ′) to 𝐸 ′ where
Δ𝜎1,𝑖,𝜋,𝑝 adds a vector v

− ⊙v(𝑝) corresponding to some v ∈ 𝐿𝜎1
⇂𝜋 (𝜋 ← {𝜎1}×{𝑖}×𝜋)

and

𝜂 ′ satisfies 𝜂 ′(𝜎1, 𝑖) = 𝜎 ′ and 𝜂 ′(𝜎, 𝑗) = 𝜂 (𝜎, 𝑗) for all (𝜎, 𝑗) ≠ (𝜎1, 𝑖) ,
(ii) else add

(𝑞,w, 𝜂) 0−→ (𝑞′,w, 𝜂 ′) to 𝐸 ′ where
𝜂 ′ satisfies 𝜂 ′(𝜎1, 𝑖) = 𝜎 ′ and 𝜂 ′(𝜎2, 𝑗) = 𝜂 (𝜎2, 𝑗) for all (𝜎2, 𝑗) ≠ (𝜎1, 𝑖) ,

(4) for each 𝑞
burst(𝜎)
−−−−−−→ 𝑞′ in 𝐸,

(a) for each w ∈ 𝐺 and 𝜂 ∈ 𝐻 add (𝑞,w, 𝜂) 𝜎
−
−−→ (𝑞′,w, 𝜂) to 𝐸 ′,

(b) for each w ∈ 𝐺 , for each 𝜂 ∈ 𝐻 and (𝜎1, 𝑖) ∈ Ω × {1, · · · , 𝑁 } such that 𝜂 (𝜎1, 𝑖) = 𝜎 , add

(𝑞,w, 𝜂)
−Δ𝜎

1
,𝑖,(Φ\set

1
(𝑀𝜎

1
.𝑆 ) )

−−−−−−−−−−−−−−−→ (𝑞′,w, 𝜂 ′) to 𝐸 ′ where
Δ𝜎1,𝑖,(Φ\set1 (𝑀𝜎

1
.𝑆)) adds a vector from 𝐿𝜎1

⇂(Φ\set1 (𝑀𝜎
1
.𝑆)) ((Φ \ set1 (𝑀𝜎1

.𝑆)) ← {𝜎1} ×
{𝑖} × (Φ \ set1 (𝑀𝜎1

.𝑆))) and
𝜂 ′ satisfies 𝜂 ′(𝜎1, 𝑖) = † and 𝜂 ′(𝜎2, 𝑗) = 𝜂 (𝜎2, 𝑗) for all (𝜎2, 𝑗) ≠ (𝜎1, 𝑖),

(5) for each 𝜂 such that for all (𝜎, 𝑖) ∈ Ω × {1, · · · , 𝑁 } we have 𝜂 (𝜎, 𝑖) = # or 𝜂 (𝜎, 𝑖) = †, add
(𝑠2.𝑞,w, 𝜂)

0−→ 𝑞𝑓 .

The configuration 𝑠 ′
1
is given as 𝑠 ′

1
.𝑞 = (𝑠1 .𝑞, 0, 𝜂0) where 𝜂0 (𝜎, 𝑖) = # for all (𝜎, 𝑖) ∈ Ω × {1, · · · , 𝑁 },

and 𝑠 ′
1
.m(𝑝) = 𝑠1.m(𝑝) for 𝑝 ∈ 𝑃 and 𝑠 ′

1
.m(𝑝) = 0 otherwise. The configuration 𝑠 ′

2
is given as

𝑠 ′
2
.𝑞 = 𝑞𝑓 , and 𝑠

′
2
.m(𝑝) = 𝑠2.m(𝑝) for 𝑝 ∈ 𝑃 and 𝑠 ′

2
.m(𝑝) = 0 otherwise.

V ′ contains extra places Ω which are used to store the number of balloons of a given state 𝜎

which were created empty and remain empty throughout a run, as well as places Ω×{1, · · · , 𝑁 }×Φ
which are used to store the contents of non-empty balloons created during an 𝑁 -balloon-bounded

run of V . The 𝐺-component of the global state is used to track the total number of non-empty

balloons created while the 𝐻 -component tracks the state changes of every balloon which was

created non-empty. The initial configuration 𝑠 ′
1
ofV contains 𝑠1 in its 𝑃-places while other places
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remain empty. The 𝐺-component of the global state is set to the vector 0 since no non-empty

balloons have been created and the 𝐻 -component is set to the function 𝜂0 which is the constant

function taking value #. The edges in (1) are used to simulate the place edges ofV and hence do

not modify either the𝐺 or the 𝐻 -component. Similarly, the simulation of operations on balloons

which were created empty use edges from (2𝑎), (3𝑎) and (4𝑎) which also do not modify either the

𝐺 or the 𝐻 -component and simply increment or decrement places from Ω as appropriate.

An inflate balloon operation in the run 𝜌 ofV which creates the 𝑖𝑡ℎ non-empty balloon (upto the

bound 𝑁 ) with state 𝜎 is simulated by using edges from (2𝑏) which increment w ∈ 𝐺 from 𝑖 − 1 to

𝑖 and set the value of 𝜂 (𝜎, 𝑖) to 𝜎 from its original value of #, while simultaneously populating the

places in (𝜎, 𝑖,Φ) with a vector from 𝐿𝜎 . Deflate operations on non-empty balloons similarly are

simulated by updating 𝜂 and removing tokens from the appropriate place using the edges in (3𝑏).
Here, we make a distinction between the first time that a place 𝜋 undergoes a deflate, in which case

(3𝑏𝑖) is used and for every later deflate on the place 𝜋 , we use (3𝑏𝑖𝑖) which does not transfer any

tokens. This implies that that for every non-empty balloon created, there is only one opportunity

forV ′ to transfer tokens away from places in Ω × {1, · · · , 𝑁 } × Φ.
The edges in (4𝑏) simulate a burst operation by allowing the removal of tokens from places

which have not been transferred away, while setting the value of 𝜂 to † at the appropriate place to
indicate that the balloon has been burst.

Finally, we only allow a move to the state 𝑞𝑓 if the 𝐻 -component indicates that all non-empty

balloons produced have been burst. A correct simulation ensures that no tokens remain in any

of the places Ω × {1, · · · , 𝑁 } × Φ ∪ Ω. Thus V ′ can reach 𝑠 ′
2
from 𝑠 ′

1
if V can reach 𝑠2 from 𝑠1.

Conversely, we note that the sequence of deflates on each non-empty balloon is tracked in the

global state and as mentioned, there is only one opportunity forV ′ to correctly transfer tokens

from the places Ω × {1, · · · , 𝑁 } × Φ for each non-empty balloon. Thus, from any run 𝑠 ′
1

∗−→ 𝑠 ′
2
ofV ′

we obtain a run 𝑠1

∗−→ 𝑠2 ofV .

E PROOFS FROM SECTION 6
E.1 Proof of Lemma 6.1

Lemma 6.1. A DCPS has a starving run if and only if it has a consistent run.

Proof. Clearly, a starving run of a DCPS has to be consistent. Suppose a DCPS has a consis-

tent run 𝜌 . Then there are configurations 𝑐1, 𝑐2, . . . and thread executions 𝑒1, 𝑒2, . . . that produce

m1,m2, . . . so that the consistency conditions are met. In particular, for 𝑉𝑝 = {m𝑗 | 𝑒 𝑗 has type 𝑡},
the tuple𝔙 = (𝑉𝑡 )𝑡 ∈T is𝔖A-consistent. This means, there exists a stack content𝑤 ∈ Γ∗ such that

we can choose for each 𝑗 ≥ 1, a thread execution 𝑒 ′𝑗 (not necessarily occurring in 𝜌) that produces

a multiset m′𝑗 such that:

(1) 𝑒 ′𝑗 has the same type as 𝑒 𝑗

(2) m𝑗 ≤1 m′𝑗 , and
(3) 𝑒 ′𝑗 arrives in𝑤 after executing 𝑖 segments.

The idea is now to replace executions 𝑒 𝑗 with 𝑒
′
𝑗 to obtain a starving run. Replacing any individual

𝑒 𝑗 by 𝑒
′
𝑗 would yield an infinite run, because 𝑒 ′𝑗 has the same type (so that state transition would

still be possible), and m′𝑗 ≥1 m𝑗 , so that the bag contents are supersets of the bag contents of the

old run.

However, the resulting run might not be progressive: 𝑒 ′𝑗 might spawn an additional thread (𝛾, 0)
such that (𝛾, 0) becomes active only finitely many times during 𝜌 . In that case, the extra (𝛾, 0)
would be in the bag forever, but never scheduled.
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To remedy this, we only replace all but finitely many of the 𝑒 𝑗 . Let Γinf be the set of those 𝛾 ∈ Γ
such that (𝛾, 0) is scheduled infinitely many times during 𝜌 . Since 𝜌 is progressive, we know that

for some 𝑘 ≥ 1, each 𝑒 𝑗 with 𝑘 ≥ 𝑗 only spawns threads from Γinf . Now sincem′𝑗 ≥1 m𝑗 , this implies

that for 𝑗 ≥ 𝑘 , m′𝑗 only contains threads 𝛾 (together with the context-switch number when they

are produced) such that 𝛾 ∈ Γinf .
Therefore, we obtain a new run 𝜌 ′ of our DCPS by replacing each 𝑒 𝑗 by 𝑒 ′𝑗 for all 𝑗 ≥ 𝑘 . Then, the

resulting run is progressive, because the additionally spawned threads all belong to Γinf . Moreover,

𝜌 ′ is starving.

E.2 Proof of Lemma 6.4
Lemma 6.4. IfA has a starving run, then it has an (𝑖, 𝔲)-starving run for some 𝑖 ∈ [1, 𝐾] and some

𝔖A-consistent 𝔲 ∈ P ( [0, 𝐵]Λ)T . Moreover, ifA has a shallow (𝑖, 𝔲)-starving run for some 𝑖 ∈ [1, 𝐾]
and some𝔖A-consistent 𝔲 ∈ P ( [0, 𝐵]Λ)T , then it has a starving run.

Proof. If A has a starving run 𝜌 , then it also has a consistent run by Lemma 6.1. Hence, there

are a number 𝑖 ∈ [0, 𝐾], configurations 𝑐1, 𝑐2, . . . and thread executions 𝑒1, 𝑒2, . . . that produce

m1,m2, . . . such that the conditions for a consistent run are satisfied. In particular, with 𝑉𝑡 = {m𝑗 |
𝑒 𝑗 has type 𝑡}, the tuple𝔙 = (𝑉𝑡 )𝑡 ∈T is𝔖A-consistent. Then, by definition of𝔖A-consistency, the
tuple 𝔪 = 𝛼𝐵 (𝔙) is also𝔖A-consistent. Therefore, the run 𝜌 is (𝑖,𝔪)-starving.

Conversely, suppose 𝜌 is a shallow (𝑖,𝔪)-starving run for some 𝑖 ∈ [0, 𝐾] and some𝔖-consistent

tuple𝔪 ∈ P ( [0, 𝐵]Λ)T . Then we have configurations 𝑐1, 𝑐2, . . ., and thread executions 𝑒1, 𝑒2, . . . that

produce m1,m2, . . . such that the conditions of (𝑖,𝔪)-starvation are satisfied.

Let𝑉𝑡 = {m𝑗 | 𝑒 𝑗 has type 𝑡} and𝔙 = (𝑉𝑡 )𝑡 ∈T . Since 𝜌 is shallow, we know that each𝑉𝑡 is a finite

set. Moreover, since 𝔪 = 𝛼𝐵 (𝔙) is𝔖A-consistent, Theorem 6.2 tells us that𝔙 is𝔖A-consistent as
well. Thus, 𝜌 is consistent. Therefore A also has a starving run by Lemma 6.1.

E.3 Freezing DCPS

In this section we prove Lemma 6.5, which states that it is decidable whether a freezing DCPS A
has a 𝐾-context bounded progressive run, and if such a run exists then we can always assume it to

be shallow. To this end we construct a DCPS A that simulates A in a way that preserves progres-

siveness and shallowness, while using at most 2𝐾 + 1 context switches. The stated properties for

freezing DCPS then follow from our results on DCPS (Theorem 2.3, Lemma 4.3, and Corollary 4.5).

Idea. The only differences between DCPS and freezing DCPS are the presence of frozen threads

(marked with a top of stack symbol in Γ^) in configurations, and the rule Unfreeze. To simulate the

former we just add Γ^ to the stack alphabet and introduce a few new transition rules that spawn

the initial frozen thread at the start of each run. To simulate Unfreeze for a rule 𝑔 ↦→ 𝑔′ ◁ 𝛾 ^ 𝛾 ′,
we follow these steps starting in global state 𝑔:

• Resume a thread with 𝛾 ′ as top of stack symbol, change it to 𝛾 ′^ then swap out this thread.

• Resume a thread with 𝛾^ as top of stack symbol, change it to 𝛾 and go to 𝑔′ with this thread

staying active.

While these steps change the stack symbols correctly and make the right thread active, there are

two things of note here: Firstly, if 𝛾 = 𝛾 ′ then the very thread swapped out at the end of the first

step could be resumed at the start of the second step, which is undesired behavior. To remedy this,

we add a second copy of Γ^ to our stack alphabet, which we call Γ̄^. We modify the simulation so

that each time a thread with top of stack symbol in Γ^ is swapped out in the first step, a thread

with top of stack symbol in Γ̄^ is resumed in the second step and vice-versa. Thus the two steps

can no longer act on the very same thread, which fixes the issue.
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Secondly, freezing a thread in the first step causes it to make a context switch, which does not

match the specification of Unfreeze. However, unfreezing a thread makes it active and therefore

adds a context switch once the thread is swapped out again. Thus, a thread can be frozen and

unfrozen a total number of 𝐾 + 1 times each in the freezing DCPSA. In the DCPSA ′ such a thread

would then make 2𝐾 + 2 context switches, with the last one happening right after it was active from

being unfrozen the (𝐾 + 1)th time. This means that the highest context switch number it reaches

while being active is 2𝐾 + 1, which is exactly what we chose as the context switch bound for A ′.
With this increased context switch bound, we need to make sure that threads do not make more

than 𝐾 + 1 context switches in A ′, if they are resumed without being frozen. To this end we just

artificially increase the context switch number by forcing an additional context switch every time

a non-frozen thread is resumed. This mirrors the extra context switch caused by freezing, and

therefore makes these threads behave correctly with a context switch bound of 2𝐾 + 1 as well.

Formal construction. Let A = (𝐺, Γ,Δ, 𝑔0, 𝛾0, 𝛾𝑓 ) with Δ = Δc ∪ Δi ∪ Δr ∪ Δt ∪ Δu be a freezing

DCPS. We construct the DCPS A ′ = (𝐺 ′, Γ′,Δ′, 𝑔′
0
, 𝛾 ′

0
), where:

• Γ′ = {𝛾 ′
0
} ∪ Γ ∪ Γ̄ ∪ Γ^ ∪ Γ̄^ with Γ̄ = {𝛾 |𝛾 ∈ Γ}, Γ^ = {𝛾^ |𝛾 ∈ Γ}, and Γ̄^ = {𝛾^ |𝛾 ∈ Γ}.

• 𝐺 ′ = 𝐺 ∪𝐺 ∪ (𝐺 × Γ^) ∪ (𝐺 × Γ̄^) with 𝐺 = {𝑔|𝑔 ∈ 𝐺}
• Δ′ = Δc

′ ∪ Δi
′ ∪ Δr

′ ∪ Δt
′
consists of the following transition rules:

(1) For the initial configuration:

(a) 𝑔′
0
↦→ 𝑔′

0
◁ 𝛾 ′

0
∈ Δr

′
.

(b) 𝑔′
0
|𝛾 ′

0
↩→ 𝑔′

0
|𝛾^
𝑓
⊲ 𝛾0 ∈ Δc

′
.

(c) 𝑔′
0
|𝛾^
𝑓
↦→ 𝑔0 |𝛾^𝑓 ∈ Δi

′
.

(2) For each rule 𝑔1 ↦→ 𝑔2 ◁ 𝛾 ∈ Δr:

(a) 𝑔1 ↦→ 𝑔2 ◁ 𝛾 ∈ Δr
′
.

(b) 𝑔2 |𝛾 ↩→ 𝑔2 |𝛾 ∈ Δc
′
.

(c) 𝑔2 |𝛾 ↦→ 𝑔2 |𝛾 ∈ Δi
′
.

(d) 𝑔2 ↦→ 𝑔2 ◁ 𝛾 ∈ Δr
′
.

(e) 𝑔2 |𝛾 ↩→ 𝑔2 |𝛾 ∈ Δc
′
.

(3) For each rule 𝑔1 ↦→ 𝑔2 ◁ 𝛾1 ^ 𝛾2 ∈ Δu:

(a) 𝑔1 ↦→ (𝑔2, 𝛾
^
1
) ◁ 𝛾2 ∈ Δr

′
.

(b) (𝑔2, 𝛾
^
1
) |𝛾2 ↩→ (𝑔2, 𝛾

^
1
) |𝛾2 ∈ Δc

′
.

(c) (𝑔2, 𝛾
^
1
) |𝛾2 ↦→ (𝑔2, 𝛾

^
1
) |𝛾^

2
∈ Δi

′
.

(d) (𝑔2, 𝛾
^
1
) ↦→ (𝑔2, 𝛾

^
1
) ◁ 𝛾^

1
∈ Δr

′
.

(e) (𝑔2, 𝛾
^
1
) |𝛾^

1
↩→ 𝑔2 |𝛾1 ∈ Δc

′
.

(4) Furthermore, for each rule 𝑔1 ↦→ 𝑔2 ◁ 𝛾1 ^ 𝛾2 ∈ Δu:

(a) 𝑔1 ↦→ (𝑔2, 𝛾
^
1
) ◁ 𝛾2 ∈ Δr

′
.

(b) (𝑔2, 𝛾
^
1
) |𝛾2 ↩→ (𝑔2, 𝛾

^
1
) |𝛾2 ∈ Δc

′
.

(c) (𝑔2, 𝛾
^
1
) |𝛾2 ↦→ (𝑔2, 𝛾

^
1
) |𝛾^

2
∈ Δi

′
.

(d) (𝑔2, 𝛾
^
1
) ↦→ (𝑔2, 𝛾

^
1
) ◁ 𝛾^

1
∈ Δr

′
.

(e) (𝑔2, 𝛾
^
1
) |𝛾^

1
↩→ 𝑔2 |𝛾1 ∈ Δc

′
.

(5) Finally, Δ′ contains some unaltered rules of Δ:
(a) 𝑟 ∈ Δc

′
for each rule 𝑟 ∈ Δc.

(b) 𝑟 ∈ Δi
′
for each rule 𝑟 ∈ Δi.

(c) 𝑟 ∈ Δt
′
for each rule 𝑟 ∈ Δt.
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Lemma E.1. The freezing DCPS A has a (shallow) progressive run that respects the context switch
bound 𝐾 iff the DCPSA ′ has a (shallow) progressive run that respects the context switch bound 2𝐾 + 1.

Proof. From a given infinite run of A we construct an infinite run of A ′ in such a way that

progressiveness and shallowness are preserved. Then we argue that this construction can also be

done backwards, starting with a run of A ′.
Let 𝜌 be an infinite run of A. We construct the infinite run 𝜌 ′ of A ′ by induction on the length

of a prefix of 𝜌 . Say 𝜌 reaches the configuration 𝑐 = ⟨𝑔, 𝑡𝑎,m⟩ after finitely many steps. Intuitively

we want 𝜌 ′ to reach a configuration 𝑐 ′ that contains threads with the same stack contents as 𝑐 ,

except for the top of stack symbol of the frozen thread, but with different context switch numbers.

Any thread with cs-number 𝑘 in 𝑐 has cs-number 2𝑘 + 1 in 𝑐 ′ if it was an active or frozen thread,

and cs-number 2𝑘 otherwise. Formally 𝑐 ′ = ⟨𝑔, 𝑡 ′𝑎,m⟩, where:
• If 𝑡𝑎 = # then 𝑡 ′𝑎 = #. If 𝑡𝑎 = (𝑤,𝑘) then 𝑡 ′𝑎 = (𝑤, 2𝑘 + 1).
• For all 𝑘 ∈ N,𝑤 ∈ Γ∗: m′(𝑤, 2𝑘) = m(𝑤,𝑘).
• For all 𝑘 ∈ N, 𝑤 ∈ Γ∗, 𝛾 ∈ Γ: m′(𝛾^𝑤, 2𝑘 + 1) = m(𝛾^𝑤,𝑘) and m′(𝛾^𝑤, 2𝑘 + 1) = 0, or

m′(𝛾^𝑤, 2𝑘 + 1) = m(𝛾^𝑤,𝑘) and m′(𝛾^𝑤, 2𝑘 + 1) = 0.

• For all 𝑘 ∈ N,𝑤 ∈ Γ∗, 𝛾 ∈ Γ: m′(𝑤, 2𝑘 + 1) = m′(𝛾^𝑤, 2𝑘) = m′(𝛾^𝑤, 2𝑘) = 0.

The second to last bullet point means that for a frozen thread in 𝑐 with top of stack symbol 𝛾^,

the corresponding thread in 𝑐 ′ has either 𝛾^ or 𝛾^ as its top of stack symbol. The last bullet point

simply ensures that 𝑐 ′ contains no additional threads (that do not correspond to a thread of 𝑐).

Now to construct 𝜌 ′ inductively. If 𝑐 = ⟨𝑔0, #, [[(𝛾0, 0)]] + [[(𝛾^𝑓 , 0)]]⟩ is the initial configuration
of A then we use the following transitions in 𝜌 ′ starting with the initial configuration of A ′:

⟨𝑔′
0
, #, [[(𝛾 ′

0
, 0)]]⟩ 1a↦−−→ ⟨𝑔′

0
, (𝛾 ′

0
, 0), ∅⟩

1b−→ ⟨𝑔′
0
, (𝛾 ′

0
, 0), [[(𝛾0, 0)]]⟩

1c↦−−→ ⟨𝑔0, #, [[(𝛾0, 0)]] + [[(𝛾^𝑓 , 1)]]⟩ = 𝑐
′.

Here and for all following transitions of A ′ we label each arrow with the corresponding transition

rule of Δ′. Since we reach the correct 𝑐 ′, this concludes the base case.
For the inductive case assume that we reach 𝑐 after at least one step on 𝜌 . We make a case

distinction regarding the transition �̃� → 𝑐 or �̃� ↦→ 𝑐 of 𝜌 that reaches 𝑐:

Case ⟨𝑔1, #,m + [[(𝛾𝑤, 𝑖)]]⟩ ↦→ ⟨𝑔2, (𝛾𝑤, 𝑖),m⟩ due to 𝑔1 ↦→ 𝑔2 ◁ 𝛾 ∈ Δr:
We add the following transitions to 𝜌 ′, starting from the configuration obtained by applying

the induction hypothesis to �̃�:

⟨𝑔1, #,m′ + [[(𝛾𝑤, 2𝑖)]]⟩
2a↦−−→ ⟨𝑔2, (𝛾𝑤, 2𝑖),m′⟩
2b−→ ⟨𝑔2, (𝛾𝑤, 2𝑖),m′⟩
2c↦−−→ ⟨𝑔2, #,m′ + [[(𝛾𝑤, 2𝑖 + 1))]]⟩
2d↦−−→ ⟨𝑔2, (𝛾𝑤, 2𝑖 + 1),m′⟩
2e−→ ⟨𝑔2, (𝛾𝑤, 2𝑖 + 1),m′⟩ = 𝑐 ′.

Case ⟨𝑔1, #,m + [[𝛾^1 𝑤1, 𝑖]] + [[𝛾2𝑤2, 𝑗]]⟩ ↦→ ⟨𝑔2, (𝛾1𝑤1, 𝑖),m + [[𝛾^2 𝑤2, 𝑗]]⟩
due to 𝑔1 ↦→ 𝑔2 ◁ 𝛾1 ^ 𝛾2 ∈ Δu:
We again start from the configuration obtained by applying the induction hypothesis to �̃� .

However, we need to make a case distinction based on the top of stack symbol of the thread

, Vol. 1, No. 1, Article . Publication date: October 2020.



Context-Bounded Liveness-Verification for Multithreaded Shared-Memory Programs 55

in this configuration that corresponds to the frozen thread of �̃� . If this symbol is in Γ^, we
add the following transitions to 𝜌 ′:

⟨𝑔1, #,m′ + [[𝛾^1 𝑤1, 2𝑖 + 1]] + [[(𝛾2𝑤2, 2 𝑗)]]⟩
3a↦−−→ ⟨(𝑔2, 𝛾

^
1
), (𝛾2𝑤2, 2 𝑗),m′ + [[𝛾^1 𝑤1, 2𝑖 + 1]]⟩

3b−→ ⟨(𝑔2, 𝛾
^
1
), (𝛾^

2
𝑤2, 2 𝑗),m′ + [[𝛾^1 𝑤1, 2𝑖 + 1]]⟩

3c↦−−→ ⟨(𝑔2, 𝛾
^
1
), #,m′ + [[𝛾^

1
𝑤1, 2𝑖 + 1]] + [[(𝛾^

2
𝑤2, 2 𝑗 + 1)]]⟩

3d↦−−→ ⟨(𝑔2, 𝛾
^
1
), (𝛾^

1
𝑤1, 2𝑖 + 1),m′ + [[(𝛾^

2
𝑤2, 2 𝑗 + 1)]]⟩

3e−→ ⟨𝑔2, (𝛾1𝑤1, 2𝑖 + 1),m′ + [[(𝛾^
2
𝑤2, 2 𝑗 + 1)]]⟩ = 𝑐 ′.

Otherwise, if the symbol is in Γ̄^, we add the following transitions to 𝜌 ′:

⟨𝑔1, #,m′ + [[𝛾^1 𝑤1, 2𝑖 + 1]] + [[(𝛾2𝑤2, 2 𝑗)]]⟩
4a↦−−→ ⟨(𝑔2, 𝛾

^
1
), (𝛾2𝑤2, 2 𝑗),m′ + [[𝛾^1 𝑤1, 2𝑖 + 1]]⟩

4b−→ ⟨(𝑔2, 𝛾
^
1
), (𝛾^

2
𝑤2, 2 𝑗),m′ + [[𝛾^1 𝑤1, 2𝑖 + 1]]⟩

4c↦−−→ ⟨(𝑔2, 𝛾
^
1
), #,m′ + [[𝛾^

1
𝑤1, 2𝑖 + 1]] + [[(𝛾^

2
𝑤2, 2 𝑗 + 1)]]⟩

4d↦−−→ ⟨(𝑔2, 𝛾
^
1
), (𝛾^

1
𝑤1, 2𝑖 + 1),m′ + [[(𝛾^

2
𝑤2, 2 𝑗 + 1)]]⟩

4e−→ ⟨𝑔2, (𝛾1𝑤1, 2𝑖 + 1),m′ + [[(𝛾^
2
𝑤2, 2 𝑗 + 1)]]⟩ = 𝑐 ′.

The remaining four cases use the same transition rules for both 𝜌 and 𝜌 ′, as the rules defined in (5)

are ones already present in Δ:

Case ⟨𝑔1, (𝛾𝑤, 𝑖),m⟩ → ⟨𝑔2, (𝑤2𝑤1, 𝑖),m⟩ due to 𝑔1 |𝛾 ↩→ 𝑔2 |𝑤2 ∈ Δc:

⟨𝑔1, (𝛾𝑤, 2𝑖 + 1),m′⟩ 5a−→ ⟨𝑔2, (𝑤2𝑤1, 2𝑖 + 1),m′⟩ = 𝑐 ′.
Case ⟨𝑔1, (𝛾1𝑤1, 𝑖),m⟩ → ⟨𝑔2, (𝑤2𝑤1, 𝑖),m + [[(𝛾2, 0)]]⟩ due to 𝑔1 |𝛾1 ↩→ 𝑔2 |𝑤2 ⊲ 𝛾2 ∈ Δc:

⟨𝑔1, (𝛾1𝑤1, 2𝑖 + 1),m′⟩ 5a−→ ⟨𝑔2, (𝑤2𝑤1, 2𝑖 + 1),m′ + [[(𝛾2, 0)]]⟩ = 𝑐 ′.
Case ⟨𝑔1, (𝛾𝑤1, 𝑖),m⟩ ↦→ ⟨𝑔2, #,m + [[(𝑤2𝑤1, 𝑖 + 1)]]⟩ due to 𝑔1 |𝛾 ↦→ 𝑔2 |𝑤2 ∈ Δi:

⟨𝑔1, (𝛾𝑤1, 2𝑖 + 1),m′⟩ 5b↦−−→ ⟨𝑔2, #,m′ + [[(𝑤2𝑤1, 2𝑖 + 2)]]⟩ = 𝑐 ′.
Case ⟨𝑔1, (𝜀, 𝑖),m⟩ ↦→ ⟨𝑔2, #,m⟩ due to 𝑔1 ↦→ 𝑔2 ∈ Δt:

⟨𝑔1, (𝜀, 2𝑖 + 1),m′⟩ 5c↦−−→ ⟨𝑔2, #,m′⟩ = 𝑐 ′.
Each 𝑐 ′ reached in any of the cases correctly corresponds to 𝑐 as described above. Spawn bounded-

ness is equivalent for 𝜌 and 𝜌 ′ since corresponding segments where a thread is active make the same

amount of spawns in both runs. Progressiveness is also equivalent: Every transition that makes a

thread active in 𝜌 (either by resuming or unfreezing) results in a corresponding thread becoming

active in 𝜌 ′. Conversely every two resume transitions due to rules from (2) in 𝜌 ′ correspond to

a single resume transition in 𝜌 , and each resume transition due to (3d) or (4d) corresponds to an

unfreezing transition in 𝜌 . Resume transitions due to (3a) or (4a) cause a thread to gain a top of

stack symbol from Γ^ ∪ Γ̄^, which can be the case for only one thread at a time. Thus, if 𝜌 ′ is
progressive, this very thread has to be resumed, causing a later resume transition due to (3d) or
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(4d), which we already discussed. Finally, termination occurs at context switch number 𝑘 in 𝜌 iff it

occurs at 2𝑘 + 1 in 𝜌 ′, which matches the relationship between the two context switch bounds for

these runs.

For the other direction we start with an infinite run 𝜌 ′ of A ′. Observe that 𝜌 ′ decomposes into

infixes that have the same form as the transition sequences obtained during the construction for

the other direction. This is because for each of the alphabets Γ̄, Γ^, and Γ̄^ there is always at most

one thread that has a top of stack symbol in that alphabet; which causes the transition rules defined

for A ′ to not allow for any other types of behavior. Thus, we can do the previous construction

backwards and obtain a run 𝜌 ofA that has equivalent progressiveness and shallowness properties

when compared to 𝜌 ′.

E.4 Detailed construction of A (𝑖,𝔲)
We construct a freezing DCPS A (𝑖,𝔲) = (𝐺 ′, Γ′,Δ′, 𝑔′0, 𝛾 ′0, 𝛾†). Here, 𝑔′0 is a fresh state and 𝛾 ′

0
are

fresh stack symbols, which are both used for initialization. Moreover, 𝛾† is a fresh stack symbol

that will be the top of stack of the initially frozen thread.

In addition to the stack of a thread in A, a thread in A (𝑖,𝔲) tracks some extra information

(𝑡, 𝑗, m̄, n̄), where
• 𝑡 is the type of the current thread execution,

• 𝑗 is the number of segments that have been completed,

• m̄ is the guess for 𝛼𝐵 (m), where m is the production of the thread execution,

• n̄ is 𝛼𝐵 (n), where n ∈ M[Λ] is the multiset that has been produced so far.

When a thread is inactive, this extra information is stored on its top of stack symbol. For this, we

need the new alphabet Γ′ = Γ ∪ Γ̃ ∪ {𝛾 ′
0
, 𝛾†}, where

Γ̃ = {(𝛾, 𝑡, 𝑗, m̄, n̄) | 𝛾 ∈ Γ, 𝑡 is a type, m̄, n̄ ∈ [0, 𝐵]Λ}.

While a thread is active, this extra information is stored in the global state. This makes it easier

to update it, e.g. when the stack is popped. Moreover, we need a global state 𝑔 for each 𝑔, which

enforce that the information is transfered from the stack to the global state. In order to execute the

initially frozen thread with top-of-stack 𝛾†, we need global states 𝑔†, 𝑗 for 𝑔 ∈ 𝐺 and 𝑗 ∈ [0, 𝐾].
Finally, we need special global states 𝑔′𝑗 for 𝑗 ∈ [0, 𝐾] to execute an initial helper thread with

top-of-stack 𝛾 ′
0
. Thus, we have 𝐺 ′ = 𝐺 ∪ �̃� ∪𝐺 ∪ {𝑔′𝑗 , 𝑔†, 𝑗 | 𝑗 ∈ [0, 𝐾]}, where

�̃� = {(𝑔, 𝑡, 𝑗, m̄, n̄) | 𝑔 ∈ 𝐺, 𝑡 is a type, 𝑗 ∈ [0, 𝐾], m̄, n̄ ∈ [0, 𝐵]Λ},

𝐺 = {𝑔 | 𝑔 ∈ 𝐺}.

We now describe the transition rules of A (𝑖,𝔲) .

Rules for initialization. We begin the description of a few rules that serve to initialize our freezing

DCPS. The initial configuration of our freezing DCPS is ⟨𝑔′
0
,⊥, [[(𝛾 ′

0
, 0), (𝛾^† , 0)]]⟩. Since in our

simulation, we need that each thread in the bag is already annotated with its extra information, we

use a helper thread with top-of-stack 𝛾 ′
0
to (i) spawn a thread simulating 𝛾0 and also (ii) guess its

extra information. Thus we have a resume rule

𝑔′
0
↦→ 𝑔′

1
◁ 𝛾 ′

0

to resume (𝛾 ′
0
, 0). Then in this new thread, we spawn (𝛾0, 0), but with extra information. Thus, we

have a creation rule

𝑔′
0
|𝛾 ′

0
↩→ 𝑔′

1
|𝛾 ′

0
▷ (𝛾0, 𝑡, 0, m̄, 0)

, Vol. 1, No. 1, Article . Publication date: October 2020.



Context-Bounded Liveness-Verification for Multithreaded Shared-Memory Programs 57

for every type 𝑡 and m̄ ∈ [0, 𝐵]Λ. After this, our helper thread has to complete 𝐾 context-switches.

This means, it has a interrupt rules

𝑔′𝑗 |𝛾 ′0 ↦→ 𝑔′𝑗+1 |𝛾 ′0
for 𝑗 ∈ [1, 𝐾 − 1] and a rule to remove 𝛾 ′

0
:

𝑔′𝐾 |𝛾 ′0 ↩→ 𝑔′𝐾 |𝜀
Then, from 𝑔′

𝐾
with an empty stack, we can only use the termination rule

𝑔′𝐾 ↦→ 𝑔0

which enters the global state that corresponds to the initial global state 𝑔0 of A.

Creation rules. An internal action of a thread is simulated in the obious way. For each rule 𝑔 |𝛾 ↩→
𝑔′ |𝑤 ′, we have a rule

(𝑔, 𝑡, 𝑗, m̄, n̄) |𝛾 ↩→ (𝑔, 𝑡, 𝑗, m̄, n̄) |𝑤 ′

for every type 𝑡 , 𝑗 ∈ [0, 𝐾], and m̄, n̄ ∈ [0, 𝐵]Λ.
When our DCPS spawns a new thread, it immediately guesses its type and production abstraction

m̄. Moreover, it sets its segment counter to 0 and sets n̄ to 0. Hence, for every creation rule

𝑔|𝛾 ↩→ 𝑔′ |𝑤 ′ ▷ 𝛾 ′, we have a rule
(𝑔, 𝑡, 𝑗, m̄, n̄) |𝛾 ↩→ (𝑔, 𝑡, 𝑗, m̄, 𝛼𝐵 (n̄ + [[(𝛾, 𝑗)]])) |𝑤 ′ ▷ (𝛾 ′, 𝑝 ′, 0, m̄′, 0)

for types 𝑡, 𝑡 ′, 𝑗 ∈ [0, 𝐾], and m̄, m̄′, n̄ ∈ [0, 𝐵]Λ. Note that changing n̄ to 𝛼𝐵 (n̄ + [[(𝛾, 𝑗)]]) records
that the current thread has spawned a thread 𝛾 in segment 𝑗 . Note that we perform this guessing of

extra information with every newly spawned thread, not just those that will be frozen and hence

yield the executions 𝑒1, 𝑒2, . . .. Therefore, there is no requirement here that m̄ belong to𝑈𝑝 where

𝔲 = (𝑈𝑡 )𝑡 ∈T .

Interruption rules. When we interrupt a thread, then its extra information is transferred from the

global state to the top of stack and the segment counter 𝑗 is incremented. Thus, for every interrupt

rule 𝑔|𝛾 ↦→ 𝑔′ |𝑤 ′ of A, we write𝑤 ′ = 𝛾 ′′𝑤 ′′ (recall that 1 ≤ |𝑤 ′ | ≤ 2) and include rules

(𝑔, 𝑡, 𝑗, m̄, n̄) |𝛾 ↦→ 𝑔 | (𝛾 ′′, 𝑡, 𝑗 + 1, m̄, n̄)𝑤 ′′

for every type 𝑡 , 𝑗 ∈ [0, 𝐾 − 1], and m̄, n̄ ∈ [0, 𝐵]Λ.

Resumption rules. In order to simulate a resumption rule 𝑔 ↦→ 𝑔′ ◁ 𝛾 , we resume some thread with

𝛾 (and extra information) as top of stack. The transfer of the extra finformation cannot be done in

the same step, so we have an additional state 𝑔′ in which this transfer is carried out. Hence, for

every resumption rule 𝑔 ↦→ 𝑔′ ◁ 𝛾 , we have rules

𝑔 ↦→ 𝑔′ ◁ (𝛾, 𝑝, 𝑗, m̄, n̄)

for each type 𝑡 , 𝑗 ∈ [0, 𝐾], m̄, n̄ ∈ [0, 𝐵]Λ. In 𝑔′, we then transfer the extra information into the

global state. Thus, we have

𝑔| (𝛾, 𝑡, 𝑗, m̄, n̄) ↩→ (𝑔, 𝑡, 𝑗, m̄, n̄) |𝛾,
which exist for each 𝑔 ∈ 𝐺 , 𝛾 ∈ Γ, m̄, n̄ ∈ [0, 𝐵]Λ, 𝑡 ∈ T , and 𝑗 ∈ [0, 𝐾].

Termination rules. When we terminate a thread, we check that the two components m̄ and n̄ in the

extra information match. Hence, for each termination rule 𝑔 ↦→ 𝑔′, we include a rule

(𝑔, 𝑡, 𝑗, m̄, m̄) ↦→ 𝑔′

for each type 𝑡 , 𝑗 ∈ [0, 𝐾], and m̄ ∈ [0, 𝐵]Λ.
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Unfreezing rules. Using freezing and unfreezing, we make sure that there are thread executions

𝑒1, 𝑒2, . . . that satisfy the conditions of a (𝑖, 𝔲)-starving run. This works as follows. Initially, we have
the frozen thread 𝛾†. To satisfy progressiveness, a run of A (𝑖,𝔲) must at some point unfreeze (and

switch to) 𝛾†. During this unfreeze, we make sure hat there exists a thread that can play the role of

𝑒1.

Thus, to unfreeze 𝛾†, we have to freeze a thread of some type 𝑡 where m̄ belongs to𝑈𝑡 :

𝑔 ↦→ 𝑔†,0 ◁ 𝛾† ^ (𝛾, 𝑡, 𝑖, m̄, n̄)

for every 𝑔 ∈ 𝐺 , 𝑡 ∈ T , m̄ ∈ 𝑈𝑝 . The state 𝑔†,0 is a copy of 𝑔 in which we can only complete the

execution of the 𝛾† thread and then return to 𝑔. This means, we have interrupt rules

𝑔†, 𝑗 |𝛾† ↦→ 𝑔†, 𝑗+1 |𝛾†
for 𝑗 ∈ [0, 𝐾 − 1] and 𝑔 ∈ 𝐺 , and resume rules

𝑔†, 𝑗 |𝛾† ↦→ 𝑔†, 𝑗 |𝛾†
for 𝑗 ∈ [1, 𝐾] and 𝑔 ∈ 𝐺 , a rule to empty the stack in the last segment:

𝑔†,𝐾 |𝛾† ↩→ 𝑔†,𝐾 |𝜀

for 𝑔 ∈ 𝐺 and finally a termination rule

𝑔†,𝐾 ↦→ 𝑔

so that the simulation of A can continue.

After this, the new frozen thread with top of stack (𝛾, 𝑡, 𝑖, m̄, n̄) has to be resumed (and thus

unfrozen) at some point. To make sure that at that point, there is a thread that can play the role of

𝑒2. Therefore, to unfreeze (and thus resume) a thread with top of stack (𝛾, 𝑡, 𝑖, m̄, n̄), we freeze a
thread (𝛾 ′, 𝑡 ′, 𝑖, m̄′, n̄′) with m̄′ ∈ 𝑈𝑡 ′ . Note that unfreezing always happens with context-switch

number 𝑖 , because the executions 𝑒1, 𝑒2, . . . have to be in their 𝑖-th segment in the configurations

𝑐1, 𝑐2, . . .. Thus, we have

𝑔 ↦→ 𝑔′ ◁ (𝛾, 𝑡, 𝑖, m̄, n̄) ^ (𝛾 ′, 𝑡 ′, 𝑖, m̄′, n̄′)
for each resume rule 𝑔 ↦→ 𝑔′ ◁ 𝛾 , type 𝑡 , m̄ ∈ 𝑈𝑝 , and n̄ ∈ [0, 𝐵]Λ, provided that 𝑔 is the state

specified in 𝑡 to be entered in the 𝑖-th segment.

E.5 Proof of Lemma 6.7
In this section, we prove Lemma 6.7. It will be convenient to use a slightly modified definition of

pushdown automata for this.

Pushdown automata with output. If Γ is an alphabet, we define Γ̄ = {𝛾 | 𝛾 ∈ Γ}. Moreover, if 𝑥 = 𝛾 ,

then we define 𝑥 = 𝛾 . For a word 𝑣 ∈ (Γ ∪ Γ̄)∗, 𝑣 = 𝑣1 · · · 𝑣𝑛 , 𝑣1, . . . , 𝑣𝑛 ∈ Γ ∪ Γ̄, we set 𝑣 = 𝑣𝑛 · · · 𝑣1.

A pushdown automaton with output is a tuple A = (𝑄, Γ,Λ, 𝐸, 𝑞0, 𝑞𝑓 ), where 𝑄 is a finite set of

states, Γ is its stack alphabet, Λ is its output alphabet, 𝐸 ⊆ 𝑄 × (Γ ∪ Γ̄ ∪ {𝜀}) ×M[Λ] ×𝑄 is a finite

set of edges, 𝑞0 ∈ 𝑄 is its initial state, and 𝐹 ⊆ 𝑄 is its set of final states. A configuration of A is a

triple (𝑞,𝑤,m) with 𝑞 ∈ 𝑄 , 𝑤 ∈ Γ∗, and m ∈ M[Λ]. For configurations (𝑞,𝑤,m) and (𝑞′,𝑤 ′,m′),
we write (𝑞,𝑤,m) −→ (𝑞′,𝑤 ′,m′) if there is an edge (𝑞,𝑢, n, 𝑞′) inA such thatm′ = m + n and (i) if

𝑣 = 𝜀, then𝑤 ′ = 𝑤 , (ii) if 𝑣 ∈ Γ, then𝑤 ′ = 𝑤𝑣 and (iii) if 𝑣 = 𝛾 for 𝛾 ∈ Γ, then𝑤 = 𝑤 ′𝛾 . By −→∗, we
denote the reflexive transitive closure of −→.

For a pushdown automata with output A and a state 𝑞, we define

𝑆A,𝑞 = {(𝑤,m) ∈ Γ∗ ×M[Λ] | (𝑞0, 𝜀, 0) −→∗ (𝑞,𝑤,m′) −→∗ (𝑞𝑓 , 𝜀,m) for some m′ ∈ M[Λ]}

, Vol. 1, No. 1, Article . Publication date: October 2020.



Context-Bounded Liveness-Verification for Multithreaded Shared-Memory Programs 59

In other words, 𝑆A,𝑞 collects those pairs (𝑤,m) such that A has a run that visits the state 𝑞 with

stack content𝑤 , and the whole run outputsm. Clearly, Lemma 6.7 is a consequence of the following:

Lemma E.2. Given a pushdown automaton with output A and a state 𝑞, the set 𝑆A,𝑞 is effectively
rational.

In the proof of Lemma E.2, it will be convenient to argue about the dual pushdown automaton. If

A is a pushdown automaton with output, then its dual automaton, denoted ¯A, is obtained from A
by changing each edge (𝑝,𝑢,m, 𝑞) into (𝑞,𝑢,m, 𝑝), and switching the initial and final state, 𝑞0, and

𝑞𝑓 . Moreover, we define

𝐼A,𝑞 = {(𝑤,m) ∈ Γ∗ ×M[Λ] | (𝑞0, 𝜀) −→∗ (𝑞,𝑤,m)},

which is a one-sided version of 𝑆A,𝑞 : In the right component, we only collect the multiset output

until we reach 𝑞 and𝑤 . However, using the dual automaton, we can construct 𝑆A,𝑞 from the sets

𝐼A,𝑞 . For subsets 𝑆,𝑇 ⊆ Γ∗ ×M[Λ], we define

𝑆 ⊗ 𝑇 = {(𝑤,m1 +m2) ∈ Γ∗ ×M[Λ] | (𝑤,m1) ∈ 𝑆, (𝑤,m2) ∈ 𝑇 }.

Then clearly 𝑆A,𝑞 = 𝐼A,𝑞 ⊗ 𝐼 ¯A,𝑞 . The next lemma follows using a simple product construction.

Lemma E.3. Given rational subsets 𝑆,𝑇 ⊆ Γ∗ ×M[Λ], the set 𝑆 ⊗ 𝑇 is effectively rational.

Because of 𝑆A,𝑞 = 𝐼A,𝑞 ⊗ 𝐼 ¯A,𝑞 , Lemma E.2 is a direct consequence of the following.

Lemma E.4. Given A and 𝑞, the set 𝐼A,𝑞 is effectively rational.

Proof. Roughly speaking, we do the following. For each pair of states 𝑝, 𝑝 ′, we look at the set

𝐾𝑝,𝑝′ ⊆ M[Λ] of outputs that can be produced in a computation that goes from (𝑝,𝑤) to (𝑝 ′,𝑤)
without ever removing a letter from 𝑤 . Note that this set does not depend on 𝑤 . Since 𝐾𝑝,𝑝′ is

semi-linear, there is a finite automaton B𝑝,𝑝′ that can produce 𝐾𝑝,𝑝′ . We glue in between 𝑝 and

𝑝 ′ in A. In the resulting pushdown automaton with output A ′, we can then observe that every

configuration is reachable without ever performing a pop operation. Therefore, removing all pop

operations from A ′ and making 𝑞 the only final state yields an automaton over Γ∗ ×M[Λ] that
accepts 𝐼A,𝑞 .
Let us do this in detail. Let A = (𝑄, Γ,Λ, 𝐸, 𝑞0, 𝑞𝑓 ) be a pushdown automaton with output. For

each pair of states 𝑝, 𝑝 ′ ∈ 𝑄 , we define

𝐾𝑝,𝑝′ = {m ∈ M[Λ] | (𝑝, 𝜀, 0) −→∗ (𝑝 ′, 𝜀,m)}.

It follows from Parikh’s theorem that each set𝐾𝑝,𝑝′ is semi-linear. In particular, we can an automaton

B𝑝,𝑝′ over Γ∗ ×M[Λ] that accepts {𝜀} × 𝐾𝑝,𝑝′ .
Let A ′ be the pushdown automaton with output obtained from A by glueing in, between any

pair 𝑝, 𝑝 ′ of states, the automaton B𝑝,𝑝′ . Observe that for any reachable configuration (𝑝,𝑤,m) of
A, we can reach (𝑝,𝑤,m) in A ′ without using pop transitions: If in a run there is a transition that

pops some 𝛾 , we can replace the part of the run that pushes that 𝛾 , then performs other instructions,

and finally pops 𝛾 , with a run in some B𝑝,𝑝′ . Conversely, any configuration reachable in A ′ in a

state that already exists in 𝑄 , is also reachable in A.

Now let A ′′ be the pushdown automaton with output obtained from A ′ by removing all pop

transitions. According to our observation, A ′′ has the same set of reachable configurations in 𝑄 as

A. Since A ′′ has no pop transitions, it is in fact an automaton over Γ∗ ×M[Λ]. Hence, if we make

𝑞 the final state, we obtain an automaton over Γ∗ ×M[Λ] for the set 𝐼A,𝑞 .
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E.6 Proof of Lemma 6.11
Lemma 6.11. Given a tuple𝔖 = (𝑆1, . . . , 𝑆𝑘 ) of rational subsets 𝑆 𝑗 ⊆ Γ∗ ×M[Λ], we can compute

a bound 𝐵 such that the following holds. Let 𝔙 = (𝑉1, . . . ,𝑉𝑘 ) be a𝔖-consistent tuple and suppose
𝛼𝐵 (m) ∈ 𝑉𝑗 . Then adding m to 𝑉𝑗 preserves𝔖-consistency.

Proof. Suppose the rational subsets are given by automata A1, . . . ,A𝑘 . By introducing inter-

mediate states, we may clearly assume that every edge in these automata either reads a letter from

Γ or a singleton multiset from Λ, meaning every edge either belongs to 𝑄 × Γ × {0} ×𝑄 or is of the

form (𝑝, 𝜀,m, 𝑞) with states 𝑝, 𝑞 and |m| ≤ 1. Let 𝑛 be an upper bound on the number of states of

each A𝑖 , 𝑖 ∈ [1, 𝑘]. Let𝑀 be the bound from Lemma 6.10 and let 𝐵 = 𝑀 (𝑛 + 1).
Now let𝔙 = (𝑉1, . . . ,𝑉𝑘 ) be a tuple of subsets ofM[Λ] that admits an𝔖-consistency witness

𝑤 ∈ Γ∗. Moreover, let m ∈ M[Λ] with 𝛼𝐵 (m) ∈ 𝑉𝑖 . We prove the lemma by constructing a

word �̄� ∈ Γ∗ with 𝑤 ≤𝔖 �̄� such that m ∈ 𝑆𝑖↓�̄� . This implies the lemma, because �̄� witnesses

𝔖-consistency of the tuple𝔙′ = (𝑉 ′
1
, . . . ,𝑉 ′

𝑘
) with 𝑉 ′𝑖 = 𝑉𝑖 ∪ {m} and 𝑉 ′𝑗 = 𝑉𝑗 for 𝑗 ≠ 𝑖 .

Since 𝛼𝐵 (m) ∈ 𝑉 ′𝑖 and𝑤 is a𝔖-consistency witness, we know that 𝛼𝐵 (m) ∈ 𝑆𝑖↓𝑤 . This means,

there is a multiset m′ ∈ M[Λ] with m′ ≥1 𝛼𝐵 (m) and (𝑤,m′) ∈ 𝑆𝑖 .
Observe that if we had m′ ≥1 m, we could just choose𝑤 ′ = 𝑤 . Moreover, in those coordinates

𝑐 ∈ Λ where m(𝑐) < 𝐵, we already know that m′(𝑐) ≥ m(𝑐), because m′ ≥ 𝛼𝐵 (m). For those
coordinates 𝑐 with m(𝑐) ≥ 𝐵, we will obtain �̄� by pumping an infix in𝑤 .

Let 𝑐 ∈ Λ with m(𝑐) ≥ 𝐵. Then m′(𝑐) ≥ 𝐵 and therefore the pair (𝑤,m′) is accepted on a run

𝑞0

(𝑢0,m0)−−−−−−→ 𝑞1

(𝑢1,m1)−−−−−−→ · · ·
(𝑢𝐵 ,m𝐵 )−−−−−−→ 𝑞𝐵

(𝑢𝐵+1,m𝐵+1)−−−−−−−−−→ 𝑞𝐵+1

where 𝑤 = 𝑢0 · · ·𝑢𝐵+1, m′ = m0 + · · · +m𝐵+1, and m𝑗 (𝑐) ≥ 1 for each 𝑗 = 1, . . . , 𝐵. Since 𝐵 = 𝑀𝑛,

there is a state 𝑝 of A𝑖 that appears at least 𝑀 times in the sequence 𝑞1, . . . , 𝑞𝐵 . This means, we

have a run

𝑞0

(𝑣0,n0)−−−−−→ 𝑝
(𝑣1,n1)−−−−−→ 𝑝

(𝑣2,n2)−−−−−→ · · · 𝑝
(𝑣𝑀 ,n𝑀 )−−−−−−→ 𝑞𝐵+1

with𝑤 = 𝑣0 · · · 𝑣𝑀 , m′ = n0 + · · · + n𝑀 , and n𝑗 (𝑐) ≥ 1 for each 𝑗 = 1, . . . , 𝑀 − 1.

We claim that we can write𝑤 = 𝑥𝑦𝑧 such that𝑤 = 𝑥𝑦𝑧 ≤𝔖 𝑥𝑦ℓ𝑧 for every ℓ and that there is a

run 𝑞0

(𝑥,n̂1)−−−−→ 𝑝
(𝑦,n̂2)−−−−→ 𝑝

(𝑧,n̂3)−−−−→ 𝑞𝐵+1 with n̂2 (𝑐) ≥ 1. We distinguish two cases.

(1) First, suppose that there is a 𝑗 ∈ {1, . . . , 𝑀 − 1} with 𝑣 𝑗 = 𝜀. Then we can choose this 𝑣 𝑗 as

the 𝑦 in the decomposition𝑤 = 𝑥𝑦𝑧, which is clearly as desired.

(2) Suppose that 𝑣 𝑗 ≠ 𝜀 for every 𝑗 ∈ {1, . . . , 𝑀 − 1}. Then the 𝑀 positions in the decomposi-

tion 𝑤 = 𝑣0 · · · 𝑣𝑀 are pairwise distinct and we can apply Lemma 6.10. It clearly yields a

decomposition of𝑤 as desired in our claim.

Hence, the claim holds in any case. If we now choose ℓ high enough, then we find a run of A𝑖
on (𝑥𝑦ℓ𝑧, m̄𝑐 ) = (𝑥𝑦ℓ𝑧,m′ + ℓ · n̄2) where m̄𝑐 (𝑐) ≥ m(𝑐) and m̄𝑐 ≥1 m′. If we repeat this step for

each 𝑐 ∈ Λ with m(𝑐) > 𝐵, we arrive at a word �̄� and a multiset m̄ with m ≤1 m̄ and𝑤 ≤𝔖 �̄� and

(�̄�, m̄) ∈ 𝑆𝑖 . This implies m ∈ 𝑆𝑖↓�̄� .

E.7 Proof of Proposition 6.9
Proposition 6.9. Given rational subsets 𝑆1, . . . , 𝑆𝑘 ⊆ Γ∗ ×M[Λ], we can compute a bound 𝐵 such

that for the tuple𝔖 = (𝑆1, . . . , 𝑆𝑘 ), the following holds: If𝔙 = (𝑉1, . . . ,𝑉𝑘 ) is a tuple of finite subsets
𝑉𝑗 ⊆ M[Λ], then𝔙 is𝔖-consistent if and only if 𝛼𝐵 (𝔙) is𝔖-consistent.

Proof. Suppose 𝔙 = (𝑉1, . . . ,𝑉𝑘 ) is a tuple of subsets of M[Λ]. Clearly, if 𝔙 is𝔖-consistent,

then so is 𝛼𝐵 (𝔙). The converse follows from Lemma 6.11: Since the sets 𝑉1, . . . ,𝑉𝑘 are finite, we

can start with 𝛼𝐵 (𝔙) and successively add each multiset occurring in some 𝑉𝑖 , without affecting
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𝔖-consistency. Then we arrive at a𝔖-consistent tuple𝔙′ = (𝑉 ′
1
, . . . ,𝑉 ′

𝑘
) with𝑉𝑖 ⊆ 𝑉 ′𝑖 for 𝑖 ∈ [1, 𝑘].

In particular,𝔙 is𝔖-consistent.

, Vol. 1, No. 1, Article . Publication date: October 2020.


	Abstract
	1 Introduction
	2 Dynamic Networks of Concurrent Pushdown Systems ()
	2.1 Preliminary Definitions
	2.2 Dynamic Networks of Concurrent Pushdown Systems
	2.3 Identifiers and the Run of a Thread
	2.4 Decision Problems and Main Results

	3 Warm-Up: Non-termination
	4 Fair Non-Termination
	4.1 VASS with Balloons
	4.2 From  to 

	5 From Progressive Runs for  to Reachability
	5.1 From Progressive Runs to Shallow Progressive Runs
	5.2 Reduction to Reachability
	5.3 From Reachability in  to Reachability in 

	6 Starvation
	7 Conclusion
	Acknowledgments
	References
	A Strengthening Fairness to Progressive Runs
	B Proofs from Section 4.1
	C Proofs for Section 5 
	C.1 Proof of Lemma 5.1
	C.2 Proof of Lemma 5.3

	D Proofs for Section 5.3
	D.1 Proof of Lemma 5.4
	D.2 Proof of Lemma 5.5

	E Proofs from Section 6
	E.1 Proof of Lemma 6.1
	E.2 Proof of Lemma 6.4
	E.3 Freezing 
	E.4 Detailed construction of A(i,u)
	E.5 Proof of Lemma 6.7
	E.6 Proof of Lemma 6.11
	E.7 Proof of Proposition 6.9


