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Abstract
In federated learning problems, data is scattered
across different servers and exchanging or pooling
it is often impractical or prohibited. We develop a
Bayesian nonparametric framework for federated
learning with neural networks. Each data server is
assumed to provide local neural network weights,
which are modeled through our framework. We
then develop an inference approach that allows us
to synthesize a more expressive global network
without additional supervision, data pooling and
with as few as a single communication round. We
then demonstrate the efficacy of our approach on
federated learning problems simulated from two
popular image classification datasets.1

1. Introduction
The standard machine learning paradigm involves algo-
rithms that learn from centralized data, possibly pooled
together from multiple data sources. The computations in-
volved may be done on a single machine or farmed out to a
cluster of machines. However, in the real world, data often
live in silos and amalgamating them may be prohibitively
expensive due to communication costs, time sensitivity, or
privacy concerns. Consider, for instance, data recorded from
sensors embedded in wearable devices. Such data is inher-
ently private, can be voluminous depending on the sampling
rate of the sensors, and may be time sensitive depending on
the analysis of interest. Pooling data from many users is
technically challenging owing to the severe computational
burden of moving large amounts of data, and is fraught with
privacy concerns stemming from potential data breaches that
may expose a user’s protected health information (PHI).

Federated learning addresses these pitfalls by obviating the
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need for centralized data, instead designing algorithms that
learn from sequestered data sources. These algorithms iter-
ate between training local models on each data source and
distilling them into a global federated model, all without
explicitly combining data from different sources. Typical
federated learning algorithms, however, require access to
locally stored data for learning. A more extreme case sur-
faces when one has access to models pre-trained on local
data but not the data itself. Such situations may arise from
catastrophic data loss but increasingly also from regulations
such as the general data protection regulation (GDPR) (EU,
2016), which place severe restrictions on the storage and
sharing of personal data. Learned models that capture only
aggregate statistics of the data can typically be dissemi-
nated with fewer limitations. A natural question then is,
can “legacy” models trained independently on data from
different sources be combined into an improved federated
model?

Here, we develop and carefully investigate a probabilistic
federated learning framework with a particular emphasis on
training and aggregating neural network models. We assume
that either local data or pre-trained models trained on local
data are available. When data is available, we proceed by
training local models for each data source, in parallel. We
then match the estimated local model parameters (groups of
weight vectors in the case of neural networks) across data
sources to construct a global network. The matching, to
be formally defined later, is governed by the posterior of a
Beta-Bernoulli process (BBP) (Thibaux & Jordan, 2007), a
Bayesian nonparametric (BNP) model that allows the local
parameters to either match existing global ones or to create
new global parameters if existing ones are poor matches.

Our construction provides several advantages over exist-
ing approaches. First, it decouples the learning of local
models from their amalgamation into a global federated
model. This decoupling allows us to remain agnostic about
the local learning algorithms, which may be adapted as
necessary, with each data source potentially even using a
different learning algorithm. Moreover, given only pre-
trained models, our BBP informed matching procedure is
able to combine them into a federated global model with-
out requiring additional data or knowledge of the learning
algorithms used to generate the pre-trained models. This is
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in sharp contrast with existing work on federated learning
of neural networks (McMahan et al., 2017), which require
strong assumptions about the local learners, for instance,
that they share the same random initialization, and are not
applicable for combining pre-trained models. Next, the BNP
nature of our model ensures that we recover compressed
global models with fewer parameters than the cardinality
of the set of all local parameters. Unlike naive ensembles
of local models, this allows us to store fewer parameters
and perform more efficient inference at test time, requiring
only a single forward pass through the compressed model
as opposed to J forward passes, once for each local model.
While techniques such as knowledge distillation (Hinton
et al., 2015) allow for the cost of multiple forward passes to
be amortized, training the distilled model itself requires ac-
cess to data pooled across all sources or an auxiliary dataset,
luxuries unavailable in our scenario. Finally, even in the tra-
ditional federated learning scenario, where local and global
models are learned together, we show empirically that our
proposed method outperforms existing distributed training
and federated learning algorithms (Dean et al., 2012; McMa-
han et al., 2017) while requiring far fewer communications
between the local data sources and the global model server.

The remainder of the paper is organized as follows. We
briefly introduce the Beta-Bernoulli process in Section 2
before describing our model for federated learning in Sec-
tion 3. We thoroughly evaluate the proposed model and
demonstrate its utility empirically in Section 4. Finally, Sec-
tion 5 discusses current limitations of our work and open
questions.

2. Background and Related Works
Our approach builds on tools from Bayesian nonparametrics,
in particular the Beta-Bernoulli Process (BBP) (Thibaux &
Jordan, 2007) and the closely related Indian Buffet Process
(IBP) (Griffiths & Ghahramani, 2011). We briefly review
these ideas before describing our approach.

2.1. Beta-Bernoulli Process (BBP)

Let Q be a random measure distributed by a Beta process
with mass parameter γ0 and base measure H . That is,
Q|γ0, H ∼ BP(1, γ0H). It follows that Q is a discrete (not
probability) measure Q =

∑
i qiδθi formed by an infinitely

countable set of (weight, atom) pairs (qi, θi) ∈ [0, 1] × Ω.
The weights {qi}∞i=1 are distributed by a stick-breaking pro-
cess (Teh et al., 2007): ci ∼ Beta(γ0, 1), qi =

∏i
j=1 cj

and the atoms are drawn i.i.d from the normalized base
measure θi ∼ H/H(Ω) with domain Ω. In this paper, Ω
is simply RD for some D. Subsets of atoms in the ran-
dom measure Q are then selected using a Bernoulli pro-
cess with a base measure Q. That is, each subset Tj with
j = 1, . . . , J is characterized by a Bernoulli process with

base measure Q, Tj |Q ∼ BeP(Q). Each subset Tj is also
a discrete measure formed by pairs (bji, θi) ∈ {0, 1} × Ω,
Tj :=

∑
i bjiδθi , where bji|qi ∼ Bernoulli(qi)∀i is a bi-

nary random variable indicating whether atom θi belongs to
subset Tj . The collection of such subsets is then said to be
distributed by a Beta-Bernoulli process.

2.2. Indian Buffet Process (IBP)

The above subsets are conditionally independent given
Q. Thus, marginalizing Q will induce dependencies
among them. In particular, we have TJ |T1, . . . , TJ−1 ∼
BeP

(
H γ0

J +
∑
i
mi
J δθi

)
, where mi =

∑J−1
j=1 bji (depen-

dency on J is suppressed in the notation for simplicity)
and is sometimes called the Indian Buffet Process. The
IBP can be equivalently described by the following culi-
nary metaphor. Imagine J customers arrive sequentially at
a buffet and choose dishes to sample as follows, the first
customer tries Poisson(γ0) dishes. Every subsequent j-th
customer tries each of the previously selected dishes accord-
ing to their popularity, i.e. dish i with probability mi/j, and
then tries Poisson(γ0/j) new dishes.

The IBP, which specifies a distribution over sparse bi-
nary matrices with infinitely many columns, was originally
demonstrated for latent factor analysis (Ghahramani & Grif-
fiths, 2005). Several extensions to the IBP (and the equiva-
lent BBP) have been developed, see Griffiths & Ghahramani
(2011) for a review. Our work is related to a recent applica-
tion of these ideas to distributed topic modeling (Yurochkin
et al., 2018), where the authors use the BBP for model-
ing topics learned from multiple collections of document,
and provide an inference scheme based on the Hungarian
algorithm (Kuhn, 1955).

2.3. Federated and Distributed Learning

Federated learning has garnered interest from the machine
learning community of late. Smith et al. (2017) pose fed-
erated learning as a multi-task learning problem, which
exploits the convexity and decomposability of the cost func-
tion of the underlying support vector machine (SVM) model
for distributed learning. This approach however does not
extend to the neural network structure considered in our
work. McMahan et al. (2017) use strategies based on simple
averaging of the local learner weights to learn the federated
model. However, as pointed out by the authors, such naive
averaging of model parameters can be disastrous for non-
convex cost functions. To cope, they have to use a scheme
where the local learners are forced to share the same random
initialization. In contrast, our proposed framework is natu-
rally immune to such issues since its development assumes
nothing specific about how the local models were trained.
Moreover, unlike existing work in this area, our framework
is non-parametric in nature allowing the federated model
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to flexibly grow or shrink its complexity (i.e., its size) to
account for varying data complexity.

There is also significant work on distributed deep learn-
ing (Lian et al., 2015; 2017; Moritz et al., 2015; Li et al.,
2014; Dean et al., 2012). However, the emphasis of these
works is on scalable training from large data and they typ-
ically require frequent communication between the dis-
tributed nodes to be effective. Yet others explore distributed
optimization with a specific emphasis on communication ef-
ficiency (Zhang et al., 2013; Shamir et al., 2014; Yang, 2013;
Ma et al., 2015; Zhang & Lin, 2015). However, as pointed
out by McMahan et al. (2017), these works primarily focus
on settings with convex cost functions and often assume that
each distributed data source contains an equal number of
data instances. These assumptions, in general, do not hold
in our scenario. Finally, neither these distributed learning
approaches nor existing federated learning approaches de-
couple local training from global model aggregation. As a
result they are not suitable for combining pre-trained legacy
models, a particular problem of interest in this paper.

3. Probabilistic Federated Neural Matching
We now describe how the Bayesian nonparametric machin-
ery can be applied to the problem of federated learning with
neural networks. Our goal will be to identify subsets of
neurons in each of the J local models that match neurons in
other local models. We will then appropriately combine the
matched neurons to form a global model.

Our approach to federated learning builds upon the fol-
lowing basic problem. Suppose we have trained J Mul-
tilayer Perceptrons (MLPs) with one hidden layer each.
For the jth MLP j = 1, . . . , J , let V (0)

j ∈ RD×Lj and

ṽ
(0)
j ∈ RLj be the weights and biases of the hidden

layer; V (1)
j ∈ RLj×K and ṽ(1)j ∈ RK be weights and bi-

ases of the softmax layer; D be the data dimension, Lj
the number of neurons on the hidden layer; and K the
number of classes. We consider a simple architecture:
fj(x) = softmax(σ(xV

(0)
j + ṽ

(0)
j )V

(1)
j + ṽ

(1)
j ) where σ(·)

is some nonlinearity (sigmoid, ReLU, etc.). Given the col-
lection of weights and biases {V (0)

j , ṽ
(0)
j , V

(1)
j , ṽ

(1)
j }Jj=1 we

want to learn a global neural network with weights and bi-
ases Θ(0) ∈ RD×L, θ̃(0) ∈ RL,Θ(1) ∈ RL×K , θ̃(1) ∈ RK ,
where L �

∑J
j=1 Lj is an unknown number of hidden

units of the global network to be inferred.

Our first observation is that ordering of neurons of the hid-
den layer of an MLP is permutation invariant. Consider
any permutation τ(1, . . . , Lj) of the j-th MLP – reordering
columns of V (0)

j , biases ṽ(0)j and rows of V (1)
j according to

τ(1, . . . , Lj) will not affect the outputs fj(x) for any value
of x. Therefore, instead of treating weights as matrices and

biases as vectors we view them as unordered collections of
vectors V (0)

j = {v(0)jl ∈ RD}Ljl=1, V (1)
j = {v(1)jl ∈ RLj}Kl=1

and scalars ṽ(0)j = {ṽ(0)jl ∈ R}Ljl=1 correspondingly.

Hidden layers in neural networks are commonly viewed
as feature extractors. This perspective can be justified
by the fact that the last layer of a neural network classi-
fier simply performs a softmax regression. Since neural
networks often outperform basic softmax regression, they
must be learning high quality feature representations of
the raw input data. Mathematically, in our setup, every
hidden neuron of the j-th MLP represents a new feature
x̃l(v

(0)
jl , ṽ

(0)
jl ) = σ(〈x, v(0)jl 〉 + ṽ

(0)
jl ). Our second observa-

tion is that each (v(0)jl , ṽ
(0)
jl ) parameterizes the corresponding

neuron’s feature extractor. Since, the J MLPs are trained
on the same general type of data (not necessarily homo-
geneous), we assume that they share at least some feature
extractors that serve the same purpose. However, due to
the permutation invariance issue discussed previously, a fea-
ture extractor indexed by l from the j-th MLP is unlikely
to correspond to a feature extractor with the same index
from a different MLP. In order to construct a set of global
feature extractors (neurons) {θ(0)i ∈ RD, θ̃(0)i ∈ R}Li=1 we
must model the process of grouping and combining feature
extractors of collection of MLPs.

3.1. Single Layer Neural Matching

We now present the key building block of our framework,
a Beta Bernoulli Process (Thibaux & Jordan, 2007) based
model of MLP weight parameters. Our model assumes the
following generative process. First, draw a collection of
global atoms (hidden layer neurons) from a Beta process
prior with a base measure H and mass parameter γ0, Q =∑
i qiδθi . In our experiments we choose H = N (µ0,Σ0)

as the base measure with µ0 ∈ RD+1+K and diagonal
Σ0. Each θi ∈ RD+1+K is a concatenated vector of [θ

(0)
i ∈

RD, θ̃(0)i ∈ R, θ(1)i ∈ RK ] formed from the feature extractor
weight-bias pairs with the corresponding weights of the
softmax regression. In what follows, we will use “batch” to
refer to a partition of the data.

Next, for each j = 1, . . . , J select a subset of the global
atoms for batch j via the Bernoulli process:

Tj :=
∑
i

bjiδθi , where bji|qi ∼ Bern(qi)∀i. (1)

Tj is supported by atoms {θi : bji = 1, i = 1, 2, . . .},
which represent the identities of the atoms (neurons) used
by batch j. Finally, assume that observed local atoms are
noisy measurements of the corresponding global atoms:

vjl|Tj ∼ N (Tjl,Σj) for l = 1, . . . , Lj ; Lj := card(Tj),
(2)
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with vjl = [v
(0)
jl , ṽ

(0)
jl , v

(1)
jl ] being the weights, biases, and

softmax regression weights corresponding to the l-th neuron
of the j-th MLP trained with Lj neurons on the data of
batch j.

Under this model, the key quantity to be inferred is the
collection of random variables that match observed atoms
(neurons) at any batch to the global atoms. We denote the
collection of these random variables as {Bj}Jj=1, where
Bj
i,l = 1 implies that Tjl = θi (there is a one-to-one corre-

spondence between {bji}∞i=1 andBj).

Maximum a posteriori estimation. We now derive an
algorithm for MAP estimation of global atoms for the model
presented above. The objective function to be maximized is
the posterior of {θi}∞i=1 and {Bj}Jj=1:

arg max
{θi},{Bj}

P ({θi}, {Bj}|{vjl}) (3)

∝ P ({vjl}|{θi}, {Bj})P ({Bj})P ({θi}).

Note that the next proposition easily follows from Gaussian-
Gaussian conjugacy:

Proposition 1. Given {Bj}, the MAP estimate of {θi} is
given by

θ̂i =
µ0/σ

2
0 +

∑
j,lB

j
i,lvjl/σ

2
j

1/σ2
0 +

∑
j,lB

j
i,l/σ

2
j

for i = 1, . . . , L, (4)

where for simplicity we assume Σ0 = Iσ2
0 and Σj = Iσ2

j .

Using this fact we can cast optimization corresponding to (3)
with respect to only {Bj}Jj=1. Taking the natural logarithm
we obtain:

arg max
{Bj}

1

2

∑
i

∥∥∥µ0

σ2
0

+
∑
j,lB

j
i,l

vjl
σj

2
∥∥∥2

1/σ2
0 +

∑
j,lB

j
i,l/σ

2
j

+ log(P ({Bj}).

(5)
We consider an iterative optimization approach: fixing all
but oneBj we find corresponding optimal assignment, then
pick a new j at random and proceed until convergence. In
the following we will use notation −j to denote “all but
j”. Let L−j = max{i : B−ji,l = 1} denote number of
active global weights outside of group j. We now rearrange
the first term of (5) by partitioning it into i = 1, . . . , L−j
and i = L−j + 1, . . . , L−j + Lj . We are interested in
solving forBj , hence we can modify the objective function
by subtracting terms independent of Bj and noting that∑
lB

j
i,l ∈ {0, 1}, i.e. it is 1 if some neuron from batch j is

matched to global neuron i and 0 otherwise:

1

2

∑
i

‖µ0/σ
2
0 +

∑
j,lB

j
i,lvjl/σ

2
j ‖2

1/σ2
0 +

∑
j,lB

j
i,l/σ

2
j

=

L−j+Lj∑
i=1

Lj∑
l=1

Bji,l

(
‖µ0/σ

2
0 + vjl/σ

2
j +

∑
−j,lB

j
i,lvjl/σ

2
j ‖2

1/σ2
0 + 1/σ2

j +
∑
−j,lB

j
i,l/σ

2
j

−
‖µ0/σ

2
0 +

∑
−j,lB

j
i,lvjl/σ

2
j ‖2

1/σ2
0 +

∑
−j,lB

j
i,l/σ

2
j

)
. (6)

Now we consider the second term of (5):

logP ({Bj}) = logP (Bj |B−j) + logP (B−j).

First, because we are optimizing for Bj , we can ignore
logP (B−j). Second, due to exchangeability of batches
(i.e. customers of the IBP), we can always consider Bj

to be the last batch (i.e. last customer of the IBP). Let
m−ji =

∑
−j,lB

j
i,l denote number of times batch weights

were assigned to global weight i outside of group j. We
then obtain:

logP ({Bj}) =

L−j∑
i=1

Lj∑
l=1

Bji,l log
m−ji

J −m−ji
(7)

+

L−j+Lj∑
i=L−j+1

Lj∑
l=1

Bji,l

(
log

γ0
J
− log(i− L−j)

)
.

Combining (6) and (7) we obtain the assignment cost objec-
tive, which we solve with the Hungarian algorithm.

Proposition 2. The (negative) assignment cost specification
for findingBj is −Cji,l =

∥∥∥∥∥µ0
σ20

+
vjl

σ2
j

+
∑
−j,l

Bji,l
vjl

σ2
j

∥∥∥∥∥
2

1

σ20
+ 1

σ2
j

+
∑

−j,l B
j
i,l/σ

2
j

−

∥∥∥∥∥µ0
σ20

+
∑
−j,l

Bji,l
vjl

σ2
j

∥∥∥∥∥
2

1

σ20
+
∑

−j,l B
j
i,l/σ

2
j

+ 2 log
m−j
i

J−m−j
i

,

i ≤ L−j∥∥∥∥µ0
σ20

+
vjl

σ2
j

∥∥∥∥2
1

σ20
+ 1

σ2
j

−

∥∥∥∥µ0
σ20

∥∥∥∥2
1

σ20

−2 log
i−L−j
γ0/J

, L−j < i ≤ L−j + Lj .

(8)

We then apply the Hungarian algorithm to find the mini-
mizer of

∑
i

∑
lB

j
i,lC

j
i,l and obtain the neuron matching

assignments. Proof is described in Supplement section 1.

We summarize the overall single layer inference procedure
in Figure 1 below.

3.2. Multilayer Neural Matching

The model we have presented thus far can handle any ar-
bitrary width single layer neural network, which is known
to be theoretically sufficient for approximating any func-
tion of interest (Hornik et al., 1989). However, deep neural
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Server 1 Server 2 Server 3

Hidden layers

Outputs

Match and merge neurons to form aggregate layer

Global hidden layer

Input

Input

Outputs

Algorithm 1 Single Layer Neural Matching

1: Collect weights and biases from the J batches and
form vjl.

2: Form assignment cost matrix per (8).
3: Compute matching assignments Bj using the Hun-

garian algorithm.
4: Enumerate all resulting unique global neurons and

use (4) to infer the associated global weight vectors
from all instances of the global neurons across the
J batches.

5: Concatenate the global neurons and the inferred
weights and biases to form the new global hidden
layer.

Figure 1: Single layer Probabilistic Federated Neural Matching
algorithm showing matching of three MLPs. Nodes in the graphs
indicate neurons, neurons of the same color have been matched.
Our approach consists of using the corresponding neurons in the
output layer to convert the neurons in each of the J batches to
weight vectors referencing the output layer. These weight vectors
are then used to form a cost matrix, which the Hungarian algorithm
then uses to do the matching. The matched neurons are then
aggregated via Proposition 1 to form the global model.

networks with moderate layer widths are known to be bene-
ficial both practically (LeCun et al., 2015) and theoretically
(Poggio et al., 2017). We extend our neural matching ap-
proach to these deep architectures by defining a generative
model of deep neural network weights from outputs back
to inputs (top-down). Let C denote the number of hidden
layers and Lc the number of neurons on the c-th layer. Then
LC+1 = K is the number of labels and L0 = D is the
input dimension. In the top down approach, we consider
the global atoms to be vectors of outgoing weights from a
neuron instead of weights forming a neuron as it was in the
single hidden layer model. This change is needed to avoid
base measures with unbounded dimensions.

Starting with the top hidden layer c = C, we generate each
layer following a model similar to that used in the single
layer case. For each layer we generate a collection of global
atoms and select a subset of them for each batch using
Beta-Bernoulli process construction. Lc+1 is the number of

neurons on the layer c+ 1, which controls the dimension of
the atoms in layer c.
Definition 1 (Multilayer generative process). Starting with
layer c = C, generate (as in the single layer process)

Qc|γc0, Hc, Lc+1 ∼ BP(1, γc0H
c), (9)

thenQc =
∑
i

qci δθci , θ
c
i ∼ N (µc0,Σ

c
0), µc0 ∈ RL

c+1

T cj :=
∑
i

bcjiδθci , where bcji|qci ∼ Bern(qci ).

This T cj is the set of global atoms (neurons) used by batch
j in layer c, it contains atoms {θci : bcji = 1, i = 1, 2, . . .}.
Finally, generate the observed local atoms:

vcjl|T cj ,∼ N (T cjl,Σc
j) for l = 1, . . . , Lcj , (10)

where we have set Lcj := card(T cj ). Next, compute the
generated number of global neurons Lc = card{∪Jj=1T cj }
and repeat this generative process for the next layer c− 1.
Repeat until all layers are generated (c = C, . . . , 1).

An important difference from the single layer model is that
we should now set to 0 some of the dimensions of vcjl ∈
RLc+1

since they correspond to weights outgoing to neurons
of the layer c+ 1 not present on the batch j, i.e. vcjli := 0

if bc+1
ji = 0 for i = 1, . . . , Lc+1. The resulting model can

be understood as follows. There is a global fully connected
neural network with Lc neurons on layer c and there are J
partially connected neural networks with Lcj active neurons
on layer c, while weights corresponding to the remaining
Lc − Lcj neurons are zeroes and have no effect locally.
Remark 1. Our model can conceptually handle permuted
ordering of the input dimensions across batches, however
in most practical cases the ordering of input dimensions
is consistent across batches. Thus, we assume that the
weights connecting the first hidden layer to the inputs exhibit
permutation invariance only on the side of the first hidden
layer. Similarly to how all weights were concatenated in the
single hidden layer model, we consider µc0 ∈ RD+Lc+1

for
c = 1. We also note that the bias term can be added to the
model, we omitted it to simplify notation.

Inference Following the top-down generative model, we
adopt a greedy inference procedure that first infers the
matching of the top layer and then proceeds down the lay-
ers of the network. This is possible because the generative
process for each layer depends only on the identity and
number of the global neurons in the layer above it, hence
once we infer the c+ 1th layer of the global model we can
apply the single layer inference algorithm (Algorithm 1) to
the cth layer. This greedy setup is illustrated in Figure 1
in Supplement section 2. The per-layer inference follows
directly from the single layer case, yielding the following
propositions.
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Proposition 3. The (negative) assignment cost specification
for findingBj,c is −Cj,ci,l =

∥∥∥∥∥ µc0
(σc0)

2 +
vcjl

(σcj )
2 +

∑
−j,l

Bj,ci,l
vcjl

(σcj )
2

∥∥∥∥∥
2

1
(σc0)

2 + 1
(σcj )

2 +
∑
−j,lB

j,c
i,l /(σ

c
j)

2
+ 2 log

m−j,ci

J −m−j,ci

−

∥∥∥µc0/(σc0)2 +
∑
−j,lB

j,c
i,l v

c
jl/(σ

c
j)

2
∥∥∥2

1/(σc0)2 +
∑
−j,lB

j,c
i,l /(σ

c
j)

2
, ,i ≤ Lc−j∥∥∥ µc0

(σc0)
2 +

vcjl
(σcj )

2

∥∥∥2
1

(σc0)
2 + 1

(σcj )
2

−
∥∥µc0/(σc0)2

∥∥2
1/(σc0)2

− 2 log
i− Lc−j
γ0/J

,

Lc−j < i ≤ Lc−j + Lcj ,

where for simplicity we assume Σc
0 = I(σc0)2 and Σc

j =

I(σcj)
2. We then apply the Hungarian algorithm to find

the minimizer of
∑
i

∑
lB

j,c
i,l C

j,c
i,l and obtain the neuron

matching assignments.

Proposition 4. Given the assignment {Bj,c}, the MAP es-
timate of {θci } is given by

θ̂ci =
µc0/(σ

c
0)2 +

∑
j,lB

j,c
i,l v

c
jl/(σ

c
j)

2

1/(σc0)2 +
∑
j,lB

j,c
i,l /(σ

c
j)

2
for i = 1, . . . , L.

(11)

We combine these propositions and summarize the overall
multilayer inference procedure in Algorithm 1 in Supple-
ment section 2.

3.3. Neural Matching with Additional Communications

In the traditional federated learning scenario, where local
and global models are learned together, common approach
(see e.g., McMahan et al. (2017)) is to learn via rounds of
communication between local and global models. Typically,
local model parameters are trained for few epochs, sent to
server for updating the global model and then reinitialized
with the global model parameters for the new round. One of
the key factors in federated learning is the number of com-
munications required to achieve accurate global model. In
the preceding sections we proposed Probabilistic Federated
Neural Matching (PFNM) to aggregate local models in a
single communication round. Our approach can be naturally
extended to benefit from additional communication rounds
as follows.

Let t denote a communication round. To initialize local
models at round t + 1 we set vt+1

jl =
∑
iB

j,t
i,l θ

t
i . Recall

that
∑
iB

j,t
i,l = 1 ∀l = 1, . . . , Lj , j = 1, . . . , J , hence a

local model is initialized with a subset of the global model,
keeping local model size Lj constant across communication
rounds (this also holds for the multilayer case). After local

models are updated we proceed to apply matching to obtain
new global model. Note that global model size can change
across communication rounds, in particular we expect it to
shrink as local models improve on each step.

4. Experiments
To verify our methodology we simulate federated learning
scenarios using two standard datasets: MNIST and CIFAR-
10. We randomly partition each of these datasets into J
batches. Two partition strategies are of interest: (a) a homo-
geneous partition where each batch has approximately equal
proportion of each of the K classes; and (b) a heteroge-
neous partition for which batch sizes and class proportions
are unbalanced. We simulate a heterogeneous partition by
simulating pk ∼ DirJ(0.5) and allocating a pk,j proportion
of the instances of class k to batch j. Note that due to the
small concentration parameter (0.5) of the Dirichlet distri-
bution, some sampled batches may not have any examples
of certain classes of data. For each of the four combinations
of partition strategy and dataset we run 10 trials to obtain
mean performances with standard deviations.

In our empirical studies below, we will show that our frame-
work can aggregate multiple local neural networks trained
independently on different batches of data into an efficient,
modest-size global neural network with as few as a sin-
gle communication round. We also demonstrate enhanced
performance when additional communication is allowed.

Learning with single communication First we consider
a scenario where a global neural network needs to be con-
structed with a single communication round. This imitates
the real-world scenario where data is no longer available
and we only have access to pre-trained local models (i.e.
“legacy” models). To be useful, this global neural network
needs to outperform the individual local models. Ensemble
methods (Dietterich, 2000; Breiman, 2001) are a classic
approach for combining predictions of multiple learners.
They often perform well in practice even when the ensem-
ble members are of poor quality. Unfortunately, in the case
of neural networks, ensembles have large storage and in-
ference costs, stemming from having to store and forward
propagate through all local networks.

The performance of local NNs and the ensemble method
define the lower and upper extremes of aggregating when
limited to a single communication. We also compare to
other strong baselines, including federated averaging of
local neural networks trained with the same random initial-
ization as proposed by McMahan et al. (2017). We note that
a federated averaging variant without the shared initializa-
tion would likely be more realistic when trying to aggregate
pre-trained models, but this variant performs significantly
worse than all other baselines. We also consider k-Means
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Figure 2: Single communication federated learning. TOP: Test accuracy and normalized model size (log L∑
j Lj

) as a
function of varying number of batches (J). BOTTOM: Test accuracy and normalized model size for multi-layer networks as
a function of number of layers. PFNM consistently outperforms local models and federated averaging while performing
comparably to ensembles at a fraction of the storage and computational costs.

clustering (Lloyd, 1982) of vectors constructed by concate-
nating weights and biases of local neural networks. The
key difference between k-Means and our approach is that
clustering, unlike matching, allows several neurons from
a single neural network to be assigned to the same global
neuron, potentially averaging out their individual feature
representations. Further, k-Means requires us to choose k,
which we set to K = min(500, 50J). In contrast, PFNM
nonparametrically learns the global model size and other
hyperparameters, i.e. σ, σ0, γ0, are chosen based on the
training data. We discuss parameter sensitivity in section
three of the Supplement.

Figure 2 presents our results with single hidden layer neu-
ral networks for varying number of batches J . Note that
a higher number of batches implies fewer data instances
per batch, leading to poorer local model performances. The
upper plots summarize test data accuracy, while the lower
plots show the model size compression achieved by PFNM.
Specifically we plot log L∑

j Lj
, which is the log ratio of the

PFNM global model size L to the total number of neurons
across all local models (i.e. the size of an ensemble model).
In this and subsequent experiments each local neural net-
work has Lj = 100 hidden neurons. We see that PFNM
produces strong results, occasionally even outperforming
ensembles. In the heterogeneous setting we observe a no-

ticeable degradation in the performance of the local NNs
and of k-means, while PFNM retains its good performance.
It is worth noting that the gap between PFNM and ensemble
increases on CIFAR10 with J , while it is constant (and even
in favor of PFNM) on MNIST. This is not surprising. En-
semble methods are known to perform particularly well at
aggregating “weak” learners (recall higher J implies smaller
batches) (Breiman, 2001), while PFNM assumes the neural
networks being aggregated already perform reasonably well.

Next, we investigate aggregation of multi-layer neural net-
works, each using a hundred neurons per layer. The ex-
tension of k-means to this setting is unclear and k-means
is excluded from further comparisons. In Figure 2, we
show that PFNM again provides drastic and consistent im-
provements over local models and federated averaging. It
performs marginally worse than ensembles, especially for
deeper networks on CIFAR10. This aligns with our previous
observation — when there is insufficient data for training
good local models, PFNM’s performance marginally de-
grades with respect to ensembles, but still provides signifi-
cant compression over ensembles.

Learning with limited communication While in some
scenarios limiting communication to a single communica-
tion round may be a hard constraint, we also consider sit-
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Figure 3: Federated learning with communications. Test accuracy and normalized model size as a function of number of
communication rounds for J = 25 batches for one (TOP) and two layer (BOTTOM) neural networks. PFNM consistently
outperforms strong competitors.

uations, that frequently arise in practice, where a limited
amount of communication is permissible. To this end, we in-
vestigate federated learning with J = 25 batches and up to
twenty communications when the data has a homogeneous
partition and up to fifty communications under a heteroge-
neous partition. We compare PFNM, using the communica-
tion procedure from Section 3.3 (σ = σ0 = γ0 = 1 across
experiments) to federated averaging and the distributed op-
timization approach, downpour SGD (D-SGD) of Dean
et al. (2012). In this limited communication setting, the en-
sembles can be outperformed by many distributed learning
algorithms provided a large enough communication budget.
An interesting metric then is the number of communications
rounds required to outperform ensembles.

We report results with both one and two layer neural net-
works in Figure 3. In either case, we use a hundered neurons
per layer. PFNM outperforms ensembles in all scenarios
given sufficient communications. Moreover, in all experi-
ments, PFNM requires significantly fewer communication
rounds than both federated averaging and D-SGD to achieve
a given performance level. In addition to improved perfor-
mance, additional rounds of communication allow PFNM
to shrink the size of the global model as demonstrated in the
figure. In Figures 3a to 3f we note steady improvement in ac-
curacy and reduction in the global model size. In CIFAR10
experiments, the two layer PFNM network’s performance

temporarily drops, which corresponds to a sharp reduction
in the size of the global network. See Figures 3g and 3h.

5. Discussion
In this work, we have developed methods for federated learn-
ing of neural networks, and empirically demonstrated their
favorable properties. Our methods are particularly effec-
tive at learning compressed federated networks from pre-
trained local networks and with a modest communication
budget can outperform state-of-the-art algorithms for feder-
ated learning of neural networks. In future work, we plan
to explore more sophisticated ways of combining local net-
works especially in the regime where each local network has
very few training instances. Our current matching approach
is completely unsupervised – incorporating some form of
supervision may help further improve the performance of
the global network, especially when the local networks are
of poor quality. Finally, it is of interest to extend our model-
ing framework to other architectures such as Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs). The permutation invariance necessitating match-
ing inference also arises in CNNs since any permutation
of the filters results in the same output, however additional
bookkeeping is needed due to the pooling operations.
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