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Abstract Symbolic Automata
Mixed syntactic/semantic similarity analysis of executables

Abstract

We introduce a model for mixed syntactic/semantics approximation
of programs based on symbolic finite automata (SFA). The edges
of SFA are labeled by predicates whose semantics specifies the de-
notations that are allowed by the edge. We introduce the notion of
abstract symbolic finite automaton (ASFA) where approximation
is made by abstract interpretation of symbolic finite automata, act-
ing both at syntactic (predicate) and semantic (denotation) level.
We investigate in the details how the syntactic and semantics ab-
stractions of SFA relate to each other and contribute to the deter-
mination of the recognized language. Then we introduce a family
of transformations for simplifying ASFA. We apply this model to
prove properties of commonly used tools for similarity analysis of
binary executables. Following the structure of their control flow
graphs, disassembled binary executables are represented as (con-
crete) SFA, where states are program points and predicates repre-
sent the (possibly infinite) I/O semantics of each basic block in a
constraint form. Known tools for binary code analysis are viewed
as specific choices of symbolic and semantics abstractions in our
framework, making symbolic finite automata and their abstract in-
terpretations a unifying model for comparing and reasoning about
soundness and completeness of analyses of low-level code.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.2 [Logics and Mean-
ings of Programs]: Semantics of Programming Languages—pro-
gram analysis

General Terms Languages.

Keywords Symbolic automata, abstract interpretation.

1. Introduction
The problem. Data-sets in huge software enclaves, such as code,
specifications, analyses, etc. put forward new and unconventional
challenges to traditional Big-Data research. If Big-Data requires
adequate infrastructures and abstractions for mining and learn-
ing information from huge data-sets, in Big-Code we need to in-
clude interpretation in order to be able to extract and represent
the extensional meaning of programs. This is particularly relevant
when dealing with binary executables, which, besides represent-
ing a large portion of existing software, also represent a highly
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malleable often hard to analyze carrier. This is due to its unstruc-
tured nature, allowing self-modification, overlapping instructions,
and untyped computations where data and code coexist without any
predefined (static) boundary.

In order to mine both semantic meanings and syntactic patterns
from programs, existing tools for similarity analysis of binary ex-
ecutables always employ mixed syntactic/symbolic and semantic
representations of programs. At syntactic level properties concern-
ing the control flow graph, such as in BinHunt [14] and BinDiff
[11, 24], or feature vectors concerning sequences of instructions,
are used together with graph-isomorphism, sequence comparison
algorithms, and hash functions for extracting structural similarities
in code. At semantic level, more advances semantic properties such
as those extracted from symbolic executions, dynamic analysis and
emulation, such as those used in BinJuice [17] and BinHunt [14],
are employed for bypassing semantic preserving code transforma-
tions for code obfuscation, e.g., for similarity analysis in malware
detection. The use of mixed syntactic/semantic representation of
code in similarity analysis is because pure semantic similarity is too
complex and often undecidable while pure syntactic similarities is
too imprecise and prone to false negatives due to code obfuscation
techniques.

It is therefore clear the need of a level of abstraction to hold in
check the intrinsic complexity of this analysis and mixed represen-
tations for properties of syntax and semantics of programs, in order
to obtain practical and efficient algorithms for low-level code sim-
ilarity analysis. This is precisely the case in most known tools and
methods for dissecting and comparing binary executables in order
to extract similarities from syntactically different code. However,
none of these tools have a formal semantic model in which rela-
tive precision, soundness and consistency can be formally proved.
The lack of a formal and unifying model for specifying these tools
makes extremely hard their comparison and in some sense their
deep understanding.

Our contribution. Our idea is to attack this problem by observ-
ing that most known methods employed in similarity analysis of
disassembled binaries can be seen as peculiar abstract interpreta-
tions of symbolic finite state automata (SFA). Symbolic finite au-
tomata, introduced in [22] and further developed in [7, 8], provide
the ideal formal setting in order to treat within the same model the
abstraction of both the syntactic structure of programs and their
intended semantics. SFA have been introduced as an extension of
traditional finite state automata for modeling languages with a po-
tential infinite alphabet. Transitions in SFA are therefore modeled
as constraints interpreted in a given Boolean algebra, providing
the semantic interpretation of constraints, and therefore the (po-
tentially infinite) structural components of the language recognized
(see [8, 22]).

Our main contribution is the introduction of the notion of ab-
stract symbolic finite automaton, where approximation is made by
abstract interpretation of standard symbolic finite automata. Ab-
stract interpretation here acts both at syntactic (predicate), topo-
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logical (graph), and semantic (denotation) level. We investigate in
details how the syntactic, topological, and semantics abstractions
of SFA relate to each other and interfere when automata, at differ-
ent levels of abstractions, are compared with respect to their recog-
nized language. Abstraction on predicates and semantics structures
corresponds precisely to abstract interpretation of the underlying
Boolean algebra of a given concrete SFAM , resulting in a different
SFA A whose language recognized is an over approximation of the
language of M . The key aspect here is to maintain a relative com-
patibility between syntactic abstractions on constraint formulae and
the abstractions of their semantics. This intuitively means that the
approximate predicates and their interpretation provide, one over
the others, coherent partitions of objects (respectively interpreta-
tions and predicates). Topological abstraction means instead chang-
ing the graph structure of SFA, yet keeping correctness, namely
providing an over approximation of the recognized language of
M . This is achieved by generalizing a minimization algorithm pro-
posed in [8] with respect to a family of equivalence relations on
SFA states. The result is a simplification ofM which is still correct
in the sense of abstract interpretation with respect to M .

We apply our model to prove properties of commonly used
tools for similarity analysis of binary executables, notably Bin-
Juice [17], but also BinDiff. Following the structure of their con-
trol flow graphs, disassembled binary executables are represented
as (concrete) SFA, where states are program points between basic
blocks and predicates represent the (possibly infinite) I/O seman-
tics of each basic block in a constraint form. Tools for binary-level
similarity analysis are then derived as abstract interpretations of
these concrete SFA. By studying the properties of the correspond-
ing abstractions we can provide a first unifying model for formally
proving properties for these tools. Moreover our model suggests
potential refinements of similarity analyses for disassembled bina-
ries such as the possibility of extracting minimal SFA from binaries
as canonical signatures for code fragments.

2. Preliminaries
Mathematical Notation. Given two sets S and T , we denote with
℘(S) the powerset of S, ℘re(S) the set of recursive enumerable
(r.e.) subsets of S, with S r T the set-difference between S and
T , with S ⊂ T strict inclusion and with S ⊆ T inclusion. S∗

denotes the set of all finite sequences of elements in S. A set L
with ordering relation ≤ is a poset and it is denoted as 〈L,≤〉.
A poset 〈L,≤〉 is a lattice if ∀x.y ∈ L we have that x ∨ y and
x ∧ y belong to L. A lattice 〈L,≤〉 is complete when for every
X ⊆ L we have that

W
X,
V
X ∈ L. As usual a complete lattice

L, with ordering≤, least upper bound (lub)∨, greatest lower bound
(glb) ∧, greatest element (top) >, and least element (bottom) ⊥ is
denoted by 〈L,≤,∨,∧,>,⊥〉. Given f : S−→T and g : T −→Q
we denote with g ◦ f : S−→Q their composition, i.e., g ◦ f =

λx.g(f(x)). f : L−→D on complete lattices is additive (co-
additive) if for any Y ⊆ L, f(∨LY ) = ∨Df(Y ) (f(∧LY ) =
∧Df(Y )). Continuity holds when f preserves lubs’s of chains. Co-
continuity is dually defined. For a continuous function f : lfp(f) =V˘

x
˛̨
x = f(x)

¯
=
W
n∈N f

n(⊥) where f0(⊥) = ⊥ and
fn+1(⊥) = f(fn(⊥)).

Abstract Interpretation. Abstract domains can be equivalently
formalized either as Galois connections or closure operators on
a given concrete domain which is a complete lattice C (cf. [3]).
Let C and A be complete lattices, a pair of monotone functions
α : C−→A and γ : A−→C forms a Galois connection (GC)
between C and A if for every x ∈ C and y ∈ A we have
α(x) ≤A y ⇔ x ≤C γ(y). α (resp. γ) is the left-adjoint (resp.
right-adjoint) to γ (resp. α) and it is additive (resp. co-additive).
If 〈α, γ〉 is a GC between C and A then γ ◦ α ∈ uco(C). If

ρ ∈ uco(C) then 〈ρ, id〉 is a CG between C and ρ(C). Given
an additive (resp. co-additive) function α (resp. γ) we have a GC
〈α, α+〉 (resp. 〈γ−, γ〉) by considering its right (resp. left) adjoint
α+ = λx.

W
{y | α(y) ≤ x} (resp. γ− = λx.

V
{y | x ≤ γ(y)}).

An upper closure operator (or simply a closure) on a poset 〈L,≤〉
is an operator ρ : L−→L which is monotone, idempotent, and
extensive (i.e., x ≤ ρ(x)). We denote with uco(L) the set of all
closure operators on the poset L. If C is a complete lattice, then
〈uco(C),v,t,u, λx. C, id〉 forms a complete lattice [23], which
is the set of all possible abstractions of C, where the bottom is
id = λx.x and for every ρ, η ∈ uco(C), ρ is more concrete
than η iff ρ v η iff ∀y ∈ C. ρ(y) ≤ η(y) iff η(C) ⊆ ρ(C),
(ui∈Iρi)(x) = ∧i∈Iρi(x); (ti∈Iρi)(x) = x iff ∀i ∈ I. ρi(x) =
x. An abstraction ρ ∈ uco(C) is disjunctive when ρ(C) is a join-
sublattice of C which holds iff ρ is additive (cf. [3]). A closure ρ ∈
uco(℘(C)) is partitioning (or induces a partition) if it is additive
and {ρ({c})}c∈C is a partition of C [16]. If ρ ∈ uco(℘(C)) then
the closest partitioning closure is:

Π(ρ)
def
=
G˘

β ∈ uco(℘(C))
˛̨
β v ρ ∧ β is partitioning

¯
.

The key aspect of partitioning closures is that they preserve the
structure of Boolean algebras.
If f : C−→C is a continuous function and ρ ∈ uco(C) is an
abstraction, then f always has a best correct approximation in ρ(C)
which is fρ def

= ρ ◦ f ◦ ρ. Any approximation f ] : ρ(C)−→ρ(C)

of f in ρ(C) is sound if fρ v f ]. In this case we have the fix-point
soundness ρ(lfpf) ≤ lfp(fρ) ≤ lfp(f ])(cf. [2]). f ] is complete
when ρ ◦ f = f ] ◦ ρ which holds iff ρ ◦ f = ρ ◦ f ◦ ρ (cf. [15]).
Therefore the possibility of defining a complete approximation f ]

of f on some abstract domain ρ only depends on f and ρ. In this
case we have: ρ(lfpf) = lfp(fρ) = lfp(f ]). In the following, for
any semantics J·K : S−→D mapping syntactic objects in S into
denotations in D such that J·K is an element in the set of fix-point
semantics S ⊆ S−→D inductively defined as follows

S ::= f : S−→D | lfp(S) | S ◦S

and if ρ ∈ uco(D), we denote by J·Kρ ∈ Sρ ⊆ S−→ρ(D) the
corresponding best correct approximation which is defined induc-
tively on the structure of S as follows:

Sρ ::= ρ ◦ f ◦ ρ | lfp(Sρ) | Sρ ◦Sρ

It is known that J·Kρ is sound and, whenever ρ is complete for
the basic semantics operators f defining J·K ∈ S, then J·Kρ is
complete, i.e. for any s ∈ S: ρ(JsK) = JsKρ (cf. [3, 15]).

Symbolic Finite Automata. Symbolic automata and finite state
transducers have been introduced to deal with specifications in-
volving a potentially infinite alphabet of symbols [7, 8, 22]. We
follow [8] in specifying symbolic automata. Consider an effective
Boolean algebra A = 〈DA,ΨA, J·K,⊥,>,∧,∨,¬〉, with domain
elements in a r.e. set DA, a r.e. set of predicates ΨA closed un-
der boolean connectives ∧, ∨ and ¬. The semantic function J·K :
ΨA−→℘(DA) is a partial recursive function such that J⊥K = ∅,
J>K = DA, and ∀ϕ, φ ∈ ΨA we have that Jϕ ∨ φK = JϕK ∪ JφK,
Jϕ ∧ φK = JϕK ∩ JφK, and J¬ϕK = DA r JϕK. In the follow-
ing we abuse notation by denoting with J·K also its additive lift to
℘re(ΨA), i.e., for any Φ ∈ ℘re(ΨA): JΦK =

˘
JϕK

˛̨
ϕ ∈ Φ

¯
.

For ϕ ∈ ΨA we write IsSat(ϕ) when JϕK 6= ∅ and say that ϕ is
satisfiable. A is decidable if IsSat is decidable.

DEFINITION 2.1. A symbolic automaton (SFA) is 〈A, Q, q0, F,∆〉
where A is an effective Boolean algebra, Q is a finite set of states,
q0 ∈ Q is the initial state, F ⊆ Q is the set of final states and
∆ ⊆ Q×ΨA ×Q is a finite set of transitions.
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A transition in M = 〈A, Q, q0, F,∆〉 labeled ϕ from state p to
state q, (p, ϕ, q) ∈ ∆ is often denoted p ϕ−→q. ϕ is called the guard
of the transition. An a-move of a SFAM is a transition p ϕ−→q such
that a ∈ JϕK, also denoted p a−→q. The language recognized by a
state q ∈ Q in M is defined as:

Lq(M) =


a1, . . . , an ∈ DA

˛̨̨̨
∀1 ≤ i ≤ n. pi−1

ai−→pi
p0 = q, pn ∈ F

ff
in this case, L (M) = Lq0(M). We assume complete SFA,
namely where all states hold an out-going a-move, for any charac-
ter a ∈ D. This can be simply achieved by adding a shaft-state
q⊥ ∈ Q such that q⊥ >−→q⊥ ∈ ∆ and for all states q lack-
ing an out-going a-move, for a ∈ D, then q

¬β−→q⊥ ∈ ∆ with
β =

W˘
ϕ
˛̨
q

ϕ−→p ∧ p ∈ Q
¯

.

The following terminology holds for SFA: M is deterministic
whenever p ϕ−→q, p

β−→q′ ∈ ∆: if IsSat(ϕ∧β) then q = q′.M is
clean if for all p ϕ−→q ∈ ∆: p is reachable from q0 and IsSat(ϕ).
M is normalized if for all p, q ∈ Q: there is at most one move from
p to q. M is minimal if M is deterministic, clean, normalized and
for all p, q ∈ Q:

p = q ⇔ Lq(M) = Lp(M)

Given a SFA M = 〈A, Q, q0, F,∆〉 and ≡⊆ Q × Q, we
define the quotient SFA M/≡

def
= 〈A, Q′, q′0, F ′,∆′〉 as follows:

Q′ =
˘

[q]≡
˛̨
q ∈ Q

¯
, ∆′ ⊆ Q′ × ΨA ×Q′ is such that ∆′ =˘

([q]≡,Φ, [q
′]≡)

˛̨
(p,Φ, q′) ∈ ∆, p ∈ [q]≡

¯
, q′0 = [q0]≡, and

F ′ =
˘

[q]≡
˛̨
q ∈ F

¯
.

3. Abstracting Symbolic Automata
Approximating symbolic automata means building different au-
tomata recognizing an upper approximation of the original recog-
nized language. This can be achieved by abstract interpretation of
the underlying effective Boolean algebra A and by approximating
the automaton’s structure. When acting on the Boolean algebra we
may either approximate the domain of denotations DA where for-
mulae and predicates are interpreted, or approximate the predicates
in ΨA. In both cases we need to obtain as result an abstract effec-
tive Boolean algebra.

3.1 Abstract effective Boolean algebras
The duality of syntax and semantics is perfectly encoded in SFA
by the underlying algebraic structure of effective Boolean algebras.
They represent the universe of predicates and formulae (later called
syntax) as well as the domain for their interpretation and semantics,
providing the structure for expressing the language recognized by
the given SFA. The abstraction of syntactic and semantic structures,
i.e., of effective Boolean algebras, applies on sets of predicates and
semantic structures representing, as usual in abstract interpretation,
properties respectively of predicates and semantics. In the follow-
ing A = 〈DA,ΨA, J·K,⊥,>,∧,∨,¬〉 is an effective Boolean Al-
gebra.

DEFINITION 3.1 (Semantic abstraction). Let A be an effective
Boolean Algebra and ρ ∈ uco(℘(DA)) be a partitioning abstrac-
tion of its domain of denotations. The semantic abstraction of A
w.r.t. ρ, denoted 〈|ρ|〉-abstraction, is the effective Boolean algebra

Aρ = 〈Dρ
A,ΨA, J·K

ρ, ρ(⊥),>,∧,∨ρ,¬ρ〉
where:

Dρ
A =

S˘
ρ(d)

˛̨
d ∈ DA

¯
J·Kρ : ΨA−→℘(Dρ

A) such that
JϕKρ = ρ(JϕK) =

S˘
ρ(d)

˛̨
d ∈ JϕK

¯

ϕ1, ϕ2 ∈ ΨA : Jϕ1 ∨ρ ϕ2Kρ = Jϕ1Kρ ∪ Jϕ2Kρ

ϕ ∈ ΨA : J¬ρϕKρ = Dρ
A r JϕKρ

Before abstracting predicates, i.e., syntax, we have to guarantee
the effectiveness of symbolic computation in the SFA. Next lemma
proves that if S is a set, whenever the abstraction function η ∈
uco(℘(S)) is additive, it maps any r.e. subset X of S into a r.e.
(abstract) subset η(X) of S.

LEMMA 3.2. If X ⊆ S is r.e. and η ∈ uco(℘re(S)) is additive,
then η(X) is r.e.

By Lemma 3.2 and because η is a recursive function, then by
Kleene’s characterization of recursive enumerable sets, the range
of η over r.e. sets is itself r.e. [20].

THEOREM 3.3. If S is a set and η ∈ uco(℘re(S)) is additive then˘
η(X)

˛̨
X ⊆ S ∧ X is r.e.

¯
is r.e.

DEFINITION 3.4 (Syntactic abstraction). Let A be an effective
Boolean Algebra and let η ∈ uco(℘re(ΨA)) be an additive ab-
straction of predicates. The syntactic abstraction of A w.r.t. η, de-
noted 〈η〉-abstraction, is the effective Boolean algebra

Aη = 〈DA, η(℘re(ΨA)), J·K,⊥,>,∧,∨,¬〉

where J·K : η(℘re(ΨA))−→℘(DA) is defined as in SFA.

If we have both a 〈|ρ|〉-abstraction and a 〈η〉-abstraction of an
effective Boolean algebra A, then we define the combined abstrac-
tion 〈|ρ|〉〈η〉-abstraction of A by combining them as follows. Let
ρ ∈ uco(℘(DA)) and η ∈ uco(℘re(ΨA)). The abstraction of A
w.r.t. ρ and η is the effective Boolean algebra

Aρη = 〈Dρ
A, η(℘re(ΨA)), J·Kρ, ρ(⊥),>,∧,∨ρ,¬ρ〉

It is clear that Aη = Aid
η and Aρ = Aρid. In the following of

the paper we assume that 〈|ρ|〉- and 〈η〉-abstractions satisfy the
hypothesis in Definition 3.1 and 3.4 respectively.

THEOREM 3.5. If A is decidable then for any ρ ∈ uco(℘(DA))
and η ∈ uco(℘re(ΨA)), Aρη is decidable.

Note that, in the definition of symbolic automata there is a
strong relation in the underlying effective Boolean algebra A be-
tween the domain of denotations DA and the set of predicates ΨA
used to symbolically represent them. This means that, if we abstract
the domain of denotations by considering ρ ∈ uco(℘(DA)), leav-
ing unchanged ΨA we are implicitly changing the interpretation
of predicates in DA. On the other hand, if we abstract the pred-
icates by considering η ∈ uco(℘re(ΨA)) we explicitly describe
how symbols are abstracted and the semantics is simply the col-
lection of all the semantics denoting the same abstracted predicate.
This relation leads to the following notion of compatible abstrac-
tions.

3.2 Compatible syntactic and semantic abstractions
The relation between semantic and syntactic abstraction is speci-
fied in terms of the way the two abstractions transform the corre-
sponding domains and how these transformed objects are compati-
ble with each other.

Let us consider a 〈|ρ|〉-abstraction ofA, we aim at characterizing
the syntactic abstractions that produce abstract predicates which
may have semantics in Dρ

A. This is captured by the notion of
〈|ρ|〉-compatibility of a syntactic abstraction. Any semantic 〈|ρ|〉-
abstraction naturally induces a corresponding syntactic 〈Ω(ρ)〉-
abstraction with Ω(ρ) ∈ uco(℘(ΨA)) defined as follows:

Ω(ρ)
def
= λΦ.

[˘
Φ′
˛̨

JΦ′K ⊆ JΦKρ
¯
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Figure 1. Compatible abstractions.

Analogously, any syntactic 〈η〉-abstraction naturally induces a cor-
responding semantic abstraction 〈|f(η)|〉-abstraction with f(η) ∈
uco(℘(Dρ

A)). In order to characterize when and how a syntactic
abstraction induces a semantic abstraction, we need to characterize
the syntactic abstraction that precisely corresponds to the semantics
J·K, namely the abstraction collecting all the predicates having the
same semantics J·K. This is precisely Ω(id), which can be rewrit-
ten as λΦ. JJΦKK+. J·K+ is the adjoint semantic function defined as
follows:

J·K+ def
= λX ∈ ℘(DA).

[˘
Φ
˛̨

JΦK ⊆ X
¯
∈ ℘re(ΨA)

Then we can define the induced 〈|f(η)|〉-abstraction:

f(η)
def
= λX.

[˘
Y
˛̨

JY K+ ⊆ η(JXK+)
¯

Observe that, when J·K : ΨA → ℘(DA) is surjective, namely when
there exists at least one predicate for each possible semantics in
℘(DA) we have that f(id) = id. Indeed, id ∈ uco(℘re(ΨA))
considers every single predicate and we have a predicate for each
semantics object so in this case we have no effects on the semantics
and f(id) return precisely the identity on the semantics.

Compatibility of a 〈η〉-abstraction w.r.t. 〈|ρ|〉-abstraction can
therefore be defined in terms of relative abstraction of η and Ω(ρ),
or analogously, in terms of relative abstraction of ρ and f(η).

DEFINITION 3.6 (Semantic compatibility). Given a 〈|ρ|〉-abstracted
effective Boolean algebra Aρ and a syntactic abstraction η ∈
uco(℘re(ΨA)), η is 〈|ρ|〉-compatible if we have:

η v Ω(ρ) (1)

Semantic compatibility means that the way a syntactic abstraction
partition the set of predicates of A is always a refinement of the
partition induced by the semantics abstraction.

THEOREM 3.7. Let ρ ∈ uco(℘(DA)), then Ω(ρ) is the most
abstract syntactic abstraction 〈|ρ|〉-compatible.

EXAMPLE 3.8. Consider the domains depicted in Fig. 1 (the miss-
ing point labels are the set union of smaller elements). On the left
we have ℘(ΨA), where

ΨA
def
= {x+ y > 3, x ≥ 3, y ≥ 0, x+ y > 3 ∧ x ≥ 3 ∧ y ≥ 0}.

On the right we have ℘(DA), where

DA
def
= {Jx+ y > 3K, Jx ≥ 3K, Jy ≥ 0K}.

Consider for instance the semantic abstraction ρ on the right (de-
picted with circles). The corresponding Ω(ρ) is depicted on the
left. We observe that the closure η1 is 〈|ρ|〉-compatible being more
concrete that Ω(ρ). This means that the syntactic abstraction can
distinguish predicates with the same abstract semantics. In par-
ticular, while ρ(Jx + y > 3K) = ρ(Jx ≥ 3K) we have that
η1(x+y > 3) = {x+y > 3, x ≥ 3}while η1(x ≥ 3) = {x ≥ 3}.

Note that AΩ(ρ) may not be an effective Boolean algebra be-
cause Ω(ρ)(℘re(ΨA)) may not be a r.e. set.

Figure 2. Relation between compatibilities.

Let us consider now a 〈η〉-compatible abstraction of an effective
Boolean algebra A. We aim at characterizing the abstractions of
denotations that my provide semantics for the abstract predicates
generated by η. We define the notion of 〈η〉-compatibility of a
semantic abstraction.

DEFINITION 3.9 (Syntactic compatibility). A semantic abstraction
ρ ∈ uco(℘(DA)) is 〈η〉-compatible for a syntactic 〈η〉-abstraction
Aη if:

η w Ω(ρ) (2)

THEOREM 3.10. Let η ∈ uco(℘re(ΨA)), then f(η) is the most
concrete semantic abstraction 〈η〉-compatible.

EXAMPLE 3.11. Consider again the example in Fig. 1 introduced
in Ex. 3.8. Consider in this case the syntactic abstraction η3. We
observe that ρ is 〈η3〉-compatible since η3 is more abstract than
Ω(ρ). This means that η3 induces a further semantic abstraction
collapsing elements with different ρ abstract semantics. In partic-
ular, ρ(Jx + y > 3 ∧ x ≥ 3 ∧ x ≥ 3K) 6= ρ(Jx ≥ 3K) while
η3(x+ y > 3 ∧ x ≥ 3 ∧ y ≥ 0) = η3(x ≥ 3) = >.
In this example we can also observe a syntactic abstraction η2

which fails both the compatibilities since it not comparable with
Ω(ρ).

Finally, we show when a syntactic abstraction does induce an
abstraction of the semantic denotations and vice versa.

LEMMA 3.12. Let η ∈ uco(℘re(ΨA)):

1. η w Ω(id) iff ∀Φ ∈ ℘re(ΨA). JJη(Φ)KK+ = η(Φ)

2. η v Ω(id) iff ∀Φ ∈ ℘re(ΨA). η(JJΦKK+) = JJΦKK+

THEOREM 3.13. Let η ∈ uco(℘re(ΨA)), then

η v Ω(id) ⇒ f(η) = id

This result tells us that when we have a syntactic abstraction dis-
tinguishing predicates with the same semantics, then we cannot ab-
stract the semantics.

We prove that we can characterize compatibilities both in the
domain of semantic abstractions and in the domain of syntactic
abstractions.

THEOREM 3.14. Let η ∈ uco(℘re(ΨA)) be such that η w Ω(id),
and ρ ∈ uco(℘(DA)):

Ω(ρ) v η iff ρ v f(η)

In Fig. 2 we can see the relation between the two compatibili-
ties. In particular we observe that the two transformers, form syntax
to semantics and viceversa, show a relation quite similar to an ad-
junction, as observed in the following result.

PROPOSITION 3.15. Let η ∈ uco(℘re(ΨA)) and ρ ∈ uco(℘(DA))
the following conditions holds:

(1) f(Ω(ρ)) w ρ (2) Ω(f(η)) v η.
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EXAMPLE 3.16. Consider again the example in Fig. 1. For η3

which satisfies the hypotheses of Th. 3.14, we have a corresponding
semantic abstraction f(η3) (depicted on the right) which is indeed
more abstract than ρ.

As a corollary of the previous results we show when a 〈|ρ|〉〈η〉-
abstraction of A satisfies both the compatibilities.

PROPOSITION 3.17. Let η ∈ uco(℘re(ΨA)) and ρ ∈ uco(℘(DA))
such that Ω(ρ) ∈ uco(℘re(ΨA)), the following facts are equiva-
lent:

1. η is 〈|ρ|〉-compatible ∧ ρ is 〈η〉-compatible;
2. η = Ω(ρ);
3. ρ = f(η).

3.3 Abstracting symbolic automata
Consider a SFA M = 〈A, Q, q0, F,∆〉 and the 〈|ρ|〉〈η〉-abstraction
of the effective Boolean algebra A, denoted as Aρη . We define
the symbolic finite automaton corresponding to M on the abstract
effective Boolean algebraAρη as Mρ

η
def
= 〈Aρη, Q, q0, F,∆η〉 where:

∆η
def
=
˘

(q, η(ϕ), q′)
˛̨

(q, ϕ, q′) ∈ ∆
¯

Note that Mη = M id
η and Mρ = Mρ

id. In the following we prove
that when abstracting the underling effective Boolean algebra of
an SFA we over-approximate the recognized language, providing a
sound approximation in the sense of abstract interpretation.

THEOREM 3.18. Given a SFA M = 〈A, Q, q0, F,∆〉, two clo-
sures η ∈ uco(℘(ΨA)) and ρ ∈ uco(℘(DA)), the abstract ef-
fective Boolean algebra Aρη and the corresponding SFA Mρ

η =
〈Aρη, Q, q0, F,∆η〉. Then: L (M) ⊆ L (Mρ

η ).

For this reason is the following we abuse terminology and re-
fer to the SFA whose underlying Boolean algebra is an 〈|ρ|〉〈η〉-
abstraction of a Boolean algebra A as an 〈|ρ|〉〈η〉-abstract SFA.
Moreover, we can observe that given two abstract Boolean alge-
bra Aρ1η1 and Aρ2η2 and an SFA M on A, then the relation between
the languages recognized respectively by Mρ1

η1 and by Mρ2
η2 cor-

responds to the relation existing between the best correct approxi-
mation of the semantics J·K with respect to the pair of abstractions
ρ1, η1 and ρ2, η2. This is formally stated in the following Proposi-
tion.

PROPOSITION 3.19. Consider a SFA M = 〈A, Q, q0, F,∆〉, the
closures η1, η2 ∈ uco(℘(ΨA)) and ρ1, ρ2 ∈ uco(℘(DA)), then:

L (Mρ1
η1 ) ⊆ L (Mρ2

η2 ) ⇔ ρ1 ◦J·K ◦η1 v ρ2 ◦J·K ◦η2

⇐ ρ1 v ρ2 ∧ η1 v η2

4. Minterms
A notion which plays a central role in our transformations of SFA
is the notion of minterm. This notion has been introduced in [8] for
providing a minimal and univocal representation of the predicates
in a given set of predicates, e.g., the guards of a given program.
In this context we observe some peculiar properties of minterms
which make them powerful tools for reasoning on semantics in a
syntactic way. A minterm is a minimal satisfiable boolean combi-
nation of all predicates occurring in a given SFA. Minterms can be
generated from a set of predicates by the algorithm proposed in [8]
and reported in Fig. 3.

4.1 Basic properties of Minterms
The minterm generation for a formula ϕ produces a tree Tϕ that
satisfies the following basic properties.

PROPOSITION 4.1. Let tree be the tree built during the minterm
generation, starting from a set Φ ∈ ℘re(ΨA) of predicates. Given

1.MINTERMSA(Φ)
def
=

2. tree := new Tree(>A, null, null);
3. foreach ϕ in Φ tree.Refine(ϕ);
4. return Leaves(tree);

//The minterms are the leaf predicates
5.class Tree
6. Predicate ψ; Tree left; Tree right;
7. Refine(ϕ)

def
=

8. if (IsSatA(ψ ∧ ϕ) and IsSatA(ψ ∧ ¬ϕ))
9. if (left = null) // If the tree is a leaf then split ψ
10. left := new Tree(ψ ∧ ϕ, null, null);
11. right := new Tree(ψ ∧ ¬ϕ, null, null);
12. else left.Refine(ϕ); right.Refine(ϕ);

Figure 3. Minterm generation algorithm.

ϕ ∈ ΨA, let us denote by Tϕ the subtree of tree having ϕ as root.
Then the following properties hold:

1. Let Leaves(Tϕ) = {ϕ1, . . . , ϕk}, then ϕ ⇔
W
i∈{1..k} ϕi;

2. Any ϕ ∈ MINTERMS(Φ) ϕ satisfiable implies that for all
ϕ′ ∈ MINTERMS(Φ) r {ϕ} is not satisfiable.

3. For all ϕ1, ϕ2 ∈ Φ we have that ϕ1 ∧ ϕ2 is satisfiable iff
Leaves(Tϕ1) ∩ Leaves(Tϕ2) 6= ∅;

4. For any ϕ1, ϕ2 ∈ Φ we have that ϕ1 ⇒ ϕ2 is satisfiable with
ϕ1 satisfiable iff Leaves(Tϕ1)SAT ⊆ Leaves(Tϕ2);

The following proposition shows that the semantics of minterms
is a partition of the domain DA of denotations.

PROPOSITION 4.2. Let A = 〈DA,ΨA, J·K,⊥,>,∧,∨,¬〉 be an
effective Boolean algebra, then

˘
JϕK

˛̨
ϕ ∈ MINTERMS(ΨA)

¯
is a partition of DA.

4.2 Approximated Minterms
Minterms change their structure when the underlying Boolean al-
gebra is approximated by abstract interpretation. We consider an ef-
fective Boolean algebraA = 〈DA,ΨA, J·K,⊥,>,∧,∨,¬〉, where
the semantic function J·K : ΨA → ℘(DA) is surjective. Consider
a subset Ψ ⊆ ΨA of such predicates, for example the set of pred-
icates that label a given SFA. We define the syntactic abstraction
ηΨ ∈ uco(℘re(ΨA)) as that abstraction of predicates that observes
precisely only the predicates in Ψ and abstract in> any other pred-
icate. Let ϕ ∈ ΨA, then ηΨ is formally defined as additive lift of:

ηΨ({ϕ}) def
=


{ϕ} if ϕ ∈ Ψ
> otherwise

Note that the fix-points of ηΨ is ηΨ(℘re(ΨA)) = ℘(Ψ)∪ {>}. Of
course ηΨ corresponds to an abstraction f(ηΨ) on the semantics
that precisely observes only the semantics of the predicates in Ψ,
as stated by the following result.

LEMMA 4.3. Let A = 〈DA,ΨA, J·K,⊥,>,∧,∨,¬〉 be an effec-
tive Boolean algebra and consider ηΨ ∈ uco(℘re(ΨA)) which is
〈|id|〉-compatible, then:

f(ηΨ)(℘(DA)) =
˘

JΦK
˛̨

Φ ∈ ℘re(ΨA)
¯

Observe that ηΨ is 〈|id|〉-compatible if whenever there is a
predicate in Ψ then Ψ contains also all the predicates with the
same semantics. The closure f(ηΨ) ∈ uco(℘(DA)) may not be
partitioning in general, so we consider Π(f(ηΨ)) and we observe
that the equivalence classes of the partition induced by Π(f(ηΨ))
on DA are precisely the semantics of the minterms of Ψ.
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PROPOSITION 4.4. Let A = 〈DA,ΨA, J·K,⊥,>,∧,∨,¬〉 be an
effective Boolean algebra, and consider Ψ ⊆ ΨA such that the
abstraction ηΨ ∈ uco(℘re(ΨA)) is 〈|id|〉-compatible, then:˘

JϕK
˛̨
ϕ ∈ MINTERMS(Ψ)

¯
=
˘

Π(f(ηΨ))(d)
˛̨
d ∈ DA

¯
It is now interesting to observe what happens when we con-

sider a generic syntactic abstraction η ∈ uco(℘re(ΨA)) such that
ηΨ v η, namely that further abstracts the set of predicates Ψ that
we are considering. In this case, the semantics of the minterms of
the approximated predicates η(Ψ) are precisely given by the ab-
straction Π(f(η)) of the semantics of the minterms of Ψ.

THEOREM 4.5. Let A = 〈DA,ΨA, J·K,⊥,>,∧,∨,¬〉 be an ef-
fective Boolean algebra, and consider Ψ ⊆ ΨA such that the
abstraction ηΨ ∈ uco(℘re(ΨA)) is 〈|id|〉-compatible, and an ab-
straction η ∈ uco(℘re(ΨA)) such that ηΨ v η. Then:˘

JϕK
˛̨
ϕ ∈ MINTERMS(η(Ψ))

¯
=˘

Π(f(η))(JϕK)
˛̨
ϕ ∈ MINTERMS(Ψ)

¯
This means that the semantics of the minterms of a set of

abstract predicates is precisely the abstraction of the semantics of
the original predicates.

EXAMPLE 4.6. Let A = 〈DA,ΨA, J·K,⊥,>,∧,∨,¬〉 be an ef-
fective Boolean algebra where ΨA =

˘
x ∈ N

˛̨
N ⊆ Z

¯
, and

the semantic function J·K : ΨA → ℘(Z) is naturally defined as
Jx ∈ NK = N .
Let us consider the following subset of ΨA:

Ψ =
˘
x ∈ {4, 6}, x ∈ {5, 6}, x ∈ {−5}, x ∈ {−8}

¯
the corresponding set of minterms is MINTERMS(Ψ):

{ (x ∈ {4, 6} ∧ x ∈ {5, 6}),
(x ∈ {4, 6} ∧ ¬x ∈ {5, 6}),
(¬x ∈ {4, 6} ∧ x ∈ {5, 6}),
(¬x ∈ {4, 6} ∧ ¬x ∈ {5, 6} ∧ x ∈ {−5}),
(¬x ∈ {4, 6} ∧ ¬x ∈ {5, 6} ∧ ¬x ∈ {−5} ∧ x ∈ {−8}),
(¬x ∈ {4, 6} ∧ ¬x ∈ {5, 6} ∧ ¬x ∈ {−5} ∧ ¬x ∈ {−8})}

observe that:˘
JϕK

˛̨
ϕ ∈ MINTERMS(Ψ)

¯
=˘

{4}, {6}, {5}, {−5},Z r {4, 6, 5,−5,−8}
¯

the closure ηΨ ∈ uco(℘re(ΨA)) is defined as the additive lift of:

ηΨ({x ∈ N}) def
=


{x ∈ N} if {x ∈ N} ∈ Ψ
> otherwise

and, as states in Proposition 4.4 we have that:˘
Π(f(ηΨ))(d)

˛̨
d ∈ Z

¯
=˘

{4}, {6}, {5}, {−5},Z r {4, 6, 5,−5,−8}
¯

Let Z+ def
=
˘
v
˛̨
v ≥ 0

¯
and Z− def

=
˘
v
˛̨
v < 0

¯
and let the

closure ηSign ∈ uco(℘re(ΨA)) defined as the additive lift of:

ηSign({x ∈ N}) def
=

8<: {x ∈ Z+} if N ⊆ Z+

{x ∈ Z−} if N ⊆ Z−
> otherwise

Observe that the MINTERMS(ηSign(Ψ)) is the set˘
{x ∈ Z+}, {x ∈ Z−}

¯
and the semantics of the minterms of ηSign(Ψ) is:˘

JϕK
˛̨
ϕ ∈ MINTERMS(ηSign(Ψ))

¯
= {Z+,Z−}

Moreover, as shown in Theorem 4.5:˘
Π(f(ηSign))(JϕK)

˛̨
ϕ ∈ MINTERMS(Ψ)

¯
= {Z+,Z−}

5. Topological SFA abstraction
In Section 3 we have seen how an SFA can be abstracted by ab-
stracting its underlying Boolean algebra. This abstraction does not
influence directly the topological structure of SFA. When dealing
with automata, the natural way of thinking about automata simpli-
fication (or abstraction) is the merge of states. In general, we can
define a simplification operation on automata that collapses states
wrt a given equivalence relation over states. Namely, the equiva-
lence relation establish the criteria that the simplification uses for
merging states.

DEFINITION 5.1. Consider a SFA M = 〈A, Q, q0, F,∆〉 and an
equivalence relation R ⊆ Q × Q over its states. We denote with
SimR(M) the SFA obtained by simplifying M wrt R, namely the
SFA computed as the quotient ofM wrtR, i.e., SimR(M) = M/R.

Thus, SFA simplification is the operation of SFA quotient made
parametric on the equivalence relation used to merge states. It is
easy to observe that for every equivalence relation R, the SFA
SimR(M) resulting from SFA simplification recognizes at least
the language recognized by M . Indeed when we merge states we
keep all the transitions of the original SFA and we may add some
new spurious ones.

PROPOSITION 5.2. Consider a SFA M = 〈A, Q, q0, F,∆〉. For
any equivalence relation R ⊆ Q × Q we have that L (M) ⊆
L (SimR(M)).

Given two equivalence relations R and R′, we write R �
R′ when R is a refinement of R. Of course the coarser is the
equivalence relation the wider is the language recognized by the
corresponding simplified SFA.

PROPOSITION 5.3. Consider a SFA M = 〈A, Q, q0, F,∆〉 and
two equivalence relations R,R′ ⊆ Q×Q such that R � R′. Then
L (SimR(M)) ⊆ L (SimR′(M)).

Another important property of topological abstractions is that
they do not change the set of minterms, since they do not change
the predicates, hence we can still reason on semantics by using
minterms.
In the following we report a simplification algorithm where the
predicates of the SFA to simplify are first rewritten as disjunction
of minterms (line 3-7). Thus, whenever the equivalence relation R
deals with properties of the languages of strings that reaches or
starts from a state, it may be easier to check these properties on
minterms instead of checking them on the language of denotations.
(Examples will be provided in the following).

Simplify(M,R,A)

1. Input: M = 〈A, Q, q0, F,∆〉, R ⊆ Q×Q,
2. A = 〈DA,ΨA, J·K,⊥,>,∧,∨,¬〉

3. Mt(M)
def
= MINTERMS

„
ψ

˛̨̨̨
∃p, q ∈ Q.
p

ψ−→q ∈ ∆

ff«
4. M ′ = 〈A′, Q, q0, F,∆′〉:
5. A′ def

= 〈DA,Mt(M), J·K,⊥,>,∧,∨,¬〉
6. µ(ψ)

def
=
W˘

ϕ ∈Mt(M)
˛̨
ϕ ∈ Leaves(Tψ)

¯
7. ∆′

def
=
n
p
µ(ψ)−→q

˛̨
∃ψ. p ψ−→q

o
8. Output: M ′′ = M ′/R
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5.1 SFA Simplification
Minimization. D’Antoni and Veanes in [8] have extended the
standard algorithm of Hopcroft for finite state automata minimiza-
tion to SFA. This operation is based on the idea of refining an initial
partition by checking all the possible moves depending on the con-
sidered alphabet symbol. In FSA this is feasible because they have a
finite alphabet. In SFA the alphabet is r.e., hence in general infinite.
For this reason the algorithm proposed iterates this check on predi-
cates/symbols in a way that makes the number of possible iteration
finite: instead of checking transitions for each alphabet symbol, the
check is made for each minterm (see [8] for details).

Observe that this SFA minimization algorithm can be seen as
a simplification wrt. the equivalence relation that relates all and
only the states that are reached exactly by the same language of
minterms. Consider a SFA M = 〈A, Q, q0, F,∆〉, and for every
q

ψ−→p ∈ ∆ let µ(ψ) be the predicate ψ written as a disjuction
of minterms (namely as the disjuntion of the leaves of the subtree
Tψ with root ψ of the tree generated during the construction of the
minterms of the considered SFA). We define the language of strings
of minterms that reaches a state q as:

L̇ (q)
def
=

8<: µ(ψ1) . . . µ(ψn−1)

˛̨̨̨
˛̨ ∃n ∈ N : ∃q1 . . . qn ∈ Q :
∀i ∈ [1, n[.qi

µ(ψi)−→qi+1 ∈ ∆
qn = q

9=;
Let ≡̇ ⊆ Q×Q be such that q ≡̇ p iff L̇ (q) = L̇ (p). Observe that
for the properties of minterms proved in the previous section, we
have that checking the language of minterms or checking the lan-
guage of denotations is equivalent, since minterms provide a min-
imal and unequivocal representation of predicates. Let Min(M)
denote the minimization of M .

PROPOSITION 5.4. Min(M) = Sim≡̇(M).

k-Minimization. According to the above formalization of SFA
minimization, we can weaken minimization by defining a relation
over states that observes the language of stings of minterms of a
fixed length k that reaches a given state. To this end, given an SFA
M = 〈A, Q, q0, F,∆〉, and for every q ψ−→p ∈ ∆ let µ(ψ) be
the predicate ψ written as a disjuction of minterms, we define the
language L̇k(q), which is the language of strings of length k that
can reach the state q:

L̇k(q)
def
=

8<: µ(ψ1) . . . µ(ψk−1)

˛̨̨̨
˛̨ ∃q1 . . . qk ∈ Q :

∀i ∈ [1, .k[.qi
µ(ψi)−→qi+1 ∈ ∆

qk = q

9=;
Let ≡̇k ⊆ Q × Q be such that q ≡̇k p iff L̇k(q) = L̇k(p). Let
Mink(M) denote the simplification of M wrt ≡̇k. The following
examples illustrate the difference between minimization and k-
minimization.

EXAMPLE 5.5. Consider the SFA M in Fig. 4 on the left. It is
clear that the predicates x odd and (x + 1) even are equivalent,
as well as predicates y even and (y + 1) odd. This is captured by
the minimization algorithm of D’Antoni and Veanes that correctly
collapses state q4 with q5 and q7 with q8. The minimized algorithm
Min(M) is shown in Fig. 4 at the top on the right. Observe that
the edge between q2 and {q4, q5}, as well as the edge between
{q7, q8} and q9, is labeled by one of the two equivalent predicates.
Of course, the SFA M and Min(M) recognize the same language.
In order to clarify the difference between minimization and k-
minimization at the bottom right of Fig. 4 we report the result
obtained by applying the simplification algorithm wrt ≡̇k where
k = 1 at the SFA M . Observe that the simplification algorithm
with k = 1 merges the state q6 with the states q7 and q8, as
shown in the resulting SFA Min1(M). Indeed, the states q6, q7

and q8 are reached by the same language of strings of length 1
(in this simple case all the denotations with y positive). The edge
between {q6, q7, q8} and q9 is labeled by true since it corresponds
to y odd ∨ y even. We can observe that the language recognized by
Min1(M) is greater than the one recognized byM . Let us consider
the pairs (n1, n2) with n1, n2 ∈ Z where the first number denotes
the values of x and the second the values of y. For example we have
that the string of pairs (1, 2)(2, 4)(4, 8)(8, 16) ∈ L (Min1(M))
while it does not belong to L (M) = L (Min(M)).

Of course when the value of k increases it increases also
the precision of the simplification wrt ≡̇k by collapsing states
that are equivalent, namely at the limit with k increasing the k-
minimization becomes minimization.

THEOREM 5.6. Given two states p and q we have that p≡̇q iff
∀k ∈ N. p≡̇kq.

EXAMPLE 5.7. Observe that if we compute the simplification of
the SFA M in the example in Fig. 4 wrt ≡̇k and k = 2 we obtain
the minimized SFA, namely Min(M) = Min2(M). Indeed, if we
consider the language of words of length 2 that reach a given state
we can no longer merge q6 with q7 and q8.

k-Invariant. Minterms provide a systematic simplification of
SFA based on the extraction of invariant properties that hold for
the language of strings that reach (or start) from a given state. Con-
sider an SFAM = 〈A, Q, q0, F,∆〉, and for every q ψ−→p ∈ ∆ let
µ(ψ) be the predicate ψ written as a disjunction of minterms. Con-
sider a state q ∈ Q. For every string µ(ψ1) . . . µ(ψk) ∈ L̇k(q) of
length k that reaches the state q we have that IsSat(

V
i∈[1,k] µ(ψi))

is true iff all the disjunctions µ(ψi) of minterms share at least one
minterm. This because, thanks to the properties of minterms, only
one minterm at the time can be true. Let
Inv{µ(ψi)}i∈[1,k]

def
=˘

ϕ ∈ MINTERMS
˛̨
∀i ∈ [1, k]. IsSat(ϕ ∧ µ(ψi))

¯
It is the set of all the minterms shared by all the µ(ψi), which
provides the invariant property of the corresponding string. Indeed,
thanks to minterms this satisfiability can be checked syntactically.
We can therefore define the following equivalence relation

inv≡k ⊆
Q×Q such that q

inv≡k p iff =k(q) = =k(p) where

=k(q) =
˘

Inv{µ(ψi)}i∈[1,k]

˛̨
µ(ψ1) . . . µ(ψk) ∈ L̇k(q)

¯
Thus,

inv≡k collapses states reached by paths that have the same k-
invariant property. We can observe that, if two states share the same
k-language then they surely share the same k-invariant, while the
opposite may not be true since the language fixes an order in the
constraints that the commutativity of the conjunction relaxes.

THEOREM 5.8. Given two states p and q, and k ∈ N, we have that
p≡̇kq implies ∀k′ ≤ k. p inv≡k′q.

EXAMPLE 5.9. Consider again the automaton M in Fig. 4. The
minterms generated by its predicates are given in the table in
Fig. 5: each i denotes the minterm Mi obtained as the conjunction
between the constraint on x and on y, for instance 3 stays for
the minterm M3 = (x even ∧ x ≥ 0 ∧ y even ∧ y < 0). In
Fig. 5 we rewriteM where on each edge the predicates are denoted
as the set of the minterms specifying it. For instance x ≥ 0 ≡W
i∈[1,8] Mi. Note that on this automaton the k-invariant generates

the same transformation as the k-minimization as showed in Fig. 4.
Consider instead the automaton M1 on the right. In this case,
the languages recognized by q7 and q8 are different, for instance
the trace (−1, 3)(3,−4)(3, 5) ∈ L̇3(q7) is not in L̇3(q8) since
(3,−4) does not satisfy the predicate between q2 and q5 in M1,
i.e., y ≥ 0. If we consider 3-invariant then we observe that the
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Figure 4. Minimization and k-Minimization

q0

q1

q2 q9

q3 q6

q4

q5

q7

q8

1

x + y > 3 x � 3 y � 0 x + y > 3 ^ x � 3 ^ y � 0

⇢ = ⌦(⇢) ⌘1 = ⌘2 = ⌘3 =

Jx + y > 3K Jx � 3K Jy � 0K Jx + y > 3 ^ x � 3 ^ y � 0K

f(⌘) ⌘ h|⇢|i-compatible ⇢ h⌘i-compatible ⌘ s.t. ⌘ s.t.

⇢ s.t. ⇢ s.t. Given ⇢ Given ⌘

[1, 8] [1, 4] [ [9, 12] {1, 2, 5, 6, 9, 10, 13, 14} {i | i even}

[9, 16] [5, 8] [ [13, 16] {1, 2, 5, 6, 9, 10, 13, 14} {i | i odd}

1

x + y > 3 x � 3 y � 0 x + y > 3 ^ x � 3 ^ y � 0

⇢ = ⌦(⇢) ⌘1 = ⌘2 = ⌘3 =

Jx + y > 3K Jx � 3K Jy � 0K Jx + y > 3 ^ x � 3 ^ y � 0K

f(⌘) ⌘ h|⇢|i-compatible ⇢ h⌘i-compatible ⌘ s.t. ⌘ s.t.

⇢ s.t. ⇢ s.t. Given ⇢ Given ⌘

[1, 8] [1, 4] [ [9, 12] {1, 2, 5, 6, 9, 10, 13, 14} {i | i even}

[9, 16] [5, 8] [ [13, 16] {1, 2, 5, 6, 9, 10, 13, 14} {i | i odd}

1

x + y > 3 x � 3 y � 0 x + y > 3 ^ x � 3 ^ y � 0

⇢ = ⌦(⇢) ⌘1 = ⌘2 = ⌘3 =

Jx + y > 3K Jx � 3K Jy � 0K Jx + y > 3 ^ x � 3 ^ y � 0K

f(⌘) ⌘ h|⇢|i-compatible ⇢ h⌘i-compatible ⌘ s.t. ⌘ s.t.

⇢ s.t. ⇢ s.t. Given ⇢ Given ⌘

[1, 8] [1, 4] [ [9, 12] {1, 2, 5, 6, 9, 10, 13, 14} {i | i even}

[9, 16] [5, 8] [ [13, 16] {1, 2, 5, 6, 9, 10, 13, 14} {i | i odd}

1

x + y > 3 x � 3 y � 0 x + y > 3 ^ x � 3 ^ y � 0

⇢ = ⌦(⇢) ⌘1 = ⌘2 = ⌘3 =

Jx + y > 3K Jx � 3K Jy � 0K Jx + y > 3 ^ x � 3 ^ y � 0K

f(⌘) ⌘ h|⇢|i-compatible ⇢ h⌘i-compatible ⌘ s.t. ⌘ s.t.

⇢ s.t. ⇢ s.t. Given ⇢ Given ⌘

[1, 8] [1, 4] [ [9, 12] {1, 2, 5, 6, 9, 10, 13, 14} {i | i even}

[9, 16] [5, 8] [ [13, 16] {1, 2, 5, 6, 9, 10, 13, 14} {i | i odd}

1

x + y > 3 x � 3 y � 0 x + y > 3 ^ x � 3 ^ y � 0

⇢ = ⌦(⇢) ⌘1 = ⌘2 = ⌘3 =

Jx + y > 3K Jx � 3K Jy � 0K Jx + y > 3 ^ x � 3 ^ y � 0K

f(⌘) ⌘ h|⇢|i-compatible ⇢ h⌘i-compatible ⌘ s.t. ⌘ s.t.

⇢ s.t. ⇢ s.t. Given ⇢ Given ⌘

[1, 8] [1, 4] [ [9, 12] {1, 2, 5, 6, 9, 10, 13, 14} {i | i even}

[9, 16] [5, 8] [ [13, 16] {1, 2, 5, 6, 9, 10, 13, 14} {i | i odd}

1

x + y > 3 x � 3 y � 0 x + y > 3 ^ x � 3 ^ y � 0

⇢ = ⌦(⇢) ⌘1 = ⌘2 = ⌘3 =

Jx + y > 3K Jx � 3K Jy � 0K Jx + y > 3 ^ x � 3 ^ y � 0K

f(⌘) ⌘ h|⇢|i-compatible ⇢ h⌘i-compatible ⌘ s.t. ⌘ s.t.

⇢ s.t. ⇢ s.t. Given ⇢ Given ⌘

[1, 8] [1, 4] [ [9, 12] {1, 2, 5, 6, 9, 10, 13, 14} {i | i even}

[9, 16] [5, 8] [ [13, 16] {1, 2, 5, 6, 9, 10, 13, 14} {i | i odd}

1

x + y > 3 x � 3 y � 0 x + y > 3 ^ x � 3 ^ y � 0

⇢ = ⌦(⇢) ⌘1 = ⌘2 = ⌘3 =

Jx + y > 3K Jx � 3K Jy � 0K Jx + y > 3 ^ x � 3 ^ y � 0K

f(⌘) ⌘ h|⇢|i-compatible ⇢ h⌘i-compatible ⌘ s.t. ⌘ s.t.

⇢ s.t. ⇢ s.t. Given ⇢ Given ⌘

[1, 8] [1, 4] [ [9, 12] {1, 2, 5, 6, 9, 10, 13, 14} {i | i even}

[9, 16] [5, 8] [ [13, 16] {1, 2, 5, 6, 9, 10, 13, 14} {i | i odd}

1

x + y > 3 x � 3 y � 0 x + y > 3 ^ x � 3 ^ y � 0

⇢ = ⌦(⇢) ⌘1 = ⌘2 = ⌘3 =

Jx + y > 3K Jx � 3K Jy � 0K Jx + y > 3 ^ x � 3 ^ y � 0K

f(⌘) ⌘ h|⇢|i-compatible ⇢ h⌘i-compatible ⌘ s.t. ⌘ s.t.

⇢ s.t. ⇢ s.t. Given ⇢ Given ⌘

[1, 8] [1, 4] [ [9, 12] {1, 2, 5, 6, 9, 10, 13, 14} {i | i even}

[9, 16] [5, 8] [ [13, 16] {1, 2, 5, 6, 9, 10, 13, 14} {i | i odd}

1

x + y > 3 x � 3 y � 0 x + y > 3 ^ x � 3 ^ y � 0

⇢ = ⌦(⇢) ⌘1 = ⌘2 = ⌘3 =

Jx + y > 3K Jx � 3K Jy � 0K Jx + y > 3 ^ x � 3 ^ y � 0K

f(⌘) ⌘ h|⇢|i-compatible ⇢ h⌘i-compatible ⌘ s.t. ⌘ s.t.

⇢ s.t. ⇢ s.t. Given ⇢ Given ⌘

[1, 8] [1, 4] [ [9, 12] {1, 2, 5, 6, 9, 10, 13, 14} {i | i even}

[9, 16] [5, 8] [ [13, 16] {1, 2, 5, 6, 9, 10, 13, 14} {i | i odd}

1

x + y > 3 x � 3 y � 0 x + y > 3 ^ x � 3 ^ y � 0

⇢ = ⌦(⇢) ⌘1 = ⌘2 = ⌘3 =

Jx + y > 3K Jx � 3K Jy � 0K Jx + y > 3 ^ x � 3 ^ y � 0K

f(⌘) ⌘ h|⇢|i-compatible ⇢ h⌘i-compatible ⌘ s.t. ⌘ s.t.

⇢ s.t. ⇢ s.t. Given ⇢ Given ⌘

[1, 8] [1, 4] [ [9, 12] {1, 2, 5, 6, 9, 10, 13, 14} {i | i even}

[9, 16] [5, 8] [ [13, 16] {1, 2, 5, 6, 9, 10, 13, 14} {i | i odd}

M1M q0

q1

q2 q9

q3 q6

q4

q5

q7

q8

1

x + y > 3 x � 3 y � 0 x + y > 3 ^ x � 3 ^ y � 0

⇢ = ⌦(⇢) ⌘1 = ⌘2 = ⌘3 =

Jx + y > 3K Jx � 3K Jy � 0K Jx + y > 3 ^ x � 3 ^ y � 0K

f(⌘) ⌘ h|⇢|i-compatible ⇢ h⌘i-compatible ⌘ s.t. ⌘ s.t.

⇢ s.t. ⇢ s.t. Given ⇢ Given ⌘

[1, 8] [1, 4] [ [9, 12] {1, 2, 5, 6, 9, 10, 13, 14} {i | i even}

[9, 16] [5, 8] [ [13, 16] {1, 2, 5, 6, 9, 10, 13, 14} {i | i odd}

1

x + y > 3 x � 3 y � 0 x + y > 3 ^ x � 3 ^ y � 0

⇢ = ⌦(⇢) ⌘1 = ⌘2 = ⌘3 =

Jx + y > 3K Jx � 3K Jy � 0K Jx + y > 3 ^ x � 3 ^ y � 0K

f(⌘) ⌘ h|⇢|i-compatible ⇢ h⌘i-compatible ⌘ s.t. ⌘ s.t.

⇢ s.t. ⇢ s.t. Given ⇢ Given ⌘

[1, 8] [1, 4] [ [9, 12] {1, 2, 5, 6, 9, 10, 13, 14} {i | i even}

[9, 16] [5, 8] [ [13, 16] {1, 2, 5, 6, 9, 10, 13, 14} {i | i odd}

1

x + y > 3 x � 3 y � 0 x + y > 3 ^ x � 3 ^ y � 0

⇢ = ⌦(⇢) ⌘1 = ⌘2 = ⌘3 =

Jx + y > 3K Jx � 3K Jy � 0K Jx + y > 3 ^ x � 3 ^ y � 0K

f(⌘) ⌘ h|⇢|i-compatible ⇢ h⌘i-compatible ⌘ s.t. ⌘ s.t.

⇢ s.t. ⇢ s.t. Given ⇢ Given ⌘

[1, 8] [1, 4] [ [9, 12] {1, 2, 5, 6, 9, 10, 13, 14} {i | i even}

[9, 16] [5, 8] [ [13, 16] {1, 2, 5, 6, 9, 10, 13, 14} {i | i odd}

1

x + y > 3 x � 3 y � 0 x + y > 3 ^ x � 3 ^ y � 0

⇢ = ⌦(⇢) ⌘1 = ⌘2 = ⌘3 =

Jx + y > 3K Jx � 3K Jy � 0K Jx + y > 3 ^ x � 3 ^ y � 0K

f(⌘) ⌘ h|⇢|i-compatible ⇢ h⌘i-compatible ⌘ s.t. ⌘ s.t.

⇢ s.t. ⇢ s.t. Given ⇢ Given ⌘

[1, 8] [1, 4] [ [9, 12] {1, 2, 5, 6, 9, 10, 13, 14} {i | i even}

[9, 16] [5, 8] [ [13, 16] {1, 2, 5, 6, 9, 10, 13, 14} {i | i odd}

1

x + y > 3 x � 3 y � 0 x + y > 3 ^ x � 3 ^ y � 0

⇢ = ⌦(⇢) ⌘1 = ⌘2 = ⌘3 =

Jx + y > 3K Jx � 3K Jy � 0K Jx + y > 3 ^ x � 3 ^ y � 0K

f(⌘) ⌘ h|⇢|i-compatible ⇢ h⌘i-compatible ⌘ s.t. ⌘ s.t.

⇢ s.t. ⇢ s.t. Given ⇢ Given ⌘

[1, 8] [1, 4] [ [9, 12] {1, 2, 5, 6, 9, 10, 13, 14} {i | i even}

[9, 16] [5, 8] [ [13, 16] {1, 2, 5, 6, 9, 10, 13, 14} {i | i odd}

1

x + y > 3 x � 3 y � 0 x + y > 3 ^ x � 3 ^ y � 0

⇢ = ⌦(⇢) ⌘1 = ⌘2 = ⌘3 =

Jx + y > 3K Jx � 3K Jy � 0K Jx + y > 3 ^ x � 3 ^ y � 0K

f(⌘) ⌘ h|⇢|i-compatible ⇢ h⌘i-compatible ⌘ s.t. ⌘ s.t.

⇢ s.t. ⇢ s.t. Given ⇢ Given ⌘

[1, 8] [1, 4] [ [9, 12] {1, 2, 5, 6, 9, 10, 13, 14} {i | i even}

[9, 16] [5, 8] [ [13, 16] {1, 2, 5, 6, 9, 10, 13, 14} {i | i odd}

1

x + y > 3 x � 3 y � 0 x + y > 3 ^ x � 3 ^ y � 0

⇢ = ⌦(⇢) ⌘1 = ⌘2 = ⌘3 =

Jx + y > 3K Jx � 3K Jy � 0K Jx + y > 3 ^ x � 3 ^ y � 0K

f(⌘) ⌘ h|⇢|i-compatible ⇢ h⌘i-compatible ⌘ s.t. ⌘ s.t.

⇢ s.t. ⇢ s.t. Given ⇢ Given ⌘

[1, 8] [1, 4] [ [9, 12] {1, 2, 5, 6, 9, 10, 13, 14} {i | i even}

[9, 16] [5, 8] [ [13, 16] {1, 2, 5, 6, 9, 10, 13, 14} {i | i odd}

1

x + y > 3 x � 3 y � 0 x + y > 3 ^ x � 3 ^ y � 0

⇢ = ⌦(⇢) ⌘1 = ⌘2 = ⌘3 =

Jx + y > 3K Jx � 3K Jy � 0K Jx + y > 3 ^ x � 3 ^ y � 0K

f(⌘) ⌘ h|⇢|i-compatible ⇢ h⌘i-compatible ⌘ s.t. ⌘ s.t.

⇢ s.t. ⇢ s.t. Given ⇢ Given ⌘

[1, 8] [1, 4] [ [9, 12] {1, 2, 5, 6, 9, 10, 13, 14} {i | i even}

[9, 16] [5, 8] [ [13, 16] {1, 2, 5, 6, 9, 10, 13, 14} {i | i odd}

1

x + y > 3 x � 3 y � 0 x + y > 3 ^ x � 3 ^ y � 0

⇢ = ⌦(⇢) ⌘1 = ⌘2 = ⌘3 =

Jx + y > 3K Jx � 3K Jy � 0K Jx + y > 3 ^ x � 3 ^ y � 0K

f(⌘) ⌘ h|⇢|i-compatible ⇢ h⌘i-compatible ⌘ s.t. ⌘ s.t.

⇢ s.t. ⇢ s.t. Given ⇢ Given ⌘

[1, 8] [1, 4] [ [9, 12] {1, 2, 5, 6, 9, 10, 13, 14} {i | i even}

[9, 16] [5, 8] [ [13, 16] {1, 2, 5, 6, 9, 10, 13, 14} {i | i odd}

1

x + y > 3 x � 3 y � 0 x + y > 3 ^ x � 3 ^ y � 0

⇢ = ⌦(⇢) ⌘1 = ⌘2 = ⌘3 =

Jx + y > 3K Jx � 3K Jy � 0K Jx + y > 3 ^ x � 3 ^ y � 0K

f(⌘) ⌘ h|⇢|i-compatible ⇢ h⌘i-compatible ⌘ s.t. ⌘ s.t.

⇢ s.t. ⇢ s.t. Given ⇢ Given ⌘

[1, 8] [1, 4] [ [9, 12] {1, 2, 5, 6, 9, 10, 13, 14} {i | i even}

[9, 16] [5, 8] [ [13, 16] {1, 2, 5, 6, 9, 10, 13, 14} {i | i odd}

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

x
y

even 
+

odd 
+

even 
-

odd 
-

even 
+

odd 
+

even 
-

odd 
-

Figure 5. k-Invariant transformation

invariant on the path q0q2q4q7 is M13 ∧M14 and the same is for
the path q0q2q5q8, hence we can collapse the states q7 and q8.

5.2 Topological abstraction of abstract SFA
It is worth noting that abstraction in SFA may influence the ef-
fect of automata simplification. In this section we prove that the
efficacy of simplification, an in particular of minimization and k-
minimization, in SFA is strictly related with the degree of abstrac-
tion of their semantics or syntax.

EXAMPLE 5.10. Consider the SFA M in Fig. 4 and assume that
we want to abstract from the parity of y. Hence we define abstrac-
tion η1 on the predicates of M as η1(y odd) = η1(y even) =
η1((y + 1) odd) = true and as the identity on the other predi-
cates. In this example we do not abstract the semantics and we con-
sider ρ = id. Let Mη1 be the SFA wrt the considered abstraction
(where the predicates of M are substituted with their abstraction
according to η1). By applying minimization to this SFA we obtain
the SFA Min(Mη1) depicted at the top left of Fig. 6. We can ob-
serve that, due to the predicate abstraction η1, the minimization of
Mη1 collapses more states than the minimization of M and there-
fore: L (Min(M)) ⊆ L (Min(Mη1)). For example the string of
pairs (1, 2)(2, 4)(4, 8)(8, 16) ∈ L (Min(Mη1)) while it does not
belong to L (Min(M)).

We have an analogous situation in the case of k-minimization.
Consider the predicate abstraction η2 such that η1(x odd) =
η1(x even) = η1((x + 1) even) = true and as the identity
on the other predicates, and let ρ = id. By applying the simplifi-
cation algorithm wrt. ≡̇k with k = 1 to the SFA Mη2 we obtain
the SFA at the top right of Fig. 6. Also in this case, due to the ab-
straction η2 the simplification algorithm collapses more states and
therefore: L (Min1(M)) ⊆ L (Min1(Mη2)). For example the
string of pairs (1, 2)(3, 6)(5, 10)(7, 14) ∈ L (Min1(Mη2)) while
it does not belong to L (Min1(M)).

Let S denote the set of SFA and let us define the following
ordering relation ≤̇ on S modeling precisely the relative preci-
sion of SFA with respect to language containment and size of the
automaton, where given M1 = 〈A, Q1, q

1
0 , F1,∆1〉 and M2 =

〈A, Q2, q
2
0 , F2,∆2〉 ∈ S we have that:

M1≤̇M2 ⇔ L (M1) ⊆ L (M2)∨
L (M1) = L (M2) ∧ |Q2| ≤ |Q1|

It is immediate to observe that 〈S, ≤̇〉 is a possibly non-complete
lattice. Given the SFA simplification SimR : S → S, a SFA
M = 〈A, Q, q0, F,∆〉 and a 〈|ρ|〉〈η〉-abstraction of the effective
Boolean algebra A we wonder when the diagram in Fig. 7 com-
mutes. In general we have that when we simplify the SFA after the
abstraction of the underlying algebra we obtain an SFA that is more
abstract than the one obtained by applying simplification before
the abstraction. The intuition beyond this is that the abstraction of
the underlying Boolean algebra could make equivalent edges of the
original SFA that are not equivalent and this may cause the merge
of states that would not be merged when simplifying original SFA.

PROPOSITION 5.11. Given M = 〈A, Q, q0, F,∆〉 ∈ S, the
closures η ∈ uco(℘(ΨA)) and ρ ∈ uco(℘(DA)) and a relation
R, we have that: SimR(M)ρη ≤̇SimR(Mρ

η ).

EXAMPLE 5.12. At the bottom left of Fig. 6 we show the result
of abstracting the Boolean algebra after the SFA minimization.
We observe that even if Min(Mη1) and Min(M)η1 recognize
the same language the automata obtained by minimizing after the
abstraction of the underlying Boolean algebra has less states than
the one computed by abstracting the Boolean algebra after the
minimization. We have a similar result for k-minimization as we
can see by comparing the SFA at the bottom right and top right of
Fig. 6.
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Figure 6. Minimization and k-Minimization in presence of Abstraction

Figure 7. Completeness of SFA simplification

6. Programs as SFA
In this section we specify the approximate semantics of a program
as the language recognized by a SFA. We consider programs in im-
perative computational model and assume to have access their cor-
rect control flow graph (CFG). The CFG of a program is a graph
where nodes are given by sequences of non branching instructions.
More formally, let I be the instruction set containing both branch-
ing and non-branching instructions. We denote with I ⊆ I the set
of non-branching instructions and with C the set of boolean ex-
pression over program states that are guards of the branching in-
structions. Let c range over C and b range over I∗. The CFG of
a program P ∈ I∗ is a graph GP = (NP , EP ) where the set
NP ⊆ I∗ of nodes specifies the basic blocks of P , namely the
maximal sequences of sequential instructions of P , while the set of
edgesEP ⊆ NP×C×NP denotes the guarded transitions of P . In
particular, a labeled edge (b, c, b′) ∈ EP means that the execution
of P flows from b to b′ when the execution of b leads to a program
state that satisfies condition c. When a basic block b has no outgo-
ing edges inEP we say that it is final, denoted b ∈ Final [GP ]. We
denote with in[b] and out [b] respectively the entry and exit point
of the basic block b, and with PP[GP ] the block delimiters of GP ,
namely the set of all the entry and exit point of the basic blocks of
GP , namely:

PP[GP ]
def
=
˘

in[b]
˛̨
b ∈ NP

¯
∪
˘

out [b]
˛̨
b ∈ NP

¯
Let Σ, ranged over by s, be the set of possible program states. Let
exec : I∗−→℘re(Σ×Σ) be the function that defines the semantics
of basic blocks, namely the pairs of input/output states that model
the execution of sequences of instructions. When (s, s′) ∈ exec(b)
it means that the execution of the sequence of instructions b trans-
forms state s into state s′. Let us denote with s |= c the fact that
the boolean condition c is satisfied by state s ∈ Σ.

We define the set of executions of the CFG of a program P the
sequences of basic blocks and guards that can be encountered along

a path of GP = (NP , EP ). Formally:

Exe[GP ]
def
=


b0c1b1c2 . . . ckbk

˛̨̨̨
∀0 ≤ i < k :
(bi, ci+1, bi+1) ∈ EP

ff
(3)

We consider a safety semantics, namely the semantics of all pre-
fixes of execution traces of a given program P [18]. The execution
trace semantics of a program P , denoted JP K, is therefore the set
of all finite executions starting from the entry point of the starting
basic block b0 in the CFG GP of P . Let InitP ⊆ Σ be the set of
possible initial states of program P . Formally, for each s0 ∈ InitP :

JP K(s0)
def
= {(s0, s1)(s1, s1)(s1, s2) . . . (sk, sk)(sk, sk+1) |

b0c1b1 . . . ckbk ∈ Exe[GP ],

∀0 < i ≤ k : si |= ci, (si−1, si) ∈ exec(bi−1)}

JP K def
=
[˘

JP K(s0)
˛̨
s0 ∈ InitP

¯
In order to define the SFA that corresponds to the CFG semantics
of a given program we need to define an effective Boolean alge-
bra that it is suitable for the representation of program execution.
For this reason we define the following effective Boolean algebra
where predicates are either basic blocks of instructions or guards of
branching instructions, representing the syntactic structure of the
program, and the denotations are pairs of input/output states:

P
def
= 〈Σ× Σ, I∗ ∪ C, {| · |},⊥,>,∧,∨,¬〉

where the semantic function {|·|} : I∗∪C−→℘re(Σ×Σ) is defined
as follows for ϕ ∈ I∗ ∪ C:

{|ϕ|} def
=

 ˘
(s, s′)

˛̨
(s, s′) ∈ exec(b)

¯
if ϕ = b ∈ I∗˘

(s, s)
˛̨
s |= c

¯
if ϕ = c ∈ C

we denote with {| · |} also its point-wise extension to ℘re(I∗ ∪ C).

DEFINITION 6.1. Let P be a program with CFG GP . The SFA
associated with P is

M(P )
def
= 〈P,PP[GP ], in[b0], {out [b] | b ∈ Final [GP ]},∆P 〉

where b0 is the starting basic block of GP and ∆P is defined as:

∆P
def
=
˘

(in[b], b, out [b])
˛̨
b ∈ NP

¯
∪˘

(out [b], c, in[b′])
˛̨

(b, c, b′) ∈ EP
¯

PROPOSITION 6.2. If P is a program thenM(P ) is a deterministic
SFA. M(P ) is clean if no dead-block is included in GP .

The language L (M(P )) ∈ ℘re((Σ × Σ)∗) recognized by the
SFA M(P ) approximates the concrete program semantics JP K in
a language of sequences of infinitely many possible input/output
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relations associated with each basic block. This is formally stated
by the following theorem.

THEOREM 6.3. If P is a program then for any s0 ∈ InitP :
JP K(s0) ∈ L (M(P )).

Given the SFA M(P ) that represents the CFG of a program P
then it is possible to approximate the semantics of P by abstracting
either the predicates, namely the syntax, or the semantics of the
effective Boolean algebra underlying M(P ).

Let us consider the minimization simplifications. Given com-
patible abstractions ρ ∈ uco(℘(Σ×Σ)) and η ∈ uco(℘re(I∗∪C))
and k ∈ N we have that

M(P ) ≤̇Min(Mρ
η (P )) ≤̇Mink(Mρ

η (P ))

This provides a reduction of the original SFA, and therefore CFG,
providing at the same time a unique approximate representation of
the abstract semantics of P . This is possible thanks to the combined
syntactic and semantic approximation, acting both on the code and
on its interpretation. Two programsP andQ can then be considered
similar if they have the same reduced abstract SFA form up to some
k ∈ N:

P uk Q iff k = max
˘
n
˛̨

Minn(Mρ
η (P )) = Minn(Mρ

η (Q))
¯

This weaker notion of similarity can be improved by considering
minimal SFA as canonical representation of the approximate syntax
and semantics of programs:

P u Q iff Min(Mρ
η (P )) = Min(Mρ

η (Q))

The following theorem is therefore immediate by construction.

THEOREM 6.4. Let P and Q be programs, then P u Q iff
∀k ∈ N : P uk Q.

It is clear that, for decidable 〈|ρ|〉〈η〉-abstractions, there exists
k ∈ N such that P uk Q =⇒ P u Q.

In the following section we will specify symbolic syntactic ab-
stractions on disassembled binary executables for similarity analy-
sis. We consider primarily BinJuice, a tool for analyzing code sim-
ilarity in binary executables, as an instance of our framework for
abstracting SFA.

7. Formal similarity analysis of executables
The idea of BinJuice [17] is that the juice of a binary forms a tem-
plate that is expected to be identical regardless of code variations
due to register renaming, memory address allocation, and constant
replacement. Similar ideas have been employed in BinDiff [11]
where executables are treated as graphs of graphs: a control flow
graph where each block is itself represented as a graph, which is
the sequence of its instructions. While the subset of BinDiff consid-
ered here is sound and semantic compatible, it is computationally
expensive. For large size executables, this problem has been tack-
led in BinJuice which adds a further level of abstraction to make
the resulting abstract SFA more compact.

7.1 BinJuice
BinJuice performs symbolic transformations on the source disas-
sembled binary in order to transform each basic block of assem-
bly code into a corresponding symbolic representation. The idea of
symbolic execution is that the operations encoded by the assembly
instructions are immediately performed when the arguments are in-
tegers, in a sort of partial evaluation local to each basic block, oth-
erwise the same operation keeps its symbolic structure. Consider
for example the following fragment of binary code and the result of
its disassembly:

Binary Assembly
401290: b8 05 00 00 00 mov eax,0x5
401295: c3 04 00 00 00 add ebx,0x4
40129b: 6b c3

Then BinJuice performs algebraic manipulation of instructions in
order to reach a canonical form. Thus, the result of symbolic exe-
cution with algebraic simplification of the previous example is:

Normalized State Updates Constraints
eax=5
ebx=def(ebx)×5 + 20 20 = 4 × 5

where def(ebx) denotes the value of ebx before the execution of
the basic block, namely at the entry of the basic block.

The syntactic information lost during symbolic execution is
actually added back by the constraints on numerical values. In other
words, the symbolic execution of basic blocks augmented with
numerical constraints is actually an isomorphism.

The key abstraction in BinJuice is generalization, whose idea
is to use typed logical variables in order to be independent from
register names. The generalization is performed by consistently
replacing register names with logical variables. The replacement
is consistent in that two occurrences of the same register name are
always replaced by the same variable. In addition to abstracting the
registers used, also constants are abstracted. BinJuice associates a
type with each logical variable to keep track of type of the original
register. In the example considered before the generalization phase
of BinJuice produces the following juice:

Juice
A = V1

B = def(B)×N1 +N2

constraints: N2 = N1 ×N3

types: type(A) = type(B) = reg32

Let us consider the function G that generalizes a single basic
block.

G : I∗−→℘re(SUpd)× ℘re(bC)× ℘re(T )

where ℘re(SUpd) is the domain of normalized symbolic updates
while ℘re(bC) is the set of constraints where register names and
numerical values have been replaces by symbolic variables, and
℘re(T ) denotes the domain of type declarations.

We say that G(b) is the juice of the basic block b. Observe that G
acts as an abstraction since there may be more than one basic block
sharing the same juice. In particular, G can be associated with an
upper closure G ∈ uco(℘re(I∗)) as follows:

G (B)
def
=
˘
b
′ ˛̨ ∃b ∈ B. G(b) = G(b′)

¯
approximating in one single symbolic representation all basic
blocks that have the same juice. We can therefore model the gen-
eralization process that BinJuice operates on the CFG of the dis-
assembled binaries as an 〈G 〉-abstraction of the predicates of the
effective Boolean algebra P introduced in Section 6 for represent-
ing the CFG of programs as SFA. Here, we consider the extension
of G to branching conditions on which it behaves like identity,
G ∈ uco(℘re(I∗ ∪ C)). The resulting BinJuice symbolic automa-
ton on the Boolean algebra PG associated with a disassembled
program P is:

MG (P ) = 〈PG ,PP[GP ], in[b0], {out [b] | b ∈ Final [GP ]},∆G 〉

where PG = 〈Σ× Σ,G (℘re(I∗ ∪ C)), {| · |},⊥,>,∧,∨,¬〉,

∆G =
˘

(in[b],G (b), out [b])
˛̨

(in[b], b, out [b]) ∈ ∆P

¯
∪
˘

(out [b], c, in[b′])
˛̨

(out [b], c, in[b′]) ∈ ∆P

¯
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and the semantic function {| · |} is the same as defined in Section 6
but now with a reduced abstracted domain:

{| · |} : G (℘re(I∗ ∪ C))−→℘re(Σ× Σ)

We observe that, G is neither syntactic nor semantic compatible
(Def. 3.6, Def. 3.9) since:

(1) it collapses simplified updates with different semantics by ab-
stracting values and variables, for example G (eax = 5) =
G (eax = 7) = (X = N);

(2) but it still distinguishes between different simplified updates
sharing the same semantics, as for example G (eax = ebx ∗
2) 6= G (eax = ebx+ ebx). But also

G (eax = 2 ∗ ebx+ 10, constraint: 10 = 5 ∗ 2) =

X = N1 ∗ Y +N2, constraint: N2 = N3 ∗N4

and

G (eax = 2 ∗ ebx+ 10, constraint: 10 = 5 + 5) =

X = N1 ∗ Y +N2, constraint: N2 = N3 +N4

Indeed, G is not comparable with Ω(id).

PROPOSITION 7.1. G is is neither syntactic nor semantic compat-
ible.

This observation is also related to the correctness of BinJuice in
detecting similar basic blocks indeed BinJuice can lead to both false
positives (blocks miss-classified as equivalent) and false negatives
(blocks that are erroneously classified as different).

As observed before there are two causes of semantic incompat-
ibility: (1) merging updates with different semantics and (2) dis-
tinguishing updates with the same semantics. We are interested in
over-approximating Ω(id), namely obtaining a closure η such that
Ω(id) v η, therefore avoiding (2) yet keeping (1).
A possible way for making G semantic compatible is to erase
from the domain ℘re(I∗ ∪ C) all the elements that have the same
generalized symbolic updates but different constraints. Namely by
erasing all syntactic constraints. In the example above, it means
for instance to restrict to the blocks that have generalized update
X = N1 ∗Y +N2 while abstracting from the constraints onN2. It
is possible to prove that BinJuice is semantic compatible when con-
sidering this restricted domain of blocks. This highlights the fact
that BinJuice is sensible to the structure of the constraints. Indeed,
the constraints keep track of how the numerical values present in
the update have been computed and is therefore tight to the partic-
ular way in which the basic block has computed them.

To formalize this we define the function π1 : ℘re(SUpd) ×
℘re(bC) × ℘re(T ) → ℘re(SUpd) as the projection on the first
element of the tuple of the juice. Based on this, given b ∈ I∗ we
define the predicate abstraction U [b] ∈ uco(℘(I∗)) that keeps only
the blocks that have the same generalized update of b and abstract
in > every other block:

U [b](b′)


b′ if π1(G (b)) = π1(G (b′))
> otherwise

As expected, for every basic block b we have that the predicate
abstraction G ◦U [b], that extracts the juice of blocks that have the
same generalized updates of b, is such that f(U [b]) is syntactic
〈G ◦U [b]〉-compatible, as stated by the following result.

THEOREM 7.2. ∀b ∈ I∗ we have that Ω(f(U [b])) v G ◦U [b]

This result is a direct consequence of the definitions of U [b]
and of G , and by Prop. 3.15-(2). Once again, this formally proves
that BinJuice over-approximates the set of blocks with the same

semantics when we restrict to blocks that have the same symbolic
update.

7.2 BinDiff
We consider a subset of BinDiff, employing instruction permuta-
tion and same string reference (i.e., instructions and nodes can be
matched by common string references, e.g., indicating functions
that all contain code referring to the same string). All these equiva-
lences correspond straightforwardly to abstractions of the SFA built
as in Section 6 acting at syntactic and topological level. Consider
the SFA M(P ) and the following abstractions:

Premutation. Let τ : I−→T be a function associating the
mnemonic op-code in T at each instruction in I. Consider
the lift of τ to multi-sets. Define an equivalence relation on
basic blocks, viz., predicates in M(P ), such that for any
b, b′ ∈ I∗ ∪ C: b ≡ b′ if τ(b) = τ(b′). This clearly induces
a partition which is a (partitioning) closure operator, denoted
ητ on predicates in I∗ ∪ C. In other words, τ forgets the or-
der and the arguments of instructions. It is therefore clear that
ητ (b) = ητ (b′) 6⇒ {|b|} = {|b′|}, namely ητ may collapse
blocks with different semantics meaning that it is not seman-
tic compatible, i.e., ητ 6v Ω(id). On the other hand, since ητ
observes precisely the multi-set of instructions, we could have
blocks with the same semantics but written with different sets
of instructions, i.e., {|b|} = {|b′|} 6⇒ ητ (b) = ητ (b′) meaning
that ητ fails also the syntactic compatibility.

Same reference. Let N be a set of selected strings and ξ :
I−→℘(N ) the function associating with each basic block b

the set of strings of N appearing in b. This is clearly the left-
adjoint of a GC, therefore inducing a closure ηξ on predicates
which is also a partition. This abstraction forgets any instruc-
tion considering only a set of string manipulated in the block.
Again, it is quite straightforward to observe that this abstraction
can both collapse blocks with different semantics and distin-
guish blocks with the same semantics, for instance a string may
be computed without writing it explicitly. Hence also ηξ fails
both the compatibilities.

In order to make permutation syntactic compatibile, we can in-
deed restrict the domain of the permutation abstraction similarly to
what we have don on BinJuice and forcing syntactic compatibility.
Let Instr(B)

def
=
˘
b′
˛̨
∃b ∈ B. ητ (b′) = ητ (b)

¯
and

S[b](b′) =


b′ if Instr(b) = Instr(b′)
> otherwise

As expected, for every basic block b we have that the predicate ab-
straction Instr ◦S[b], that collects blocks that have the sameset of
instructions of b, is such that f(S[b]) is syntactic 〈Instr ◦S[b]〉-
compatible, as stated by the following result which is a conse-
quence of the definitions of S[b] and of Instr, and by Prop. 3.15-(2).

THEOREM 7.3. ∀b ∈ I∗ we have that Ω(f(S[b])) v Instr ◦S[b]

8. Related Works
To the best of our knowledge, this is the first application of both
abstract interpretation to symbolic finite automata and of abstract
symbolic automata to similarity analysis of binary executables. The
most related work is [13], where the authors introduced the notion
of lattice automata. Lattice automata, like SFA, allow languages
over an infinite alphabet. In contrast to abstract SFA, lattice au-
tomata do not distinguish between symbolic/syntactic abstractions
and semantic ones. Indeed transitions in lattice automata are con-
strained by elements in an atomic latticeL, which provide precisely
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the allowed alphabet-set along that transition. SFA are in this con-
text strictly more general as they separate the symbolic constraints
and their semantics, allowing in principle separate approximations
for them. The idea of approximating the program structure in a so
called predicate abstraction is nowadays common practice in static
program analysis. The roots of this idea are in automatic software
verification (see [1, 12]). We may think abstract SFA as a form of
predicate abstraction for SFA. This applies naturally to the analysis
of binary executables, where the control-flow-graph provides the
syntactic frame where predicates are interpreted. The relation be-
tween the approximation of symbolic/syntactic structures and their
semantics is well known in the literature (see [5] and [10] for a re-
cent account). In particular in [21] the authors study this relation for
the systematic synthesis of optimal symbolic predicate transform-
ers, as introduced in [19]. None of these consider the case of ab-
stract interpretation of SFA. In [6] the authors model disassembled
binaries as finite state automata (FSA). A widening of FSA is in-
troduced for extracting syntactic code invariants in self-modifying
metamorphic programs.

9. Conclusion
We studied how weakening symbolic finite automata by abstract
interpretation. The results is a general theory of approximated SFA
which is parametric on the chosen abstraction. The purpose is to
provide a compact and effective representation of code approxi-
mations acting both at syntactic and semantics level. Interestingly,
for a Turing complete programing language, there is no syntactic
abstraction which induces a compatible semantic abstraction. This
follows from a simple padding argument, and it is indeed a common
underlying problem in most known methods for program similarity
analysis, such as BinDiff and BinJuice. In our model we can re-
strict the form of predicates in order to have compatibility. This is
what we have done for BinJuice and BinDiff. This shows the limits
of existing tools for code similarity and the possibility of system-
atically deriving conditions for making them syntactic compatible.
Another direction of future research is in the use of topological ab-
stractions of SFA for extracting signatures of self-modifying code
as recently studied in [6]. This requires the extension of widening
operations, such as those introduced in [4, 9, 13], to abstract SFA.
In this case approximate SFA provide advanced signatures in meta-
morphic malware analysis, incorporating both properties of way
code changes during program execution (the invariant of the meta-
morphic engine) and additional semantic information, such as the
values passed in system-calls. This may reduce the false positives
occurring in signature-based detection of metamorphic malware.
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In H. R. Nielson and G. Filé, editors, SAS, volume 4634 of Lecture
Notes in Computer Science, pages 52–68. Springer, 2007. ISBN 978-
3-540-74060-5.

[14] D. Gao, M. Reiter, and D. Song. Binhunt: Automatically finding se-
mantic differences in binary programs. In Proceedings of the 10th In-
ternational Conference on Information and Communications Security,
ICICS ’08, pages 238–255. Springer-Verlag, 2008.

[15] R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpre-
tation complete. Journal of the ACM, 47(2):361–416, March 2000.

[16] S. Hunt and I. Mastroeni. The PER model of abstract non-interference.
In C. Hankin and I. Siveroni, editors, Proc. of The 12th Internat. Static
Analysis Symp. (SAS ’05), volume 3672 of Lecture Notes in Computer
Science, pages 171–185. Springer-Verlag, 2005.

[17] A. Lakhotia, M. Dalla Preda, and R. Giacobazzi. Fast location of
similar code fragments using semantic ’juice’. In 2nd Workshop on
Program Protection and Reverse Engineering PPREW 2013. ACM,
2013.

[18] I. Mastroeni and R. Giacobazzi. An abstract interpretation-based
model for safety semantics. Int. J. Comput. Math., 88(4):665–694,
2011.

[19] T. W. Reps, S. Sagiv, and G. Yorsh. Symbolic implementation of the
best transformer. In B. Steffen and G. Levi, editors, VMCAI, volume
2937 of Lecture Notes in Computer Science, pages 252–266. Springer,
2004. ISBN 3-540-20803-8.

[20] H. Rogers. Theory of recursive functions and effective computability.
The MIT press, 1992.

[21] A. V. Thakur, M. Elder, and T. W. Reps. Bilateral algorithms for
symbolic abstraction. In A. Miné and D. Schmidt, editors, SAS,
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10. Proofs
LEMMA 10.1. If ρ ∈ uco(℘re(DA)) is additive, then[˘

Φ′
˛̨

JΦ′Kρ ⊆ JΦKρ
¯

=
[˘

Φ′
˛̨

JΦ′Kρ = JΦKρ
¯

Proof. We have to prove only the inclusion ⊆, since the other one
holds trivially. First of all observe that, since by hypothesis ρ is
additive, then J·Kρ is additive. Consider

ϕ ∈
S˘

Φ′
˛̨

JΦ′Kρ ⊆ JΦKρ
¯
⇒ ∃Φ′. ϕ ∈ Φ′ ∧ JΦ′Kρ ⊆ JΦKρ

Let Φ′′
def
= Φ r Φ′, then we observe that JΦ′′ ∪Φ′Kρ ⊇ JΦKρ, since

trivially we have Φ′′ ∪ Φ′ ⊇ Φ. On the other hand,

JΦ′′ ∪ Φ′Kρ = JΦ′′Kρ ∪ JΦ′Kρ ⊆ JΦKρ

Concluding, we have that JΦ′′ ∪ Φ′Kρ = JΦKρ and ϕ ∈ Φ′ ⊆
Φ′′ ∪ Φ′, hence ϕ ∈

S˘
Φ′
˛̨

JΦ′Kρ = JΦKρ
¯

.

LEMMA 10.2. Let ρ ∈ uco(℘re(DA)), thenS˘
Φ′
˛̨

JΦ′Kρ ⊆ JΦKρ
¯

=
S˘

Φ′
˛̨

JΦ′K ⊆ JΦKρ
¯

=
˘
ϕ ∈ ΨA

˛̨
JϕK ⊆ JΦKρ

¯
Proof.

JΦ′Kρ ⊆ JΦKρ ⇒ JΦ′K ⊆ ρ(JΦ′K) = JΦ′Kρ ⊆ JΦKρ
(By extensivity of ρ)

JΦ′K ⊆ JΦKρ ⇒ JΦ′Kρ = ρ(JΦ′K) ⊆ ρ(JΦKρ) = JΦKρ
(By idempotence of ρ)

Note that, for each ϕ ∈ ΨA such that JϕK ⊆ JΦKρ, then ϕ ∈˘
Φ′
˛̨

JΦ′K ⊆ JΦKρ
¯

, hence
˘
ϕ ∈ ΨA

˛̨
JϕK ⊆ JΦKρ

¯
⊆S˘

Φ′
˛̨

JΦ′K ⊆ JΦKρ
¯

. On the other hand, if Φ′ ∈ ℘(ΨA)
is such that JΦ′K ⊆ JΦKρ, then for each ϕ ∈ Φ′ we have JϕK ⊆
JΦ′K ⊆ JΦKρ, hence Φ′ ⊆

˘
ϕ ∈ ΨA

˛̨
JϕK ⊆ JΦKρ

¯
, namelyS˘

Φ′
˛̨

JΦ′K ⊆ JΦKρ
¯
⊆
˘
ϕ ∈ ΨA

˛̨
JϕK ⊆ JΦKρ

¯
.

LEMMA 10.3.
JY K+ =

˘
ϕ ∈ ΨA

˛̨
JϕK ⊆ Y

¯
iff Y =

S˘
JϕK

˛̨
ϕ ∈ JY K+

¯
Proof. Let us prove the two inclusions separately.

(⇐)

JY K+ = J
S˘

JϕK
˛̨
ϕ ∈ JY K+

¯
K+

=
˘
ϕ
˛̨

JϕK ⊆
S˘

JϕK
˛̨
ϕ ∈ JY K+

¯ ¯
=
˘
ϕ
˛̨
ϕ ∈ JY K+

¯
=
˘
ϕ
˛̨

JϕK ⊆ Y
¯

(By definition of J·K+)

(⇒)

Y = JJY K+K = J
˘
ϕ
˛̨
ϕ ∈ JY K+

¯
K

(By adjunction relation between J·K and J·K+)
=
S˘

JϕK
˛̨
ϕ ∈ JY K+

¯
(By additivity of J·K)

PROPOSITION 10.4. If η ∈ uco(℘re(ΨA)) for any X ∈ ℘re(DA)

f(η) = λX.
[˘

JϕK
˛̨
ϕ ∈ η(JXK+)

¯
Proof. Let us prove the two inclusions separately.

(⊇) Let ϕ ∈ η(JXK+), then by Eq. 3.12 we have that JJϕKK+ ⊆
η(JϕK) ⊆ ηη(JXK+) = η(JXK+).
This means that JϕK ∈

˘
Y
˛̨

JY K+ ⊆ η(JXK+)
¯

, namely
we have the inclusion JϕK ⊆ bη(X) which implies the following
inclusion

S˘
JϕK

˛̨
ϕ ∈ η(JXK+)

¯
⊆ bη(X).

(⊆) Consider Y such that JY K+ ⊆ ηJXK+, then ∀ϕ ∈ JY K+ we
have that ϕ ∈ η(JXK+). This implies that ∀ϕ ∈ JY K+. JϕK ⊆
Y by Lemma 10.3 and JϕK ⊆

S˘
JϕK

˛̨
ϕ ∈ η(JXK+)

¯
.

Finally this implies that Y ⊆
S˘

JϕK
˛̨
ϕ ∈ η(JXK+)

¯
.

of Lemma 3.12. Trivial by definition of inclusion between closures
and by definition of Ω(id).

of Theorem 3.13. By definition,

f(η) = λX.
[˘

Y
˛̨

JY K+ ⊆ η(JXK+)
¯
.

Suppose η v Ω(id), then by Lemma 3.12 JJΦKK+ = η(JJΦKK+).
ConsiderX def

= JΦK, then, ∀Y.JY K+ ⊆ ηJJΦKK+, we have JY K+ ⊆
JJΦKK+, and therefore by monotonicity of J·K and adjointness of
J·K+, we have Y = JJY K+K ⊆ JJJΦKK+K = JΦK. Hence, given
Φ ∈ ℘re(ΨA) we have f(η)(JΦK) ⊆ JΦK, on the other hand by
extensivity f(η)(JΦK) ⊇ JΦK, hence we have the equality and we
proved so far that f(η) = id.

LEMMA 10.5. Let η ∈ uco(℘re(ΨA)) and ρ ∈ uco(℘(DA))
additive.

Ω(ρ)(Φ1) = Ω(ρ)(Φ2) ⇔ JΦ1Kρ = JΦ2Kρ

Proof. First of all note that, by Lemma 10.2 and Lemma 10.1 we
observe that Ω(ρ)(Φ1) = Ω(ρ)(Φ2) means that[˘

Φ′
˛̨

JΦ′Kρ = JΦ1Kρ
¯

=
[˘

Φ′
˛̨

JΦ′Kρ = JΦ2Kρ
¯

The implication (⇐) trivially hold, let us prove the other inclusion.
Suppose JΦ1Kρ 6= JΦ2Kρ, namely there exists x ∈ JΦ1Kρ such that
x /∈ JΦ2Kρ, then x /∈

S˘
Φ′
˛̨

JΦ′Kρ = JΦ2Kρ
¯

. By additivity of
both ρ and J·K we have that ∃y ∈ Φ1 such that x ∈ ρ(JyK). Then
y ∈

S˘
Y
˛̨

JY Kρ = JΦ1Kρ
¯

, but by hypothesis this means that
y ∈

S˘
Y
˛̨

JY Kρ = JΦ2Kρ
¯

. Finally this means that ∃Y such
that y ∈ Y , namely x ∈ ρ(JyK) ⊆ ρ(JY K) = ρ(JΦ2K), which is
absurd.

of Theorem 3.14. Let η ∈ uco(℘re(ΨA)) be such that η w Ω(id),
and ρ ∈ uco(℘(DA)). Let us prove that if η w Ω(ρ) then
ρ v f(η). By Lemma 10.5 η w Ω(ρ) means that JΦ1Kρ = JΦ2Kρ
implies η(Φ1) = η(Φ2). We have to prove that ρ v f(η), namely
that ρ ◦f(η) = f(η).

ρ ◦f(η)(X) = ρ(
S˘

Y
˛̨

JY K+ ⊆ η(JXK+)
¯

)
=

S˘
ρ(Y )

˛̨
JY K+ ⊆ η(JXK+)

¯
(By additivity of ρ)

Moreover note that

Jρ(Y )K+ =
S˘

Φ
˛̨

JΦK ⊆ ρ(Y )
¯

=
S˘

Φ
˛̨

JΦKρ ⊆ ρ(Y )
¯

(By Lemma 10.1)
=

S˘
Φ
˛̨

JΦKρ = ρ(Y )
¯

(By Lemma 10.2)

Consider Y such that JY K+ ⊆ η(JXK+), we have to prove that
Jρ(Y )K+ ⊆ η(JXK+). By the hypothesis, there exists Φ′ such that
for each Φ such that JΦKρ = ρ(Y ) we have η(Φ) = Φ′, hence
η(Jρ(Y )K+) = η(Φ) = η(JY K+). This last equality holds since
ρ(JJY K+K) = ρ(Y ) implies that JY K+ ∈

˘
Φ
˛̨

JΦKρ = ρ(Y )
¯

.
At this point, by idempotence and monotonicity of η we have
η(JY K+) ⊆ η(JXK+), hence η(Jρ(Y )K+) ⊆ η(JXK+). By
Lemma 10.2 this means that Jρ(Y )K+ ⊆ η(JXK+), namely
ρ(Y ) ∈

˘
Y
˛̨

JY K+ ⊆ η(JXK+)
¯

. We proved so far that
ρ(
S˘

Y
˛̨

JY K+ ⊆ η(JXK+)
¯

) ⊆
S˘

Y
˛̨

JY K+ ⊆ η(JXK+)
¯

,
which proves the equality since the other inclusion trivially holds.

Let us prove now that if ρ v f(η) implies η w Ω(ρ), namely
we suppose that ρ ◦f(η) = f(η) and we prove that Ω(ρ) ◦η = η.
We have that Ω(ρ) ◦η(Φ) =

S˘
Φ′
˛̨

JΦ′K ⊆ ρ(Jη(Φ)K)
¯
⊇
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η(Φ), let us prove the other inclusion. Consider X = Jη(Φ)K, we
have

ρ(
S˘

Y
˛̨

JY K+ ⊆ η(JJη(Φ)KK+)
¯

) =
ρ(
S˘

Y
˛̨

JY K+ ⊆ η(Φ)
¯

(By idempotence of η)S˘
ρ(Y )

˛̨
JY K+ ⊆ η(Φ)

¯
(By additivity of ρ)S˘

Y
˛̨

JY K+ ⊆ η(Φ)
¯

(By hypothesis)

Hence ∀Y we have JY K+ ⊆ η(Φ) iff Jρ(Y )K+ ⊆ η(Φ) (*).
Finally, consider Φ′ ∈ (Ω(ρ) ◦η)(Φ), by definition this means
that JΦ′K ⊆ ρ(Jη(Φ)K), by monotonicity of J·K+, JJΦKK+ ⊆
Jρ(Jη(Φ)K)K+. By the hypothesis that η v Ω(id), we have that
JJη(Φ)KK+ = η(Φ). Now by condition (*) this also implies that
Jρ(Jη(Φ)K)K+ ⊆ η(Φ). Concluding

Φ′ ⊆ JJΦ′KK+ ⊆ Jρ(Jη(Φ)K)K+ ⊆ η(Φ)

Hence we have the equality, namely Ω(ρ)(η(Φ)) = η(Φ).

of Proposition 3.15. Let us first prove that f(Ω(ρ)) w ρ.

f(Ω(ρ))(X) =
S˘

Y
˛̨

JY K+ ⊆ Ω(ρ)(JXK+)
¯

=
S˘

Y
˛̨

JY K+ ⊆
S˘

Φ
˛̨

JΦK ⊆ JJXK+Kρ
¯ ¯

=
S˘

Y
˛̨

JY K+ ⊆
S˘

Φ
˛̨

JΦK ⊆ ρ(JJXK+K)
¯ ¯

=
S˘

Y
˛̨

JY K+ ⊆
S˘

Φ
˛̨

JΦK ⊆ ρ(X)
¯ ¯

=
S˘

Y
˛̨

JY K+ ⊆ Jρ(X)K+
¯

(By definition)
= f(id)(ρ(X)) ⊇ ρ(X)

Let us prove now that Ω(f(η)) v η.

Ω(f(η))(Φ) =
S˘

Φ′
˛̨

JΦ′K ⊆ f(η)(JΦK)
¯

=
S˘

Φ′
˛̨

JΦ′K ⊆
S˘

Y
˛̨

JY K+ ⊆ η(JJΦKK+)
¯ ¯

Note that η(JJΦKK+) ⊆ η(JJη(Φ)KK+) = η(Φ), since we have the
hypothesis η w Ω(id) and by idempotence of η. Hence we have˘

Y
˛̨

JY K+ ⊆ η(JJΦKK+)
¯
⊆
˘
Y
˛̨

JY K+ ⊆ η(Φ)
¯

which implies that

Ω(f(η))(Φ) ⊆
S˘

Φ′
˛̨

JΦ′K ⊆
S˘

Y
˛̨

JY K+ ⊆ η(Φ)
¯ ¯

⊆ η(Φ)

since if Φ′ ∈
˘

Φ′
˛̨

JΦ′K ⊆
S˘

Y
˛̨

JY K+ ⊆ η(Φ)
¯ ¯

then
JΦ′K is such that (questo passaggio andrebbe dettagliato) JJΦ′KK+ ⊆
η(Φ) and therefore Φ′ ⊆ JJΦ′KK+ ⊆ η(Φ).

of Theorem 3.17. Let us prove separately that 1. ⇔ 2. and that
2.⇔ 3.

1.⇔ 2. If we have both η is 〈|ρ|〉-compatible and ρ is 〈η〉-compatible
then, by combining the definitions, η = Ω(ρ) and viceversa.

2.⇔ 3. Let us prove the two implication separately. Consider ρ =
f(η), by the previous point this surely implies that η w Ω(ρ) w
Ω(id), we have to prove the other inclusion. The hypothe-
sis tells us that

S˘
Y
˛̨

JY K+ ⊆ η(JXK+)
¯

= ρ(X). Con-
sider Φ′ ⊆ η(Φ), then JJΦ′KK+ ⊆ JJη(Φ)KK+ = η(Φ) ⊆
η(JJΦKK+), hence JΦ′K ⊆ ρ(JΦK), namely η(Φ) ⊆ Ω(ρ)(Φ)
by definition of Ω(ρ).
Consider η = Ω(ρ), by the previous point this surely implies
that ρ v f(η), let us prove the other inclusion. By hypothesisS˘

Φ′
˛̨

JΦ′K ⊆ JΦKρ
¯

= η(Φ). Note that, by this hypothe-
sis, Lemma 10.2 and Lemma 10.1,

η(JXK+) =
S˘

Φ′
˛̨

JΦ′Kρ = JJXK+Kρ
¯

=
S˘

Φ′
˛̨

JΦ′Kρ = ρ(X)
¯
.

Now, consider Y ∈
˘
Y
˛̨

JY K+ ⊆ η(JXK+)
¯

, then JY K+ ⊆S˘
Φ′
˛̨

JΦ′Kρ = ρ(X)
¯

. Hence finally

Y = JJY K+K ⊆ JJY K+Kρ ⊆
S˘

JΦ′Kρ
˛̨

JΦ′Kρ = ρ(X)
¯

= ρ(X)

Hence we proved f(η) v ρ, namely we have the equality.

LEMMA 10.6. Given η ∈ uco(℘(ΨA)), ρ ∈ uco(℘(DA)) then
∀Φ ∈ ΨA we have that JΦK ⊆ Jη(Φ)Kρ.

Proof. Consider Φ ∈ ℘(ΨA), since J·K is additive we have that

Jη(Φ)K =
[˘

JϕK
˛̨
ϕ ∈ η(Φ)

¯
by definition of J·Kρ and since we assume ρ additive we have that:

JΦKρ = ρ(JΦK) =
[˘

ρ(d)
˛̨
d ∈ JΦK

¯
thus:

Jη(Φ)Kρ =
[

ϕ∈η(Φ)

[˘
ρ(d)

˛̨
d ∈ JϕK

¯
Thus we have to prove that JΦK ⊆

S
ϕ∈η(Φ)

˘
ρ(d)

˛̨
d ∈ JϕK

¯
.

At this point, by extensivity of ρ we have that
˘
d
˛̨
d ∈ JϕK

¯
⊆˘

ρ(d)
˛̨
d ∈ JϕK

¯
. By extensivity of η we have that Φ ⊆ η(Φ).

Therefore, we trivially have the thesis.

of Theorem 3.18. Observe that, by definition of Mρ
η , the two SFA

M andMρ
η have exactly the same structure, namely the same states

and edges, the only thing that changes is how the edges are labeled
and how they are interpreted by corresponding effective Boolean
algebra. In particular for every edge q ϕ−→q′ in M there exists an
edge q

η(ϕ)−→q′ in Mρ
η . From Lemma 10.6 we know that ∀Φ ∈ ΨA

we have that JΦK ⊆ Jη(Φ)Kρ. Thus, from the definition of language
recognized by an SFA it follows that L (M) ⊆ L (Mρ

η ).

of Proposition 3.19. The first equivalence directly follows from the
definition of language recognized by an SFA and by the fact that
saying that ρ1 ◦J·K ◦η1 v ρ2 ◦J·K ◦η2 precisely means that ∀ϕ ∈
ΨA : Jη1(Φ)Kρ1 ⊆ Jη2(Φ)Kρ2 . The implication ρ1 v ρ2 ∧ η1 v
η2 ⇒ ρ1 ◦J·K ◦η1 v ρ2 ◦J·K ◦η2 follows by the additivity of
J·K.

of Proposition 4.1.

1. Let us prove first a property implied by the algorithm: (∗) Let ψ
a node of the generated tree and letψ1 andψ2 its sons, thenψ =
ψ1∨ψ2. In fact, by the construction of the tree, in the algorithm,
we have that ∃ϕ such that ψ1 = ψ∧ϕ and ψ2 = ψ∧¬ϕ. Then
ψ1 ∨ ψ2 = (ψ ∧ ϕ) ∨ (ψ ∧ ¬ϕ) = ψ ∧ (ϕ ∨ ψ) ∧ (¬ϕ ∨ ψ)
which is trivially satisfiable iff ψ is satisfiable.
At this point we prove by induction on the height h of the
tree that the root is always the disjunction of all the leaves.
If h = 1 then the property trivially hold by (∗). If h = n,
let ψ the root and ψ1 and ψ2 the two sons, then the trees of
ψ1 and ψ2 are both of heights n − 1, hence we can apply the
inductive hypothesis. Let Leaves(Tψ1) = {ϕ1, . . . , ϕi} and
Leaves(Tψ2) = {ϕi+1, . . . , ϕn}, then by construction we have
Leaves(Tψ) = {ϕ1, . . . , ϕn} and by inductive hypothesis we
have ψ1 = ϕ1 ∨ . . . ∨ ϕi and ψ2 = ϕi+1 ∨ . . . ∨ ϕn. Hence,
by property (∗) we have that ψ = ψ1 ∨ ψ2 = ϕ1 ∨ . . . ∨ ϕi ∨
ϕi+1 ∨ . . . ∨ ϕn, which is the thesis.
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2. Let us prove first a property implied by the algorithm: (∗∗)
Let ψ a node of the generated tree and let ψ1 and ψ2 its sons,
then ψ1 ⇔ ¬ψ2. In fact, by the construction of the tree, in
the algorithm, we have that ∃ϕ such that ψ1 = ψ ∧ ϕ and
ψ2 = ψ ∧ ¬ϕ. If ψ1 is true then both ψ and ϕ are true, but
therefore ¬ϕ is false which implies ψ2 false. Analogous the
case where ψ2 is true.
At this point we prove by induction on the height h of the
tree that when one leaf is true then the others are all false. If
h = 1 then the property trivially hold by (∗∗). If h = n,
let ψ the root and ψ1 and ψ2 the two sons, then the trees of
ψ1 and ψ2 are both of heights n − 1, hence we can apply
the inductive hypothesis. Let Leaves(Tψ1) = {ϕ1, . . . , ϕi}
and leaves(Tψ2) = {ϕi+1, . . . , ϕn}, then by construction we
have leaves(Tψ) = {ϕ1, . . . , ϕn} and by inductive hypothesis
we have that if ϕj ∈ Leaves(Tψ1) is true then forallϕ ∈
Leaves(Tψ1) r {ϕj} are false, the same for ψ2. Finally, by
(∗∗) we have that if ψ1 is true then ψ2 is false, this implies that
∀ϕ ∈ Leaves(Tψ2) then ϕ is false. On the other hand, since ψ1

is true, then at least one ϕ′ ∈ Leaves(Tψ1) is true, but the by
inductive hypothesis all the others are false, hence we have the
thesis.

3. If ϕ1 ∧ ϕ2 is true it means that both ϕ1 and ϕ2 are true,
this means also that, by the previous point, that there exists
precisely one minterm of ϕ1 is true and the same for ϕ2, again
by the previous point this implies that thsi minterm should be
the same. The viceversa triavailly holds.

4. If ϕ1 ⇒ ϕ2 is satisfiable and ϕ1 is satisfiable then precisely
one of its minterms is true, this means that if this minterm
is not also in ϕ2, ϕ2 should be false, hence we have that
Leaves(ϕ1) ⊆ Leaves(ϕ2) (the viceversa trivially hold).

of Proposition 4.2. Consider an effective Boolena algebra A =
〈DA,ΨA, J·K,⊥,>,∧,∨,¬〉From point 2 of Proposition 4.1 we
have that for every pair of minterms ϕ, φ ∈ MINTERMS(ΨA) we
have that JϕK∩ JφK = ∅. Moreover, if J·K is surjective we have thatS˘

ϕ
˛̨
ϕ ∈ MINTERMS(ΨA)

¯
= DA. And this proves that the

semantics of minterms form a partition of DA.

of Lemma 4.3. (⊇) We have to prove that for every element
Φ ∈ ℘(ψ) then Φ ∈ f(ηΨ)(℘(DA)), namely Φ is a fix-
point of f(()ηΨ). From the definition of f() we have to prove
that given Φ ∈ ℘(Ψ) we have the following equality: JΦK =S˘

Y
˛̨

JY K+ ⊆ ηΨ(JJΦKK+)
¯

. Observe that, since ηΨ is ex-
tensive then JJΦKK+ ⊆ ηΨ(JJΦKK+). Therefore we have that
JΦK ⊆

S˘
Y
˛̨

JY K+ ⊆ ηΨ(JJΦKK+)
¯

. On the other side, we
have that:

ηΨ(JJΦKK+) = ηΨ(JJηΨ(Φ)KK+) [since Φ ∈ ℘(Ψ)]
= ηΨ(ηΨ(Φ))[Lemma 3.12]
= ηΨ(Φ)[ηΨ idempotent]
= Φ [since Φ ∈ ℘(Ψ)]

Thus, every Y such that JY K+ ⊆ Φ is such that Y ⊆ JΦK and
therefore JΦK ⊇

S˘
Y
˛̨

JY K+ ⊆ ηΨ(JJΦKK+)
¯

. From which
follows the equality.

(⊆) We have to prove that for every X ∈ f(ηΨ)(℘(DA)) then
∃Φ ∈ ℘(Ψ) such that JΦK = X . From Proposition 10.4 we have
that f(ηΨ) = λX.

S˘
JϕK

˛̨
ϕ ∈ ηψ(JXK+)

¯
. By definition of

J·K we have that
S˘

JφK
˛̨
φ ∈ ηΨ(JXK+)

¯
= JηΨ(JXK+)K and

this is clearly an element of ℘(Ψ).

of Theorem 6.3. Consider the execution trace starting from s0

(s0, s1)(s1, s1)(s1, s2) . . . (sk, sk)(sk, sk+1) ∈ JP K(s0), by def-
inition it means that there exists an execution b0c1b1 . . . ckbk ∈
Exe[GP ] such that for every 0 ≤ i < k we have that si |= ci
and (si, si+1) ∈ exec(bi). By Definition 6.1 and by the def-
inition of Exe[GP ] and of JP K(s0) we have that there exists a
path in[b0]

b0−→ out [b0]
c1−→ in[b1]

b1−→ . . . out [bk−1]
ck−→

in[bk]
bk−→ out [bk] in M(P ), namely that for all 0 ≤ i < k we

have that (in[bi], bi, out [bi]) ∈ ∆P and (out [bi], bi, in[bi+1]) ∈
∆P . Since by hypotheses we have that for every 0 ≤ i < k we
have that si |= ci and (si, si+1) ∈ exec(bi), by definition of the
semantic function {| · |} we have that the execution trace is such that
(s0, s1)(s1, s1)(s1, s2) . . . (sk, sk)(sk, sk+1) ∈ L (M(P )).
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