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a b s t r a c t

Graphene oxide samples prepared in various laboratories following a diversity of synthesis protocols
based on Brodie's (BGO) and Hummers/Offeman's (HGO) methods were compared in respect of their in-
plane moduli. A simple wrinkling method allowed for a spatial resolution <1.5 mm by converting the
wrinkling frequency. Quite surprisingly, a drastic variation of the in-plane moduli was found spanning
the range from 600 GPa for the best BGO types, which is in the region of chemically derived graphene, all
the way down to less than 200 GPa for HGO types. This would suggest that there are no two equal GO
samples and GO should not be regarded a compound but rather a class of materials with very variable
physical properties. While large differences between Brodie's and Hummers/Offeman's types might have
been expected, evenwithin the group of Hummers/Offeman's types pronounced differences are observed
that, based on 13C solid-state NMR, were related to over-functionalization versus over-oxidation.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

In the note of B. C. Brodie in 1855 [1] about the purification of
graphite he described the first preparation of graphene oxide (GO).
Since then, essentially two other preparation methods were
established by Staudenmaier in 1899 [2] and Hummers/Offeman in
1958 [3], similarly described by Charpy in 1909 [4]. Nowadays, the
Hummers/Offeman method is commonly used because it is faster
and safer than the others. The structure of GO is still a big puzzle, as
it is a heterogeneous and turbostratically disordered material with
varying amounts and types of functional groups. Moreover, the
proposed structure models are based on GO prepared by different
u).
synthesis methods [5e9]. All synthesis protocols apply quite harsh
conditions, such as concentrated acids and strong oxidizing agents,
for the oxidation of graphite. Due to the heterogeneous character of
the oxidation reaction and the fact that an electronic conductor
(graphite) is converted into an insulator (GO) in the course of the
reaction, gradients in the local concentration of the reactants are
inherent to the process. Accordingly, the type, number and density
of functional groups (hydroxyl, epoxy, carboxyl, organosulfates)
[8,9] introduced by oxidation vary spatially within thematerial and,
moreover, critically depend on the kinetics of the reaction and on
the reactants used. As the oxidation starts at the rim of the platelets
and concentrically proceeds to the geometric center, defects will be
created by local over-oxidation to CO2. The size and therefore the
size distribution of the type of graphite used also determines the
degree of over-oxidation [10]. A degradation of the smaller platelets
will commence while the larger ones are not yet completely
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converted to GO. Consequently, the properties of GO vary for every
batch which was prepared by even the same synthesis protocol.
Kunz et al. found that there are even variations within sub-mm
domains of a single nanoplatelet [11].

The choice of reactants also changes the intracrystalline reac-
tivity of GO. Strong differences of swelling behavior of different
types of GO are well established. BGO typically exhibits crystalline
swelling and phase transitions between one and two layered sol-
vates, while HGO shows osmotic swelling in all so far studied sol-
vents [12e14].

Typically, GO is characterized by X-ray diffraction, NMR and
vibrational spectroscopy and local variations are consequently
averaged in the bulk analysis [15]. Rare exceptions are X-ray
photoelectron spectroscopy and mm-Raman spectroscopy that
allow for determination of functional groups and defect densities of
reduced GO in the mm range [16,17].

Recently, we presented a characterization of the mechanical
properties of HGO and chemically reduced HGO sheets with high
spatial resolution by applying a simple wrinkling procedure [11].
Herein, we apply this method to compare graphene oxide samples
prepared in various laboratories following a diversity of synthesis
protocols (supporting information) based on Brodie's (BGO) and
Hummers/Offeman's (HGO) methods in respect of their in-plane
moduli.

2. Experimental

Topographic AFM images were obtained using two different
commercial AFM instruments, a Nanoscope Dimension V and ICON
AFM from Bruker, USA, operated in TappingMode™. Aluminum-
coated silicon cantilevers (OTESPA-R3, Bruker) with a spring con-
stant of 26 N m�1 and typical resonance frequencies of 300 kHz
were used. Image processing and analysis was conducted with
NanoScope Analysis v1.40.

All 13C MAS solid-state NMR experiments were acquired on
Bruker Avance-III HD spectrometers operating at a B0 field of 9.4 T,
corresponding to a 13C and 1H frequency of 100.6 MHz and
400.1 MHz, respectively. The samples were spun at 12.5 kHz in a
4 mm MAS double resonance probe (Bruker). The one-pulse MAS
spectra were obtained after 160e440 scans using a 90� pulse of 3.5
ms and a recycle delay of 360 s. Proton broadband decoupling of
70 kHz with spinal-64 was applied during acquisition. All 13C
spectra are referenced with respect to tetramethylsilane using the
secondary standard adamantane. Deconvolution of NMR spectra.

TopSpin 3.2 was used for the deconvolution of the NMR spectra.
A range from 380 ppm to �110 ppm was used. The Gauss/Lorentz
ratio was kept constant at 0.5 and 7000 iterations were made.
Linebroadening for overlapping peakgroupswere tried to be kept in
the same range. The best overlaps were above 80%. The integrals of
the peaks were normalized to the integral of the peak at 130 ppm.

The degree of functionalizationwas taken as the ratio of the sum
of sp3 signals (60 ppm and 70 ppm) and the sum of all 13C signals.

Raman spectroscopic studies were done on Horiba HR Evolution
confocal Raman spectrometer equipped with a microscope (100�
objective) and an automated XYZ table, at laser excitation of
532 nm.

3. Synthesis of graphene oxide (GO) samples

3.1. Hummers/Offeman method

3.1.1. HGO Eigler
Natural flake graphite (1 g, 300e425 mm, grade 3061, Asbury

Carbon USA) was stirred in cold H2SO4 (24 mL, 98 vol%, Sigma
Aldrich) for 1 h before KMnO4 (2 g, Sigma Aldrich) were added over
4 h. The mixture was further stirred for 16 h. Then, diluted H2SO4
(20 mL, 20 vol%, Sigma Aldrich) was slowly added over 2 h and
double distilled water (100 mL) over 16 h. Finally, the reaction was
stopped by the addition of H2O2 solution over 40 min (40 mL, 5 vol
%, Sigma Aldrich). The obtained HGO was purified by repetitive
centrifugation and redispersion with pure water (10 min, 1500
RCF). As the pH was almost neutral, delamination was performed
by pulsed tip sonication (2 min, 40 W). At last, non-monolayer and
minor amounts of smallest particles were removed by repetitive
centrifugation at low rpm and then high centrifugation parameters
(3 times, 30 min, 1500 RCF, 1 time 45 min, 13000 RCF). We obtained
a stable golden dispersion containing exclusively HGO monolayer.

3.1.2. HGO Talyzin
Natural graphite powder (1 g, 74 mm, Alfa Aesar) and NaNO3 (1 g,

Scharlau) were added in a flask (placed in an ice bath) to concen-
trated H2SO4 (40 mL, 95e97 vol%, Merck). Magnetic stirring of the
mixture solution was maintained at each steps of the synthesis
procedure. KMnO4 (3 g, VWR) was added very slowly to the solu-
tion in order to avoid the increase of temperature above 20 �C. The
flask was removed from the ice bath after 2 h and it was then
heated in an oil bath at 35 �C for 2 h. After this first heating step, the
solution was poured under vigorous stirring on deionized water
H2O (40 mL) in an ice-surrounded flask (instant temperature in-
crease to 98 �C). The solution was heated a second time in an oil
bath at 90 �C for 30 min. Subsequently, deionized water (100 mL)
and H2O2 (6 mL, 30 vol%, Merck) were added under vigorous stir-
ring in order to stop the synthesis reaction. The resulting material
was washed 3 times with a HCl solution (20 mL, 10 vol%, Merck),
stirred for 30 min and then centrifuged (4400 rpm, 15 min). The
HGO samplewas next repeatedly washedwith deionizedwater and
centrifuged (4400 rpm, 15 min). Once the pH was brought back to
neutral, freeze-drying could be carried out on the HGO sample.

3.1.3. HGO Feicht
Natural flake graphite (1 g, 125e250 mm, Reinstflocke (RFL) 99.5,

Kropfmühl AG) and NaNO3 (1 g, Sigma Aldrich) were mixed with
concentrated H2SO4 (30 mL, 98 vol%, Sigma Aldrich). Subsequently,
KMnO4 (3 g, Sigma Aldrich) was interspersed over a period of 3 h
and the reactionwas kept at room temperature for 12 h. Thereafter,
the mixture was slowly poured into ice-cooled deionized water
(30 mL) and H2O2 (30 vol%, Sigma Aldrich) was added until the
solution turned golden. GO was purified by repeated washing/
centrifugation (3 times, 10 min, 3800 rpm) followed by a dialysis to
an ionic conductivity of 2 mS cm�1.

3.1.4. HGO Feicht extracted
A part of the suspension of HGO Feicht wasmixedwith the same

volume of ethanol and 1-dodecylamine (1 g, Sigma-Aldrich). Af-
terwards, HGO modified with 1-dodecylamine was extracted into
diethyl ether and washed with water. For the removal of the 1-
dodecylamine the suspension was mixed with an aqueous NaOH/
ethanol mixture (50:50, 700 mL, 4 times), stirred for 15 min and
then centrifuged (15 min, 10000 rpm). Finally, HGO was washed
with water and centrifuged (3 times, 30 min, 10000 rpm).

3.2. Brodie method

3.2.1. BGO Brand/B€ohm 1962
This BGO was also used in the publication “Der “Verpuffung-

spunkt” des Graphitoxids” of H.-P. B€ohm in 1965 and was denoted
as “GO-Bra.” in the table on page 78 [18]. The preparationwas done
following the instructions of B.C. Brodie. [19] We translated the
original description quite freely without changing the content:



P. Feicht et al. / Carbon 114 (2017) 700e705702
3.2.1.1. Original text [19].. “Die Operation wird, was die Einzeln-
heiten betrifft, wie folgt ausgeführt. Eine gewisse Menge Graphit
wird mit dem dreifachen Gewicht an chlorsaurem Kali innig
gemischt, und diese Mischung in eine Retorte gegeben. Eine zur
Verflüssigung des Ganzen genügende Menge der st€arksten Salpe-
tersaure wird nun hinzugegeben. Die Retorte wird in ein Wasser-
bad gestellt, und 3 bis 4 Tage lang bei 60 �C erhalten, bis sich keine
gelben D€ampfe mehr entwickeln. Die Substanz wird dann in eine
große Menge Wasser geschüttet und durch Decantiren bis zur fast
v€olligen Befreiung von S€aure und von Salzen ausgewaschen. Sie
wird nun im Wasserbad getrocknet, und die Oxydationsoperation
unter Anwendung derselben relativen Mengen chlorsaures Kali
und Salpetersaurewiederholt, bis keine weitere Ver€anderungmehr
eintritt; dies ist gew€ohnlich nach der vierten Oxydation der Fall. Die
Substanz wird endlich erst im leeren Raum und dann bei 100 �C
getrocknet.”
3.2.1.2. Translation. A certain amount of graphite is properly mixed
with a triple weight of KClO3. Concentrated HNO3 is added until the
mixture gets suspended. It is then heated to 60 �C for 3e4 days until
the development of yellow vapors stops. The substance is then
poured into a large amount of water and washed by decantation
until almost completely freed from acid and salts. After drying in a
beaker in a water bath, the oxidation process is repeated using the
same relative amounts of KClO3 and HNO3 until no further change
occurs; This is usually the case after the fourth oxidation. The
substance is finally dried in vacuum and then at 100 �C.
3.2.2. BGO Szabo 2nd ox
Natural flake graphite (1 g, 250e500 mm, Reinstflocke (RFL) 99.5,

Kropfmühl AG) and NaClO3 (8.5 g) were mixed in a 50 mL round
flask placed into an ice-bath. Next, 6 mL of fuming HNO3 was added
from a dropping funnel in 21 min. The obtained dark green thick
slurry was left aging overnight at ambient temperature. The loss of
HNO3 due to evaporation was retrieved by adding another portion
of acid (4 mL). The slurry was then heated to 60 �C with a steam
bath and kept strictly at 60 ± 1 �C for 8 h. Heating rate (<1.5 �C
min�1) was controlled carefully to avoid dangerous deflagration.
The reaction was terminated by transferring the pasty mixture into
100 mL of distilled water. The diluted suspension was washed with
HCl solution (5 times, 20 mL, 3 M) and with copious amounts of
distilled water to remove ionic impurities until the supernatant had
an electrical conductivity less than 10 mS cm�1 (close to that of
distilled water). The residual graphite oxide was separated by
sedimentation (the smallest particles were discharged) and finally
dried at 60 �C. This BGO was oxidized one more time applying
exactly the same procedure, except a triple quantity (3 g) of air-dry
BGO was used instead of graphite.
3.2.3. BGO Feicht 2nd ox
Natural flake graphite (1 g, 250e500 mm, Reinstflocke (RFL) 99.5,

Kropfmühl AG) and NaClO3 (8.5 g) were mixed in a beaker placed
into an ice-bath. Next, 12 mL of fuming HNO3 was added from a
dropping funnel in 12 min. The obtained dark green thick slurry
was left aging overnight at ambient temperature. The slurry was
then heated to 60 �Cwith a steam bath and kept strictly at 60 ± 1 �C
for 3 h. The reaction was terminated by transferring the pasty
mixture into 100 mL of distilled water. The diluted suspension was
washed with copious amounts of distilled water to remove ionic
impurities until the supernatant had an electrical conductivity of
less than 10 mS cm�1. The residual BGO was finally dried at 60 �C.
This BGO was oxidized one more time applying exactly the same
procedure.
3.2.4. BGO Feicht 3rd ox
BGO Feicht 2nd ox was oxidized one more time applying exactly

the same procedure as described above.

3.3. Wrinkling

Preparations and data processing were done according to liter-
ature [11].

3.3.1. Preparation of substrates
PDMS precursor (Dow Corning Sylgard 184) was mixed in a 10:1

mass ratio of oligomeric base to curing agent, degassed and poured
into (60 � 10 � 2) mm3 Teflon boats. After prehardening for 20 h at
room temperature, the samples were post-treated for 2 h at 150 �C.
Tensile tests were carried out on an Instron 5565 universal tester
with pneumatic clamps and a 100 N load cell (clamping distance
30 mm, strain rate 200 mm min�1, see ISO 37:2005). The Young's
moduli are calculated from the initial slope and averaged over 22
different samples.

3.3.2. Preparation of the wrinkles
Firstly, the PDMS substrates were hydrophilized by immersing

them in 10 vol% aqueous HCl solution for 16 h, afterwards theywere
thoroughly washed with Millipore water and dried, as reported in
the literature [20]. Care was taken to ensure that the mechanical
properties of the surface were not affected by this procedure. The
PDMS substrates were uniaxially stretched in a custom-made
apparatus [11,21] to a strain of 33%. In the stretched stage a
droplet of diluted GO suspension (typically 0.04 mg mL�1) was
added to the center and dried gently to obtain samples with iso-
lated nanoplatelets.

3.3.3. Analytical details
In order to obtain the wavelength of the wrinkles, the image

data was processed with a discrete 2D Fourier transformation (2D-
FT). This was done applying Scilab [22]. The program routine per-
forms the following steps:

� Read matrix of AFM scan (image sizes were 30 � 30 mm with
1024 � 1024 pixel)

� Generate 20 � 20 submatrices
� Conduct 2D-FT for all submatrices
� Integrate within a range of appropriate ky-values
� Normalize to a range of 0e1 within each image
� Plot intensity profiles

From the used intensity profiles all maxima with a normalized
intensity above 0.4 were taken into account (for examples see
supporting information Figs. S10eS17). Please note that by gener-
ating submatrices the original continues signal is cut and new
boundaries are created. This can lead to a leakage-effect that is
similar to aliasing in signal processing. It can create artificial values
in the FT with half and double the wavelength of the original
continuous signal (Fig. S13 at 4 kx in the green box). However, a real
value with double the wavelength has by definition 4 times the
intensity. Therefore, these artificial values can be easily sorted out.
We used over 100 values from a single AFM measurement of a
sample and did at least two measurements. Only for the sample
BGO Brand/B€ohm 1962 it was just possible to get one useful mea-
surement because this 54-year-old sample might be contaminated
a little over the time with various (non-ionic) substances that
prevent wrinkling. For the calculation of the average in-plane
modulus for one sample, we combined all values from the single
measurements. It is worth to mention that the given error margins
represent the variations of the in-plane modulus within a sample
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due to structural heterogeneities and not the error of the mea-
surement. Together with the extracted wrinkling wavelength the
following values were used to calculate the in-plane moduli:

Es ¼ 3.12 ± 0.09 MPa.
ns ¼ 0.5, see Ref. [20]
np ¼ 0.197, see Ref. [23]
h ¼ 0.7 nm, see Ref. [24]
Es was obtained by averaging the Young's moduli measured

from 22 different samples.

4. Results and discussion

For the preparation of HGO [3] graphite is suspended in an
excess of concentrated sulfuric acid and NaNO3 is added to trigger
the intercalation reaction [25]. Thereafter, KMnO4 is added for the
oxidation. The oxidant is constantly available in high concentra-
tions. The predominant functional groups for HGO are hydroxyl,
epoxy and organosulfate groups at both sides of the carbon plane
and carboxyl groups at the edges and over-oxidized sites [8,26e28].
The most widely accepted structural model for HGO was proposed
by Lerf et al. [8]. This model was supplemented by organosulfate
groups by Eigler et al. [27]. The acidic groups, especially the orga-
nosulfates, contribute to the negative surface charge which enables
spontaneous delamination by osmotic swelling in water even at
low pH values [28]. By addition of a base to a golden suspension of
HGO it turns dark in seconds, which is supposed to be caused by a
rearrangement of the functional groups and the conglomeration of
aromatic clusters [29,30].

In the Brodiemethod fuming HNO3 is dropped onto amixture of
graphite and KClO3 (KClO3 can be replaced by NaClO3 to prevent the
formation of insoluble KClO4 [31]). Intercalation and oxidation start
concomitantly. Only small amounts of the oxidant are locally
formed in situ. Therefore, it is commonly believed that the oxida-
tion has to be repeated several times to attain the critical degree of
functionalizationwhich is required for its delamination under basic
conditions. When samples are functionalized beyond what is
needed for delamination we refer to them as being over-
functionalized. The most widely accepted model for BGO was
proposed by Szab�o et al. [9] and includes hydroxyl, epoxy, phenolic
and quinone groups. Since there are no highly acidic groups, such as
organosulfates, in BGO, the addition of a base is required for the
deprotonation which then triggers delamination. The darkening of
BGO by the addition of a base is comparatively slow [31].

Since the spatial variation of functional groups in GO samples is
linked to the kinetics of the oxidation as discussed above, even
small variations of the synthesis protocol within a given method
(BGO or HGO) might have significant effects on the GO samples
produced. In particular, reaction time, concentration of the re-
actants and temperature are crucial factors. Therefore, samples
from various laboratories were included in the comparison. The
selection includes two samples that were oxidized under identical
conditions. While HGO Feicht was purified in the ordinary way by
dialysis, HGO Feicht extracted is obtained by extraction with the
help of 1-dodecylamine [28]. The organic modifier was then
removed with NaOH in ethanol. As already mentioned, NaOH is
expected to trigger some rearrangement reactions which can also
lead to carbon loss as described by Dimiev et al. [32] and a deeply
black HGO type is obtained. Moreover, a “historical” sample pre-
pared in the laboratory of H.-P. B€ohm in 1962 was included in the
selection (BGO Brand/B€ohm 1962). This sample was prepared by
Brodie's method and most likely was oxidized four times [18].

Since the in-plane modulus drops drastically when oxidizing
graphene (~1000 GPa [33,34]), it appears to be a parameter that
very sensitively reveals structural changes when going from gra-
phene to GO (compare BGO Feicht 2nd ox, BGO Feicht 3rd ox in
Table 1) and consequently subtle structural differences are revealed
of various types of GO (compare BGO Szab�o 2nd ox, BGO Feicht 2nd
ox in Table 1). The changes in the in-plane modulus thereby reflects
the degree of rehybridization of the carbon bonds from sp2 to sp3,
the type of functional group involved in this rehybridization, and
also defects in the 2-dimensional lattice related to local over-
oxidation.

Functionalization was quantified by the integrals of decon-
volved solid-state NMR peaks (see Fig. S1eS8 in supporting infor-
mation). The degree of functionalization was taken as the ratio of
the sum of sp3 signals and the sum of all 13C signals. According to
the literature, the NMR signals at 60 ppm, 70 ppm and 130 ppm are
assigned to epoxy, hydroxyl groups, and aromatic carbons,
respectively [8]. Organosulfates have isotopic shifts of 60 ppm or
70 ppm and are therefore superimposed on the epoxy- and hy-
droxyl signals [28]. Although acid/base titrations of GO provided
clear evidence for carboxylic acid groups, they amount only to
0.05wt% [35] which is below detection limit of NMR if the sample is
not 13C-enriched [26].

BGO samples are oxidized stepwise and allow identifying a
steady decrease of in-plane moduli with progressive oxidation
(Table 1; BGO Feicht 2nd ox, BGO Feicht 3rd ox). Surprisingly, the
degree of functionalization of the 54-year-old sample (BGO Brand/
B€ohm 1962) is still high. As it is well known that UV-light can
reduce GO by the release of CO2 accompanied by the creation of
over-oxidized sites, a significant decomposition would have been
expected over all these years. As expected by the highest number of
oxidation steps, the in-plane modulus for this compound was
found to be lowest within the BGO samples.

The in-plane moduli for HGO samples are found to be consis-
tently lower than for BGO samples. The oxidation of graphite by the
one-step Hummers/Offeman's method is obviously more thorough
than by Brodie's method, which can be explained by a higher
concentration of oxidizer. This most likely will include both, over-
functionalization and over-oxidation. A less defective state of BGO
allows to explain an earlier observed crystalline swelling of this
material in most solvents (except water) as compared to osmotic
swelling of HGO [36]. Moreover, the full-width at half-maximum of
the peaks in the 13C solid-state NMR spectra of BGO samples are
consistently smaller than for HGO (see Fig. S1eS6 and Table S2 in
supporting information) indicating more homogeneous domains of
functional groups in BGO. The samples HGO Talyzin and HGO Feicht
are consistent with the fact that an increasing degree of function-
alization decreases the in-plane modulus. Despite the pronounced
difference in optical appearance, the in-plane moduli of HGO Feicht
and HGO Feicht extracted are only slightly different (320 GPa and
295 GPa, respectively). However, due to the significantly lower
degree of functionalization of HGO Feicht extracted, a significantly
higher in-plane modulus would have been expected. The lower in-
plane modulus observed, might be related to base-induced rear-
rangement and CO2 releasing deoxygenation reactions [32,37]
leading to over-oxidized domains.

While BGO and HGO samples largely differ in respect to their in-
plane moduli, the degree of functionalization varies by less than
20%. This might suggest that the HGO in-plane moduli are mostly
affected by over-oxidized sites.

For HGO Eigler in-plane moduli of GO and mm-Raman mea-
surements (see Fig. S9 in supporting information) for graphene
chemically derived of this sample are in contradiction to the above
described trend. Raman measurements indicate a rather low defect
concentration of <1% [17]. As has, however, been pointed out by
Cançado et al. “some defects do not give rise to the D-peak but
change other Raman peaks and peak intensities” [16]. Cançado
et al., moreover, suggest that Raman spectroscopy should be com-
plemented with other independent probes to gain a more complete



Table 1
Values for the wrinkling wavelength from the 2-dimensionally Fourier transformed AFM-images for different GO samples and the calculated in-plane moduli with their
corresponding variances. Additionally, integrals of the deconvolved peaks in the 13C-solid-state NMR measurements of different GO samples are tabulated.

Sample HGO
Talyzin

HGO
Feicht

HGO
Eigler

HGO Feicht
extracted

BGO Szab�o
2nd ox

BGO Feicht
2nd ox

BGO Feicht
3rd ox

BGO Brand/
B€ohm 1962

Wrinkling wavelength/nm 136 ± 21 132 ± 14 109 ± 11 127 ± 19 160 ± 28 154 ± 19 145 ± 17 128 ± 14
In-plane modulus/GPa 363 ± 163 320 ± 101 189 ± 64 295 ± 133 599 ± 267 534 ± 185 427 ± 155 293 ± 99
Relative standard deviation/% 45 32 34 45 45 35 36 34

Integral diso ¼ 130 ppm C aromatic,
conjugated double-bond

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Integral diso ¼ 70 ppm Hydroxyl, organosulfate 0.60 0.97 0.78 0.52 0.57 0.54 0.57 0.68
Integral diso ¼ 60 ppm Epoxy, organosulfate 1.20 1.50 0.91 0.27 0.97 0.87 1.24 1.41
Degree of functionalization/% 64 71 63 44 62 59 64 68

P. Feicht et al. / Carbon 114 (2017) 700e705704
picture of the nature of defects. In-plane moduli, as presented here,
may indeed turn out to be such a powerful independent probe.
Moreover, HGO Eigler has a sulfur content of 4.55 wt% according to
combustion elemental analysis, therefore the total weight of
organosulfate accounts for about 11 wt% which is double the
amount of organosulfate in HGO Feicht [27,28]. The investigated
functional groups are substantially different due to the much
higher amount of organosulfate groups accounting for high local
electrostatic repulsion. That observation suggests that types of
functional groups also differently alter the in-plane modulus
[38e40], leading to a decreased in-plane modulus here. The lowest
in-plane modulus of HGO Eigler may consequently be attributed to
a combination of defects that are unable to activate the D-band in
the Raman process as well as a higher amount of organosulfate
groups.

The local variance of the in-plane moduli within a single platelet
of GO can be directly visualized via the regularity of the wrinkles in
the AFM images (Fig. 1). The wrinkling frequencies can be deter-
mined reliably by a Fourier transformation of 1.5 mm� 1.5 mmareas.
Themechanical heterogeneity consequently can be pinned down to
this spatial resolution. The average in-plane values given in Table 1
and discussed above are based on measuring two independently
prepared AFM-samples. For each sample more than 100 in-plane
values were extracted, whereas both different areas on the same
and on different platelets were taken into account yielding very
good statistics.

The pronounced variance of the in-plane moduli reflects the
heterogeneity of the GO comprising both functionalization and
over-oxidized sites. Increasing the number of functional groups and
defects related to over-oxidation will both lower the in-plane
modulus. Both the differences in average values and the large
variances observed clearly stress that there is no such thing as a GO
compound. The mechanical properties significantly scatter at all
length scales (within domains on a single platelet, from platelet to
platelet in a sample, and even more so between samples prepared
Fig. 1. AFM images of wrinkles with a low variance (A; HGO Eigler) and a high variance
(B; BGO Feicht 2nd ox).
with (slightly) different synthesis protocols).

5. Conclusion

Since the underlying heterogeneities in the structure of GO are
inherent to the oxidation process, a single phase GO material
cannot be prepared. Therefore, GO should be rather considered as a
class of materials than a component. It can be concluded that
statements like “prepared by a modified Hummers/Offeman
method” or “oxidized overnight” should not be regarded sufficient.
Instead, most detailed descriptions of preparation methods and
analysis of chemical functionality are required.

Besides these more general concerns, the remarkably high in-
plane modulus of BGO Szab�o 2nd ox which is higher than the
typical value observed for chemically derived graphene (480 GPa
[11]) could make it a superior filler for the mechanical enhance-
ment of water-borne polymer-nanocomposites.

Finally, the simplicity of the wrinkling method renders it suit-
able for in-process control required to tailor GO synthesis for
particular applications.
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