
Inducing Subtle Mutations with Program Repair
Florian Schwander

Universitt des Saarlandes
Deutschland, Saarbrcken

Email: platin91x@gmail.com

Rahul Gopinath
CISPA Helmholtz Center
for Information Security

Email: rahul.gopinath@cispa.de

Andreas Zeller
CISPA Helmholtz Center
for Information Security
Email: zeller@cispa.de

Abstract—Mutation analysis is the gold standard for assessing
the effectiveness of a test suite to prevent bugs. It involves
injecting syntactic changes in the program, generating variants
(mutants) of the program under test, and checking whether the
test suite detects the mutant. Practitioners often rely on these
live mutants to decide what test cases to write for improving the
test suite effectiveness.

While a majority of such syntactic changes result in semantic
differences from the original, it is possible that such a change
fails to induce a corresponding semantic change in the mutant.
Such equivalent mutants can lead to wastage of manual effort.

We describe a novel technique that produces high-quality
mutants while avoiding the generation of equivalent mutants for
input processors. Our idea is to generate plausible, near correct
inputs for the program, collect those rejected, and generate
variants that accept these rejected strings. This technique allows
us to provide an enhanced set of mutants along with newly
generated test cases that kill them.

We evaluate our method on eight python programs and show
that our technique can generate new mutants that are both
interesting for the developer and guaranteed to be mortal.

I. INTRODUCTION

Mutation analysis is the gold standard for assessing test suite
effectiveness. The first step in mutation analysis is to produce
variants of the program using various mutation operators on
the source code. These mutation operators typically change or
replace syntactic elements of the program generating variants
(mutants) from the original. The idea is that these syntactic
changes will induce semantic (behavioral) changes in the
variants.

Mutation analysis of a program’s test suite starts by verifying
that the given test suite passes. That is, there exist no test
cases that fail (also called a green test suite). The mutation
analysis framework then generates mutants for the program
and evaluates how many of the generated mutants fail to be
verified using the test suite under evaluation. A test case kills a
mutant if the test case executes successfully given the original
program (i.e. it verifies the program), but fails when given the
mutant. The mutation score of a test suite is defined as the
fraction of mutants that failed to be verified relative to the total
amount of generated mutants.

Testers often use live mutants for guidance toward identifying
what tests to write [1] because live mutants represent possible
failures that were not detected by the current test suite.
Unfortunately, a significant number of such live mutants may
not be of much use for the practitioner due to the so-called
equivalent mutants [2], [3]. A mutant is called equivalent if

the introduced syntactic change does not lead to a detectable
semantic change. For example, consider the program (Listing 1)
and its mutant (Listing 2).

1def swap(x, y):
2t = x
3x = y
4y = t
5return (x, y)
6print(swap(1,2))

Listing 1: Original Program

1def swap(x, y):
2t = x
3x = y
4y = t
5return (x, t)
6print(swap(1,2))

Listing 2: Mutant Program

As you can see, the induced syntactic change — that of
swapping y for t — does not result in a corresponding
semantic change in the behavior of swap(). That is, the
mutant is equivalent to the original program in behavior.
Since the presence of those equivalent mutants cannot be
detected automatically except in trivial cases [4] they need to
be identified and discarded manually. Such equivalent mutants
also limit the practical applicability of mutation score as an
effectiveness measure [1]. Unfortunately, manual inspection is
neither scaleable [5] nor accurate. Researchers found that only
about 80% [6] of mutants were classified correctly by manual
inspection.

That is, if we are to recommend live mutants as guidance to
the testers, we need a way to produce mutants with subtle faults
that are guaranteed to be useful. In this paper, we provide a
way to generate guaranteed mortal mutants that are useful for
the practitioner. We focus on a large subset of programs —
input processors — that have some concept of valid inputs and
are able to reject inputs that are invalid.

A. Subtle Mutants Using Rejected Inputs

For ease of discussion, we focus on strings. Our technique
can also be applied to other data types. Say we have a program
that accepts input strings. Such programs typically use a parser

1def reverse_int(inpt):
2res = ’’
3for k in inpt:
4if k not in ’0123456789’:
5raise Exception(’Invalid.’)
6else:
7res = k + res
8return int(res)

Listing 3: Python Example Code

` reverse_int(’2’) == 2
` reverse_int(’123456789’) == 987654321
a reverse_int(’’)
a reverse_int(’a1gh’)
a reverse_int(’1fh’)

Listing 4: Python Example Code Test Suite

for parsing the input strings to their internal representation.
If we have the corresponding input specification (typically a
grammar) at hand, then we can use a fast grammar fuzzer [7]
to generate numerous inputs, each of which are syntactically
valid, and some of which are semantically valid. In case we
do not have the input specification, we can also use failure
feedback directed fuzzers [8], [9], [10] for generating valid
inputs.

Given at least one such syntactically and semantically valid
input, we can apply simple mutations such as bit-flip, byte-flip,
trim, delete, insert, and swap to the input string. We focus on
the minimum number of operations needed to make the string
invalid. That is, the input string is closely related to the original
string, but is rejected by the program. The idea is to collect
such rejected inputs and to repair the program (focusing on
the smallest repair needed) to make it accept the input while
continuing to pass any test case in the given test suite. Given
that the new variant (the repaired program) accepts an input
that was rejected by the original program, we can guarantee
that the variant is semantically different from the original —
that is, the variant is non-equivalent1.

Consider the python program in Listing 3 and its test suite
in Listing 4. This program only accepts input strings that
exclusively contain digits. We now want to find the missing
test cases for this program. For that, we wish to create mutants
that pass all five tests while also introducing observable bugs,
preferably accepting one or more invalid inputs. To apply our
technique, we need an accepted string. Say during fuzzing,
we found that 12 was accepted by the program. Next, we
mutate this input using a random mutation — insert. This
resulted in the string 12- which was rejected by the program.
Crucially, we also find that the rejection happens only after
a common execution path. That is, we know that the input
is syntactically and semantically close to the original input.
We then use this information to create mutants that accept the
rejected string. While generating such mutants, we also keep
track of any mutant that raises a different exception than the

1 We also call a non-equivalent variant a mortal variant.

1def reverse_int(instr):
2res = ’’
3for k in instr:
4if k == ’0123456789’:
5raise Exception(’Invalid.’)
6else:
7res = k + res
8return int(res)

Listing 5: Mutant 2

1def reverse_int(instr):
2res = ’’
3for k in instr:
4if k < ’0123456789’:
5raise Exception(’Invalid.’)
6else:
7res = k + res
8return int(res)

Listing 6: Mutant 1

original program, or rejects a valid string, but otherwise shows
behavior similar to the original program, and passes the given
test suite.

Given our sample program and string 12 and 12-, the
following are the possible mutant kinds: (1) The first kind
accepts some invalid inputs along with other tested valid inputs
(Listing 5) (Note that the value 0123456789 is difficult to
generate randomly, and hence not one of the random values
tested). That is, this mutant introduces a new class of valid
inputs, namely strings that consist of integer numbers and
end with - or + including 12- which yields -21 and passes
the test suite. (2) The second kind rejects a few valid inputs
(Listing 6). If one considers the mutants generated, the first
mutant (Listing 5) successfully passes the given test suite
(Listing 4). However, we know for a fact that this mutant is
not semantically equivalent to the original. That is, this mutant
is mortal. Further, the mutation applied is in the syntactic
neighborhood of the original, separated by a single token
difference. Hence, the new crafted mutant (Listing 5) is a
plausible subtle mutant that indicates a shortcoming in the
original test suite, and hence, a useful target for the practitioner.
Similarly, the crafted mutant (Listing 6) rejects a few valid
inputs (e.g. 0) that were accepted by the original but otherwise
behaves very similar to the original (close enough that the
given test suite does not find the other differences). Hence,
the second mutant is also plausible and can be helpful to the
practitioner.

B. Augmenting Test Suites

Our technique for generating new mutants can also be
used to generate test cases — the procedure is reminiscent
of Evosuite [11]. The idea is to simply capture the way the
original program reacts to the invalid input in a test case (i.e.
return a result or throw an exception) and add it to the test
suite.

For example, consider the program (Listing 3) and the mutant
(Listing 5) with valid input 12 and invalid input 12-. For
the original, the valid input returns no error while the invalid
input returns an exception. For the mutant, neither the valid
nor the invalid input produce an error. This yields the test case
a reverse int(’12-’) killing the mutant. In the case
of the second mutant (Listing 6), this was added because the
mutant rejected 0 which was accepted by the original. Indeed,
any input that contains 0 that was accepted by the original
will now be rejected as invalid by the mutant. Hence, such
inputs become new test cases to be added to the test suite.

C. Algorithm

The key idea of our algorithm is that a concrete invalid input
in a mutant has to follow the same conditional branches as a
concrete valid input in the original program.

• We start with a valid input that is accepted by the program.
• We execute the original program with the valid input and

record the truth values of the conditions encountered. We
call this the valid execution.

• Next, we apply simple mutations to the input-producing
inputs that are rejected by the program. We choose inputs
that have high overlap in execution path with the original.

• Next, we record the truth values of the conditions
encountered when processing the invalid input.

• From these records, we compute the source code locations
of conditions that are present in both but differ on the
observed truth value.

• For such pairs of source code locations, we generate
multiple mutants by applying some randomly chosen
mutation operators to the location(s).

• We then test the behavior of all generated mutants when
processing the valid and invalid input respectively and
keep those that reject the valid input or accept the invalid
input.

• For mutants that do not accept the invalid input we re-
compute the difference in observed truth values to the
valid execution and continue as before.

• We stop generating successors of a mutant if the difference
is empty or it accepts the invalid input.

We note that while we have only tested simple source
mutations using mutation analysis operators, any program
repair technique can yield effective mutants. Our algorithm is
designed to be complementary to traditional mutation analysis,
used for augmenting the original mutant set generated by
such tools. Hence, we evaluate whether our technique can
augment the mutant set generated by a state-of-the-art mutation
framework called cosmic-ray[12] on four JSON parsers. Our
evaluation shows that our technique can produce mutants
representing faults that are not covered by cosmic-ray.

Contributions:

• We leverage program repair to generate subtle mutants
that are guaranteed to be non-equivalent.

1def H2I(inpt):
2res = 0
3if not inpt:
4raise Exception(’Not Hex’)
5for c in input.lower():
6if c >= ’0’ and c <= ’9’:
7res = 16 * res + (ord(c)-ord(’0’))
8elif c >= ’a’ and c <= ’f’:
9res = 16 * res + (ord(c)-ord(’a’)+10)
10else:
11raise Exception(’Not Hex’)
12return res

Listing 7: Hex Converter

a H2I(’’)
a H2I(’e2h’)
a H2I(’b0G’)
` H2I(’9876543210’) == 654820258320
` H2I(’ABCDEF’) == 11259375
` H2I(’abcdef’) == 11259375
` H2I(’1a2b3c4d5e6f7890’) == 1885667171979196560
` H2I(’1A2B3C4D5E6F7890’) == 1885667171979196560

Listing 8: Hex Converter Test Suite

• We evaluate and show that our technique can augment
the quality of mutants of the state-of-the-art mutation tool
cosmic-ray on four large real-world subjects.

II. INDUCING SUBTLE MUTANTS

For inducing subtle mutants, our strategy involves first
finding some string that is accepted by the given program. Next,
we use simple mutation operators to generate syntactically and
semantically close input strings that are however rejected by
the program. Then we attempt to make the program variant
accept the invalid input string by repairing the program. We
generate pairs — (valid-input, invalid-input) — of
such inputs, generating a new pair when either the invalid input
is accepted, or when there are no more simple modifications2

to be made to the source code. During this process, we also
keep those mutants that reject a designated valid string as they
are also guaranteed non-equivalent to the original program.

Our approach is split into these steps: (1) generating valid
inputs, (2) generating invalid inputs from the valid input, and
(3) repair the program such that the invalid input is accepted.

A. Generating Valid Inputs

For generating inputs, we have a few choices. The essential
idea is to use a fuzzer that can cover the input space fast. If
we have the input specification of the program in question,
we can use a fast grammar fuzzer [7] to quickly generate
syntactically valid inputs and hence, have a good chance
of creating semantically valid inputs if the program at hand
contains semantic validation steps. If on the other hand, we do
not have the input specification, we can use a failure feedback

2 We prefer simple modifications as they are more plausible as a fault in
the program than more complex modifications, and hence more likely to be
found useful by the practitioners.

directed fuzzer [8], [9], [10] for quickly covering the input
space, and hence producing a valid input string.

B. Generating Invalid Inputs from the Valid Input

To get invalid inputs, we modify each valid string by applying
any of the mutation operators (bit-flip, byte-flip, trim, delete,
insert, and swap) randomly, generating mutated input strings.
These are then fed to the program to determine if they are
rejected. If the string is accepted, it is added to the set of
valid strings. If the string is rejected, it is added to the set of
invalid strings. When choosing which inputs to modify, we
prefer those that have been mutated least often. This ensures
that our mutants are within a minimal edit distance [13] from
the original. We stop when the budget for allowed mutation
attempts is exhausted.

C. Crafting Mutants by Repairing the Program

For crafting mutants, we first identify the candidates for
mutation. We only consider conditionals statements as candi-
dates for mutation as these are expected to determine whether
a program accepts or rejects an input. Our approach considers
the difference in observed evaluated condition state — True
or False — to find candidate conditions to mutate. We then
compute candidate lines for modification in each step for
the current (valid-input, invalid-input) pair. The
algorithm terminates when the mutation of every pair is
completed.

As an example of a possible execution, consider the hex
converter (Listing 7) with inputs 19 and 1+9. For the valid
input 19, the condition states (these are evaluated in the context
of the unmodified SUT) are {3: False; 6: True}. For the
invalid input 1+9, we get {3: False; 6: True, False, 8:
False} We call these the condition traces.

Unlike the valid input, the trace of the invalid input is
recomputed whenever a new mutant is created. Both agree on
the state of line 3 and the valid execution does not encounter
line 8 which leaves line 6 as a possible candidate for mutation.
Indeed, as its value is fixed for the valid string but varies
for the invalid input, line 6 is the only mutation candidate
in the current step. Since Mauris (our tool) can generate a
large number of mutants (see Table I for the list of mutation
operators) for this line, we can’t show them all. Thus we will
limit ourselves to one first (Listing 9), one second (Listing 10),
and one third-order (Listing 11) candidate to illustrate the
procedure. We then pick the first order mutant and first check
whether it rejects the valid string 19. Since it does, the current
mutant is mortal and can be kept.

Next, we check the invalid string 1+9 to see that it is still
being rejected. In the context of the current mutant, its condition
trace is 3: False; 6: False; 8: False. This is the same trace
as before and to avoid infinite recursion we do not allow a
line to be modified more than once. This leaves us with no
candidate line which concludes the mutation of our first order
mutant. As before, we start analyzing the current state of our
second order mutant by checking whether the valid string 19
gets rejected. This is however not the case so this mutant will

only be part of the output in case it accepts the invalid string
1+9, which it does. We hence keep our second-order mutant
and conclude its mutation.

Finally, we consider our third order mutant again by first
checking valid string 19 which it rejects. Again this means
that the mutant is non-equivalent and will be part of the output.
The mutant also does not accept the invalid string 1+9 and
we hence again compute candidate lines. The condition trace
is unsurprisingly: 3: False; 6: False; 8: False. As before the
only candidate line has been mutated already so we do not
create any successors. Note that the presented second-order
mutant passes the example test suite.

1def H2I(input):
2res = 0
3if not input:
4raise Exception(’Not Hex’)
5for c in input.lower():
6if not (c >= ’0’ and c <= ’9’):
7res = 16 * res + (ord(c)-ord(’0’))
8elif c >= ’a’ and c <= ’f’:
9res = 16 * res + (ord(c)-ord(’a’)+10)
10else:
11raise Exception(’Not Hex’)
12return res

Listing 9: First Order Mutant

1def H2I(input):
2res = 0
3if not input:
4raise Exception(’Not Hex’)
5for c in input.lower():
6if not (c >= ’0’) or c <= ’9’:
7res = 16 * res + (ord(c)-ord(’0’))
8elif c >= ’a’ and c <= ’f’:
9res = 16 * res + (ord(c)-ord(’a’)+10)
10else:
11raise Exception(’Not Hex’)
12return res

Listing 10: Second Order Mutant

1def H2I(input):
2res = 0
3if not input:
4raise Exception(’Not Hex’)
5for c in input.lower():
6if c <= ’0’ or c >= ’9’:
7res = 16 * res + (ord(c)-ord(’0’))
8elif c >= ’a’ and c <= ’f’:
9res = 16 * res + (ord(c)-ord(’a’)+10)
10else:
11raise Exception(’Not Hex’)
12return res

Listing 11: Third Order Mutant

At this point, we evaluate the behavior of all crafted mutants
for processing the valid and invalid inputs and keep those
mutants that reject the valid input or accept the invalid input.

TABLE I: Mutation operations

AST elements (class) Replace with Example
Any AST element e not e x → not x
Any AST element with multiple components all possible combinations of negation x and y

→ (not x) and y,
x and (not y),
not (x and y)

+, -, *, /, %, **, <<, ¿, —, ,̂ &, //¿ other operand of this class 1+2 → 1%2
constant n constant between -abs(n)-1 and abs(n)+1 4 → -2
and, or, ==, !=, <, <=, , ¿=, is, is not, in,
not in¿

other operand of this class a in b → a != b

∼, - (unary), + (unary) other operand of this class x → -x
e[:::] (slice) empty index a[1:3] → a[:]

For mutants that do not accept the invalid input we re-
compute the difference in observed truth values to the valid
execution and continue as before. We stop generating successors
of a mutant if the difference is empty or it accepts the invalid
input.

III. EVALUATION

For evaluation, we chose the following test subjects:

• cgi.py: A simple CGI decoder (72 SLOC)
• mathexpr.py: A script that evaluates simple mathemat-

ical expressions (169 SLOC)
• urljava.py: A simple URL parser (230 SLOC)
• xsum.py: a script which computes the cross-sum of a

given integer (13 SLOC). This served as our basic test
subject since a full run on this subject is fairly easy to
fully comprehend.

• ijson.py[14]: An iterative JSON parser (309 SLOC)
• microjson.py[15]: A minimal JSON parser (311

SLOC)
• nayajson.py[16]: A fast streaming JSON parser (546

SLOC)
• simplejson.py[17]: A simple, fast, extensible JSON

parser (1486 SLOC)

We obtained cgi.py, mathexpr.py, urljava.py, and
xsum.py from the Pychains [18] examples. For these subjects,
there were no existing test suites. Hence, we added them
ourselves.

A. Verifying Mutant Behavior

To verify that the mutants we generated are guaranteed non-
equivalent, we infer the actual behavior when passing the used
inputs via the command line. This is to make sure that the way
we inject the inputs has no influence on the execution.

1) Mutant mortality: The first question concerns whether
the mutants we produce are actually mortal or not.
RQ1: Are the mutants created non-equivalent?

That is, are the mutants produced using our technique
semantically different from the original? In particular, do these
generated mutants show different behavior from the original by
accepting some originally rejected strings, or rejecting some
originally accepted strings?

2) Unique faults: We aim to generate strong mutants that
represent unique faults. Hence, we need to assess the quality
of the generated mutant set. The next research question tackles
whether the generated mutants improve the quality of the
mutant set.
RQ2: Do the generated mutants encode new unique faults?

In mutation analysis, the theoretical minimal set of mu-
tants [19] corresponding to an original set of mutants is defined
as the smallest set of mutants such that a test suite that can kill
every mutant in that minimal set is guaranteed to be capable of
killing every mutant in the original set. That is, every semantic
fault in the original mutant set is represented uniquely in the
minimal set. That is, the size of the minimal set of mutants
captures the number of unique faults that the mutants can
produce. Given that one often does not have access to a fine-
grained adequate test set that can compute the theoretical
minimal set of mutants, we make do with computing the
minimal set of mutants that correspond to a given test suite.
The size of such a minimal set of mutants is used as a measure
of how many different behaviors a mutant set shows in the
context of a given test suite. Hence, this question is evaluated
by comparing the size of the minimal set of mutants produced.
Given that our focus is on augmenting the traditional mutants,
rather than serving as an alternative to traditional mutation
analysis, we compare the size of the minimal mutant set of
the traditional and the Mauris augmented set.

3) Are the crafted mutants useful?: We need to ensure
that our mutants are useful for the programmer. In particular,
we need to be wary of mutants that are irrelevant to the
programmer. For example, a plausible mutant could be an
inserted check such as if i == 42: raise Error()
for a function that takes i as a parameter. The problem with
such mutants is that they require overly specific tests to detect,
and are not representative of actual faults. That is, we need to
make sure that our generated mutants do not contain irrelevant
mutants that require overly specific conditions to manifest.
RQ3: Are the subtle mutants generated plausible?

For analyzing this, we looked at each mutant and checked
whether they are plausible. That is, whether they are represen-
tative of real faults that a programmer can make in the real
world. In particular, we checked whether this mutant would
be a mutant that a programmer would likely write a test case
to detect. Since there is a subjective metric, it requires human

analysis. Hence, we analyzed each generated mutant manually.
The following procedure was used to judge whether the

given mutant was plausible or not:
• Produce a diff of the original and mutant program.
• Simplify the condition as much as possible.
• Consider what kind of test case would kill the mutant.
• Judge whether the emerging test case was reasonable

enough to add to the test suite. That is, it was not overly
specific.

B. Execution Details

For the evaluation, we used a Windows 10 64-bit system
running an Intel Xeon E3-1230 V2 (stock settings) and 16GB
of DDR3 RAM. The time budget for valid string generation was
set to 40 minutes. For the four JSON subjects, we generated
valid inputs for microjson using pychains and filtered them
to match the respective subject. The time budget was chosen
such that mutation and full verification of simplejson, the most
costly subject with regards to time, did not exceed 24 hours.
We used these settings to execute Mauris five times per subject.
This was found to be enough for the coverage induced by the
generated inputs to become asymptotic. Since our comparison
is based on mortal mutants which cannot be guaranteed for
cosmic-ray live mutants, we considered them equivalent. These
were removed before comparison. For cosmic-ray (v5.4.0) we
used default settings which yielded all available mutants.

C. Results

Table II contains details of our subjects. The terms used
are as follows: Conditions are the amount of if and elif
statements in the code. SLOC is the number of source lines of
code. Condition/SLOC is the relative frequency of conditions in
the source code. Coverage (Test Suite) is the branch or statement
coverage measured with coverage.py [20] when running the
test suite. Coverage (Mauris Inputs) is the branch or statement
coverage measured with coverage.py [20] when using the union
of inputs of all Mauris executions of the given subject.

The results for the subjects can be found in corresponding
tables: nayajson is given in Table III, simplejson is given in
Table IV, ijson is given in Table V, microjson is given in
Table VI, cgi in Table VII, mathexpr in Table VIII, urljava in
Table IX and xsum in Table X.

The following are the columns in the table: M is the time in
minutes generating the mutants took. For Mauris this consists
of generating inputs, generating candidate mutants, executing
the test suite, and checking the behavior of the live mutants.
Minimal is the amount of mutants in the minimal mutant set.
Live is the number of mortal mutants that passed the test suite.
Subtle is the percentage of live Mauris mutants considered
subtle.

The following are the rows in the table: cosmic-ray contains
results for cosmic-ray. Mauris + cosmic-ray: Average contains
the average results of all five test runs again including cosmic-
ray. Mauris + cosmic-ray: Best contains the results for the test
run with the minimal set of mutants of the union of Mauris
and cosmic-ray being the biggest.

IV. DISCUSSION

We discuss the results of our experiments next.

A. Mutant mortality

Our first research question was about whether our guarantee
of non-equivalence was validated in practice.
RQ1: Are the mutants created non-equivalent?

The results show that our strategy can indeed produce
mutants that are mortal. This was verified by performing
behavior validation on live mutants.

B. Unique faults

For our second research question, we evaluated whether the
mutant set that was produced from cosmic-rayand augmented
with Mauris was more effective than the baseline set of mutants
from cosmic-ray.
RQ2: Do the generated mutants encode new unique faults?

We observed that between 10.76% (urljava, Table IX) and
80.53% (microjson, Table VI) of mutants are unique to Mauris.
Hence we conclude that Mauris can indeed find mutants that
encode new unique faults and hence augment the baseline
mutant set of cosmic-ray.

C. Are crafted mutants useful?

As our mutants are often of higher order we had to check
whether they can be useful for a programmer. We would, for
example, consider a mutant that alters a number processor
(Listing 12) to not accept input 42 (Listing 13) irrelevant
because even though it represents a fault that the test case
likely did not check for, it is not a plausible fault that can be
produced by a competent programmer.

1if len(inpt) > 0:
2print(’ok’)
3else: raise Exception()

Listing 12: A number processor

1if len(inpt) > 0 and inpt != ’42’ :

2print(’ok’)
3else: raise Exception()

Listing 13: An irrelevant mutant

RQ3: Are the subtle mutants generated plausible?
Our analysis of whether the observed modifications in source

code are plausible mistakes that a programmer may make
shows that across all subjects, 84.38% of live mutants were
relevant, with CGI having the lowest share with just over
51% (Table VII). We thus conclude that most (over 84%) live
mutants created by Mauris are useful to test against.

TABLE II: Coverage and Code measures

Statement (Tests) Statement (Mauris Inputs) Branch (Tests) Branch (Mauris Inputs) Conditions SLOC Condition/SLOC
Nayajson 88.00% 62.00% 85.00% 59.00% 162 546 29.67%
Simplejson 94.00% 39.00% 92.00% 32.00% 195 1486 13.12%
iJson 99.00% 89.00% 98.00% 87.00% 23 309 7.44%
microjson 95.00% 93.00% 94.00% 92.00% 37 311 11.90%
CGI 98.00% 97.00% 96.00% 96.00% 9 72 12.50%
mathexpr 93.00% 94.00% 90.00% 91.00% 21 169 12.43%
urljava 89.00% 69.00% 86.00% 64.00% 40 230 17.39%
xsum 100.00% 100.00% 100.00% 100.00% 1 13 7.69%

TABLE III: Results - nayajson

M Minimal Live Subtle
cosmic-ray 14 37 -
Mauris + cosmic-ray: Average 216.2 48.6 2.8 78.57%
Mauris + cosmic-ray: Best 368 59 7

TABLE IV: Results - simplejson

M Minimal Live Subtle
cosmic-ray 22 308 -
Mauris + cosmic-ray: Average 395 429.2 0.4 100.00%
Mauris + cosmic-ray: Best 341 513 0

D. The quality of mutants crafted

By design, four factors directly influence the quality of
mutants created by Mauris:

• The quality of used input strings (i.e., their branch/s-
tatement coverage): Only conditions observed during
execution are modification candidates.

• The density and structure (number of modifiable tokens)
of conditions: Mauris exclusively changes if and elif
statements. Each modifiable token yields multiple candi-
date mutants.

• The structure of its test suite: Test cases for inputs used
by Mauris can kill the corresponding mutants. Consider
a mutant that accepts invalid input ’xyz’ for a number
processor. If the test suite has a test case which checks
that ’xyz’ is rejected the mutant will be killed. Tests that
require certain exception names for a given input work
similarly.

For the four JSON subjects (nayajson III, simplejson IV,
ijson V, and microjson VI) the first two reasons can explain
the observed results. On the subject with the lowest condition
density (ijson, 7.44%) and the one with the worst inputs
(simplejson, 39% statement coverage) respectively (Table II)
Mauris performed worse than on the other two. Given that
nayajson has the highest condition density (Table II) of all
subjects the number of initially created mutants being high is
expected as well. The fourth and final subject in this class is
microjson for which Mauris generated inputs with coverage
close to the test suite’s (93% and 95% statement coverage
respectively, Table II) producing overall good results.

Regarding the four Non-JSON subjects CGI and mathexpr

TABLE V: Results - ijson

M Minimal Live Subtle
cosmic-ray 3 31 -
Mauris + cosmic-ray: Average 50 36 2.6 69.23%
Mauris + cosmic-ray: Best 50 40 6

TABLE VI: Results - microjson

M Minimal Live Subtle
cosmic-ray 4 22 -
Mauris + cosmic-ray: Average 53 125.2 94.4 89.62%
Mauris + cosmic-ray: Best 52 175 145

have both a sufficient condition density II (both above microj-
son’s 11.9%) and very strong inputs making Mauris produce
good results. It is however surprising how for urljava with
both a fairly high condition density (17.39%) and fairly good
inputs (69% statement coverage) (Table II) our results were not
as good as for the other two. Looking into the details however
we noticed that the test cases are similar to the inputs used by
Mauris. In effect, the corresponding Test Suite is particularly
good at killing those mutants.

V. RELATED WORK

When implementing a piece of software it is in the best
interest of all parties that the program is correct. That is, it
has few bugs. Test suites are a commonly used tool for that,
making a means to evaluate their effectiveness invaluable.

An early approach to evaluating test suites was bebug-
ging[21]3, which required a programmer to artificially insert
bugs into the program to check whether the tests can find
them. Since this does, however, require significant human
effort DeMillo et al. introduced an alternative approach called
mutation testing [22]. It is based on two major hypotheses from
his previous work [23], the competent programmer hypothesis
and the coupling effect. The competent programmer hypothesis
(also called the finite neighborhood hypothesis) states that
programmers tend to create near-correct versions of a program
that is just a couple of tokens away from being correct. The
coupling effect [23] states that complex faults mostly arise from
the interaction between multiple small faults. This implies that
test cases that find simple faults are also capable of finding

3also called fault seeding or fault injection

TABLE VII: Results - cgi

M Minimal Live Subtle
cosmic-ray 3 11 -
Mauris + cosmic-ray: Average 62 27 16 51.25%
Mauris + cosmic-ray: Best 61 51 40

TABLE VIII: Results - mathexpr

M Minimal Live Subtle
cosmic-ray 3 37 -
Mauris + cosmic-ray: Average 65 102 18.2 86.81%
Mauris + cosmic-ray: Best 56 116 33

more complex faults [24], [25]. For mutation analysis these
small errors usually take the form of a so-called first-order
mutant (FOM), i.e. a single token was modified (mutated). In
case a mutant is created by modifying two or more tokens at
once it is called a higher-order mutant (HOM).

Mutants are classified according to their quality as equivalent,
redundant, trivial, and stubborn. Redundant mutants are
mutants that are easier to detect than some other mutant
(or in other words, the faults represented by the redundant
mutants are already represented by other mutants). According
to Rice’s theorem [26], it is not possible to find which mutants
are redundant. Trivial and stubborn mutants are opposites.
Trivial mutants can be detected by just about every test case,
whereas stubborn mutants can not be detected by most test
cases. Stubborn mutants are the ones that we are most interested
in. Finally, there are also the equivalent mutants, which act
exactly like the original program does and can hence never be
detected.

The number of equivalent mutants is dependant on a
given program’s unique characteristics, which makes statistical
estimation infeasible [27], [28]. The presence of equivalent
mutants artificially deflates mutation scores, and hence, makes
mutation score unreliable as a measure of test suite quality.

Since they are a big problem for many mutation techniques
there has been a significant amount of research on the topic
and many publications dedicated to them. One of them is the
work of Gruen et al. [29] who explored how big of a problem
equivalent mutants are. They concluded that equivalent mutants
can make up a significant portion of the overall mutants (up
to 40% in their example) making trying to get rid of them a
worthwhile effort.

One way to achieve this is by trying to avoid creating them
in the first place. This was the method of choice for Kaminski
et al. who tried to select mutation operators that do not create
equivalent mutants [30]. Another common approach is trying
to remove them by coming up with a heuristic, such as the
effort by Baldwin and Sayward [31] which introduced various
means to check for likely equivalent mutants. Similarly, Offutt
et al. [32] tested using some compiler optimization techniques
and feasible paths[33] as a heuristic to eliminate equivalent
mutants with partial success. Another compiler optimization
technique - program slicing - was the tool of choice for Hierons

TABLE IX: Results - urljava

M Minimal Live Subtle
cosmic-ray 7 100 -
Mauris + cosmic-ray: Average 45 112.2 5.4 88.89%
Mauris + cosmic-ray: Best 43 119 14

TABLE X: Results - xsum

M Minimal Live Subtle
cosmic-ray 1 2 -
Mauris + cosmic-ray: Average 41 3 1 100.00%
Mauris + cosmic-ray: Best 41 3 1

et al. [34] and Kintis et al. [35]. The last approach in this
category that we want to mention is by Schuler et al. [36] who
used program invariants to achieve a low equivalent mutant
rate. A somewhat different idea was pursued by Adamopoulos
et al. [37] who used evolutionary algorithms to generate better
mutants. Yet another way is to get a non-equivalence guarantee
by sacrificing generality. A relevant example for this is by Ji et
al. [38] who introduced a way to detect all equivalent mutants
related to exception blocks.

Similarly, we guarantee non-equivalent mutants by requiring
a specific input domain (programs that take string inputs) and
a specially tailored mutation operator (modifying if statements
based on some invalid input string). Regarding mutation in
python, we borrowed some knowledge on which operators
to consider from Derezińska et al. [39] and adjusted and
augmented them for usage in if-conditions. While pursuing
a different goal the work of Shahriar et al. [40] is somewhat
similar to our work as it proposes mutation operators to
specifically meet certain conditions. The same holds for the
efforts of Just et al. [41] who walked a path similar to ours but
used test cases instead of actual inputs and inference instead
of execution.

Even though the idea of creating test cases using mutation is
somewhat different from the topic of this work, we still want
to mention the paper of Papadakis et al. [42] as crafting tests
that kill each generated mutant from Mauris output is possible.

Efforts to link mutation analysis and program repair are not
all new as both require strategies to deal with their inherently
large complexity and the implied stress on the available
resources such as memory and time. Common techniques to
tackle these issues involve not executing the program directly
and instead analyzing it using e.g. symbolic execution as
suggest by Wong et. al.[43] among others. Approaches as
by Ali Ghanbari et. al.[44] which is lightweight and focuses
on generality by using simple mutation operations at Java
bytecode level to generate patch candidates4 show that the
two topics pair well. Rothenberg et. al.[45] also used mutation
and additionally combined SAT and SMT solvers to limit
the number of modifications performed. Taking into account
the findings of Timperley et. al.[46] which suggest that patch

4Automatically generated program variants that fix a given bug

candidates induced by mutations modify parts of the code that
looks alien to human programmers reinforced our conviction
to stick to modifying conditional statements only.

Since the number of mutants we can create is very hard to
estimate, we refer to the papers by Jia et al. [47] and Harman
et al. [48] which suggest that our results are relevant even if
the number of mutants is small. This is due to us not limiting
their mutation order which allows higher-order mutants.

Finally, we also need to mention the mechanism we used
to compare the quality of mutants by Mauris to the baseline.
As stated in the introduction we used the minimal mutant set
approach introduced by Ammann et al.[19] which suggests
condensing a mutant set to mutants causing unique faults.

VI. LIMITATIONS AND FUTURE WORK

Currently, our approach is restricted to programs that accept
input and have some concept of valid and invalid input.
However, the approach of inducing subtle mutations with
program repair does not need to be restricted to only input
processors. One can also think of mutating test cases themselves.
For example, given a test case, one can mutate it until it fails
for the program under test, then repair the program until it
passes. This mutation can take place anywhere in the test case,
including the order of API sequence called, the content of the
API calls, or even the oracle. That is, our approach has the
potential of being applicable across a much wider variety of
programs. This would be one of the major focuses for us going
forward.

Another limitation of our approach is the cost of exploration.
Each valid input is generated after expending some compu-
tational cost in fuzzing, and each invalid input is generated
again after expending further effort. Next, each repair needs to
be generated and evaluated. All this can mean that depending
on the program under test, the cost of mutant generation can
be high. Hence, reducing the cost of finding repairs would be
one of our major considerations going forward.

Finally, we have used trivial mutations for the most part
because they are easy to generate, and are more plausible
than more complex mutations. However, plausible complex
mutations can exist, which may lead to more subtle mutations,
and hence more effective mutants. Exploring this avenue would
again be one of our priorities for the future.

VII. THREATS TO VALIDITY

A. Threats to External Validity

Threats to external validity are factors that may reduce the
generalizability of our findings. Since our approach is novel
the parameters, as well as used subjects, had to be chosen by
us. This might have induced threats to external validity caused
by subject amount, subject type, test suites, and amount of
test repetitions per subject. That is, results obtained by testing
eight subjects may not generalize well. Furthermore, the sizable
amount of JSON-processors (50% of subjects) and simpleness
of the programs pose threats as well. So does the fact that we
had to write half of the test suites ourselves (for subjects that
had none). Additionally testing each subject five times may

not generalize well as having encountered a statistical fluke is
possible.

B. Threats to Internal Validity

Threats to internal validity are factors concerning the
judgment of cause and effect relationships. Misjudging the
actual order of a mutant poses such a threat as does our
subjective judgment of mutant relevance. Furthermore, the
evaluation of mutant relevance was carried out by a single
human which may require further research.

VIII. CONCLUSION

Testers often use live mutants as targets when writing new
test cases. However, the presence of equivalent mutants reduces
the effectiveness of this technique, resulting in wasted manual
labor. Hence, we need subtle mutants that encode likely faults
in the program that are guaranteed to be mortal — i.e non-
equivalent.

We showed how to use program repair techniques to obtain
subtle mutants that are guaranteed to be non-equivalent, and
relevant to the programmer. We used a fuzzer to generate inputs
for the program under test and identified the conditions that
behaved differently for valid and invalid inputs. The source
locations of these identified conditions were repaired to accept
the invalid inputs, resulting in subtle mutants.

We found that more than 84% of the mutants produced
were relevant for programmers in that they were plausible
and not overly specific. The created mutants are guaranteed to
be detectable, and hence, useful for software practitioners to
target to kill when writing (or automatically generating) new
test cases.

REFERENCES

[1] G. Petrović and M. Ivanković, “State of mutation testing at google,”
in Proceedings of the 40th International Conference on Software
Engineering: Software Engineering in Practice, ser. ICSE-SEIP ’18.
New York, NY, USA: ACM, 2018, pp. 163–171. [Online]. Available:
http://doi.acm.org/10.1145/3183519.3183521

[2] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE transactions on software engineering, vol. 37,
no. 5, pp. 649–678, 2010.

[3] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. Le Traon, and M. Harman,
“Mutation testing advances: an analysis and survey,” in Advances in
Computers. Elsevier, 2019, vol. 112, pp. 275–378.

[4] M. Papadakis, Y. Jia, M. Harman, and Y. Le Traon, “Trivial compiler
equivalence: A large scale empirical study of a simple, fast and effective
equivalent mutant detection technique,” in Proceedings of the 37th
International Conference on Software Engineering - Volume 1, ser. ICSE
’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 936–946. [Online].
Available: http://dl.acm.org/citation.cfm?id=2818754.2818867

[5] D. Schuler and A. Zeller, “Covering and uncovering equivalent mutants,”
Software Testing, Verification and Reliability, vol. 23, no. 5, pp.
353–374, 2013. [Online]. Available: https://onlinelibrary.wiley.com/doi/
abs/10.1002/stvr.1473

[6] A. Acree, G. I. of Technology. School of Information, and C. Science,
On Mutation, ser. GIT-ICS. School of Information and Computer
Science, Georgia Institute of Technology, 1980. [Online]. Available:
https://books.google.de/books?id=m71wPAAACAAJ

[7] R. Gopinath and A. Zeller, “Building fast fuzzers,” CoRR, vol.
abs/1911.07707, 2019. [Online]. Available: http://arxiv.org/abs/1911.
07707

http://doi.acm.org/10.1145/3183519.3183521
http://dl.acm.org/citation.cfm?id=2818754.2818867
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1473
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1473
https://books.google.de/books?id=m71wPAAACAAJ
http://arxiv.org/abs/1911.07707
http://arxiv.org/abs/1911.07707

[8] B. Mathis, R. Gopinath, M. Mera, A. Kampmann, M. Höschele,
and A. Zeller, “Parser-directed fuzzing,” in Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI 2019. New York, NY, USA: ACM, 2019,
pp. 548–560.

[9] B. Mathis, R. Gopinath, and A. Zeller, “Learning input tokens for
effective fuzzing,” in Proceedings of the 2020 International Symposium
on Software Testing and Analysis. ACM, 2020.

[10] R. Gopinath, B. Bendrissou, B. Mathis, and A. Zeller, “Fuzzing with
fast failure feedback,” CoRR, vol. abs/2012.13516, 2020. [Online].
Available: https://arxiv.org/abs/2012.13516

[11] G. Fraser and A. Arcuri, “Evosuite: automatic test suite generation for
object-oriented software,” in Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of software
engineering, 2011, pp. 416–419.

[12] S. N. AS, “cosmic-ray,” https://github.com/sixty-north/cosmic-ray, 2019,
accessed: 2019-06-14.

[13] V. I. Levenshtein, “Binary codes capable of correcting deletions,
insertions, and reversals,” in Soviet physics doklady, vol. 10, no. 8.
Soviet Union, 1966, pp. 707–710.

[14] I. Sagalaev, “ijson,” https://github.com/isagalaev/ijson, 2021, accessed:
2021-01-23.

[15] P. Hensley, “microjson,” https://github.com/phensley/microjson, 2021,
accessed: 2021-01-23.

[16] D. Yule, “nayajson,” https://github.com/danielyule/naya, 2021, accessed:
2021-01-23.

[17] B. Ippolito, “simplejson,” https://github.com/simplejson/simplejson, 2021,
accessed: 2021-01-23.

[18] R. Gopinath, “pychains,” https://github.com/vrthra/pychains, 2018, ac-
cessed: 2018-07-01.

[19] P. Ammann, M. E. Delamaro, and J. Offutt, “Establishing theoretical
minimal sets of mutants,” in 2014 IEEE Seventh International Conference
on Software Testing, Verification and Validation. IEEE, 2014, pp. 21–30.

[20] N. Batchelder, “coveragepy,” https://github.com/nedbat/coveragepy, 2019,
accessed: 2019-11-07.

[21] T. Gilb, “Bebugging,” Management Datamatics, vol. 1, pp. 9–10, 1975.
[22] R. DeMillo, G. I. O. T. A. S. O. INFORMATION, and C. SCIENCE.,

Mutation Analysis as a Tool for Software Quality Assurance,
ser. GIT-ICS. School of Information and Computer Science,
Georgia Institute of Technology, 1980. [Online]. Available: https:
//books.google.de/books?id=gw9kGwAACAAJ

[23] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data
selection: Help for the practicing programmer,” Computer, vol. 11, no. 4,
pp. 34–41, 1978.

[24] A. Offutt, “The coupling effect: fact or fiction,” in ACM SIGSOFT
Software Engineering Notes, vol. 14. ACM, 1989, pp. 131–140.

[25] A. J. Offutt, “Investigations of the software testing coupling effect,” ACM
Transactions on Software Engineering and Methodology (TOSEM), vol. 1,
no. 1, pp. 5–20, 1992.

[26] H. G. Rice, “Classes of recursively enumerable sets and their
decision problems,” Transactions of the American Mathematical
Society, vol. 74, no. 2, pp. 358–366, 1953. [Online]. Available:
http://www.jstor.org/stable/1990888

[27] X. Yao, M. Harman, and Y. Jia, “A study of equivalent and stubborn
mutation operators using human analysis of equivalence,” in Proceedings
of the 36th International Conference on Software Engineering, ser.
ICSE 2014. New York, NY, USA: ACM, 2014, pp. 919–930. [Online].
Available: http://doi.acm.org/10.1145/2568225.2568265

[28] D. Tengeri, L. Vidcs, A. Beszdes, J. Jsz, G. Balogh, B. Vancsics,
and T. Gyimthy, “Relating code coverage, mutation score and test
suite reducibility to defect density,” in 2016 IEEE Ninth International
Conference on Software Testing, Verification and Validation Workshops
(ICSTW), April 2016, pp. 174–179.

[29] B. J. Grün, D. Schuler, and A. Zeller, “The impact of equivalent
mutants,” in Software Testing, Verification and Validation Workshops,
2009. ICSTW’09. International Conference on. IEEE, 2009, pp. 192–
199.

[30] G. K. Kaminski and P. Ammann, “Using a fault hierarchy to improve the
efficiency of dnf logic mutation testing,” in 2009 International Conference
on Software Testing Verification and Validation, April 2009, pp. 386–395.

[31] D. Baldwin and F. Sayward, “Heuristics for determining equivalence of
program mutations.” GEORGIA INST OF TECH ATLANTA SCHOOL
OF INFORMATION AND COMPUTER SCIENCE, Tech. Rep., 1979.

[32] A. J. Offutt and J. Pan, “Detecting equivalent mutants and the feasible
path problem,” in Computer Assurance, 1996. COMPASS’96, Systems
Integrity. Software Safety. Process Security. Proceedings of the Eleventh
Annual Conference on. IEEE, 1996, pp. 224–236.

[33] A. J. Offutt and W. M. Craft, “Using compiler optimization techniques to
detect equivalent mutants,” Software Testing, Verification and Reliability,
vol. 4, no. 3, pp. 131–154, 1994.

[34] R. Hierons, M. Harman, and S. Danicic, Using program slicing to assist
in the detection of equivalent mutants. Wiley and Sons, Ltd., 1999.

[35] M. Kintis, M. Papadakis, Y. Jia, N. Malevris, Y. L. Traon, and M. Harman,
“Detecting trivial mutant equivalences via compiler optimisations,” IEEE
Transactions on Software Engineering, vol. 44, no. 4, pp. 308–333, April
2018.

[36] D. Schuler, V. Dallmeier, and A. Zeller, “Efficient mutation testing
by checking invariant violations,” in Proceedings of the eighteenth
international symposium on Software testing and analysis. ACM, 2009,
pp. 69–80.

[37] K. Adamopoulos, M. Harman, and R. M. Hierons, How to Overcome
the Equivalent Mutant Problem and Achieve Tailored Selective Mutation
Using Co-evolution, ser. GECCO 2004. Lecture Notes in Computer
Science. Springer, Berlin, Heidelberg, 2004. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-540-24855-2 155

[38] C. Ji, Z. Chen, B. Xu, and Z. Wang, “A new mutation analysis method for
testing java exception handling,” in 2009 33rd Annual IEEE International
Computer Software and Applications Conference, vol. 2, July 2009, pp.
556–561.

[39] A. Derezińska and K. Hałas, “Analysis of mutation operators for the
python language,” in Proceedings of the Ninth International Conference
on Dependability and Complex Systems DepCoS-RELCOMEX. June
30–July 4, 2014, Brunów, Poland. Springer, 2014, pp. 155–164.

[40] H. Shahriar and M. Zulkernine, “Music: Mutation-based sql injection
vulnerability checking,” in Quality Software, 2008. QSIC’08. The Eighth
International Conference on. IEEE, 2008, pp. 77–86.

[41] R. Just, M. D. Ernst, and G. Fraser, “Efficient mutation analysis by
propagating and partitioning infected execution states,” in Proceedings
of the 2014 International Symposium on Software Testing and Analysis.
ACM, 2014, pp. 315–326.

[42] M. Papadakis and N. Malevris, “Automatic mutation test case genera-
tion via dynamic symbolic execution,” in Proceedings - International
Symposium on Software Reliability Engineering, ISSRE, 11 2010, pp.
121–130.

[43] C.-P. Wong, J. Meinicke, and C. Kästner, “Beyond testing configurable
systems: Applying variational execution to automatic program repair and
higher order mutation testing,” in Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ser. ESEC/FSE 2018.
New York, NY, USA: Association for Computing Machinery, 2018, p.
749753. [Online]. Available: https://doi.org/10.1145/3236024.3264837

[44] A. Ghanbari, S. Benton, and L. Zhang, “Practical program repair
via bytecode mutation,” in Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ser. ISSTA
2019. New York, NY, USA: Association for Computing Machinery, 2019,
p. 1930. [Online]. Available: https://doi.org/10.1145/3293882.3330559

[45] B.-C. Rothenberg and O. Grumberg, “Sound and complete mutation-
based program repair,” in FM 2016: Formal Methods, J. Fitzgerald,
C. Heitmeyer, S. Gnesi, and A. Philippou, Eds. Cham: Springer
International Publishing, 2016, pp. 593–611.

[46] C. S. Timperley, S. Stepney, and C. Le Goues, “An investigation into the
use of mutation analysis for automated program repair,” in Search Based
Software Engineering, T. Menzies and J. Petke, Eds. Cham: Springer
International Publishing, 2017, pp. 99–114.

[47] Y. Jia and M. Harman, “Constructing subtle faults using higher order
mutation testing,” in Source Code Analysis and Manipulation, 2008
Eighth IEEE International Working Conference on. IEEE, 2008, pp.
249–258.

[48] M. Harman, Y. Jia, and W. B. Langdon, “A manifesto for higher order
mutation testing,” in Third International Conference on Software Testing,
Verification, and Validation Workshops. IEEE, 2010, pp. 80–89.

https://arxiv.org/abs/2012.13516
https://github.com/sixty-north/cosmic-ray
https://github.com/isagalaev/ijson
https://github.com/phensley/microjson
https://github.com/danielyule/naya
https://github.com/simplejson/simplejson
https://github.com/vrthra/pychains
https://github.com/nedbat/coveragepy
https://books.google.de/books?id=gw9kGwAACAAJ
https://books.google.de/books?id=gw9kGwAACAAJ
http://www.jstor.org/stable/1990888
http://doi.acm.org/10.1145/2568225.2568265
https://link.springer.com/chapter/10.1007/978-3-540-24855-2_155
https://doi.org/10.1145/3236024.3264837
https://doi.org/10.1145/3293882.3330559

	Introduction
	Subtle Mutants Using Rejected Inputs
	Augmenting Test Suites
	Algorithm

	Inducing Subtle Mutants
	Generating Valid Inputs
	Generating Invalid Inputs from the Valid Input
	Crafting Mutants by Repairing the Program

	Evaluation
	Verifying Mutant Behavior
	Mutant mortality
	Unique faults
	Are the crafted mutants useful?

	Execution Details
	Results

	Discussion
	Mutant mortality
	Unique faults
	Are crafted mutants useful?
	The quality of mutants crafted

	Related Work
	Limitations and Future Work
	Threats to Validity
	Threats to External Validity
	Threats to Internal Validity

	Conclusion
	References

