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Abstract
Imitation learning (IL) aims to learn an opti-
mal policy from demonstrations. However, such
demonstrations are often imperfect since collect-
ing optimal ones is costly. To effectively learn
from imperfect demonstrations, we propose a
novel approach that utilizes confidence scores,
which describe the quality of demonstrations.
More specifically, we propose two confidence-
based IL methods, namely two-step importance
weighting IL (2IWIL) and generative adversar-
ial IL with imperfect demonstration and confi-
dence (IC-GAIL). We show that confidence scores
given only to a small portion of sub-optimal
demonstrations significantly improve the perfor-
mance of IL both theoretically and empirically.

1. Introduction
Imitation learning (IL) has become of great interest because
obtaining demonstrations is usually easier than designing
reward. Reward is a signal to instruct agents to complete the
desired tasks. However, ill-designed reward functions usu-
ally lead to unexpected behaviors (Everitt & Hutter, 2016;
Dewey, 2014; Amodei et al., 2016). There are two main
approaches that can be used to solve IL: behavioral cloning
(BC) (Schaal, 1999), which adopts supervised learning ap-
proaches to learn an action predictor that is trained directly
from demonstration data; and apprenticeship learning (AL),
which attempts to find a policy that is better than the expert
policy for a class of cost functions (Abbeel & Ng, 2004).
Even though BC can be trained with supervised learning ap-
proaches directly, it has been shown that BC cannot imitate
the expert policy without a large amount of demonstration
data for not considering the transition of environments (Ross
et al., 2011). In contrast, AL approaches learn from inter-
acting with environments and optimize objectives such as
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maximum entropy (Ziebart et al., 2008).

A state-of-the-art approach generative adversarial imitation
learning (GAIL) is proposed by Ho & Ermon (2016). The
method learns an optimal policy by performing occupancy
measure matching (Syed et al., 2008). An advantage of
the matching method is that it is robust to demonstrations
generated from a stochastic policy. Based on the concept
proposed in GAIL, variants have been developed recently
for different problem settings (Li et al., 2017; Kostrikov
et al., 2019).

Despite that GAIL is able to learn an optimal policy from
optimal demonstrations, to apply IL approaches to solve
real-world tasks, the difficulty in obtaining such demon-
stration data should be taken into consideration. However,
demonstrations from an optimal policy (either deterministic
or stochastic) are usually assumed to be available in the
above mentioned works, which can be barely fulfilled by
the fact that most of the accessible demonstrations are im-
perfect or even from different policies. For instance, to train
an agent to play basketball with game-play videos of the
National Basketball Association, we should be aware that
there are 14.3 turnovers per game1, not to mention other
kinds of mistakes that may not be recorded. The reason why
optimal demonstrations are hard to obtain can be attributed
to the limited attention and the presence of distractions,
which make humans hard to follow optimal policies all the
time. As a result, some parts of the demonstrations may be
optimal and the others are not.

To mitigate the above problem, we propose to use confi-
dence scores, which indicate the probability that a given
trajectory is optimal. An intuitive example to collect the
confidence scores is crowdsourcing, where data can be hard-
labeled as being optimal or non-optimal by multiple labelers.
We can extract confidence from the proportion of labelers
giving a particular label, which corresponds to the probabil-
ity that the instance has this label. Another example is when
it is difficult to judge whether the demonstration is optimal.
A labeler may rate a score digitized from 0, 0.1, . . . , 1 and
we can use it as confidence. Since the attained confidence
may not be perfect, to show the practicality of our methods,
in our experiments, we use estimated confidence instead

1https://www.basketball-reference.com/
leagues/NBA_stats.html
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of the ground truth value. In addition, experiments with
different levels of noise are conducted to further justify their
robustness to noisy labelers.

To further reduce the additional cost to learn an optimal
policy, we consider a more realistic setting that the given
demonstrations are partially equipped with confidence. As
a result, the goal of this work is to utilize imperfect demon-
strations where some are equipped with confidence while
some are not (we refer to demonstrations without confidence
as “unlabeled demonstrations”).

In this work, we consider the setting where the given im-
perfect demonstrations are a mixture of optimal and non-
optimal demonstrations. The setting is common when the
demonstrations are collected via crowdsourcing (Serban
et al., 2017; Hu et al., 2018; Shah et al., 2018) and learn-
ing from different sources such as videos (Tokmakov et al.,
2017; Pathak et al., 2017; Supancic III & Ramanan, 2017;
Yeung et al., 2017; Liu et al., 2018), where demonstrations
can be generated from different policies.

We propose two methods, two-step importance weighting
imitation learning (2IWIL) and generative adversarial imi-
tation learning with imperfect demonstration and confidence
(IC-GAIL), based on the idea of reweighting but from differ-
ent perspectives. To utilize both confidence and unlabeled
data, for 2IWIL, it predicts confidence scores for unlabeled
data by optimizing the proposed objective based on empir-
ical risk minimization (ERM) (Vapnik, 1998), which has
flexibility for different loss functions, models, and optimiz-
ers; on the other hand, instead of directly reweighting to
the optimal distribution and perform GAIL with reweight-
ing, IC-GAIL reweights to the non-optimal distribution and
match the optimal occupancy measure based on our mixture
distribution setting. Since the derived objective of IC-GAIL
depends on the proportion of the optimal demonstration
in the demonstration mixture, we empirically show that
IC-GAIL converges slower than 2IWIL but achieves bet-
ter performance, which forms a trade-off between the two
methods. We show that the proposed methods are both
theoretically and practically sound.

2. Related work
In this section, we provide a brief survey about making
use of non-optimal demonstrations and semi-supervised
classification with confidence data.

2.1. Learning from non-optimal demonstrations

Learning from non-optimal demonstrations is nothing new
in IL and reinforcement learning (RL) literature, but previ-
ous works utilized different information to learn a better pol-
icy. Distance minimization inverse RL (DM-IRL) (Burchfiel
et al., 2016) utilized a feature function of states and assumed

that the true reward function is linear in the features. The
feedback from human is an estimate of accumulated reward,
which is harder to be given than confidence because multi-
ple reward functions may correspond to the same optimal
policy.

Semi-supervised IRL (SSIRL) (Valko et al., 2012) extends
the IRL method proposed by Abbeel & Ng (2004), where
the reward function can be learned by matching the feature
expectations of the optimal demonstrations. The difference
from Abbeel & Ng (2004) is that in SSIRL, optimal and
sub-optimal trajectories from other performers are given.
Transductive SVM (Schölkopf et al., 1999) was used in
place of vanilla SVM in Abbeel & Ng (2004) to recognize
optimal trajectories in the sub-optimal ones. In our set-
ting, the confidence scores are given instead of the optimal
demonstrations. DM-IRL and SSIRL are not suitable for
high-dimensional problems due to its dependence on the
linearity of reward functions and good feature engineering.

2.2. Semi-supervised classification with confidence data

In our 2IWIL method, we train a probabilistic classifier with
confidence and unlabeled data by optimizing the proposed
ERM objective. There are similar settings such as semi-
supervised classification (Chapelle et al., 2006), where few
hard-labeled data y ∈ {0, 1} and some unlabeled data are
given.

Zhou et al. (2014) proposed to use hard-labeled instances
to estimate confidence scores for unlabeled samples using
Gaussian mixture models and principal component analy-
sis. Similarly, for an input instance x, Wang et al. (2013)
obtained an upper bound of confidence Pr(y = 1|x) with
hard-labeled instances and a kernel density estimator, then
treated the upper bound as an estimate of probabilistic class
labels.

Another related scheme was considered in El-Zahhar & El-
Gayar (2010) where they considered soft labels z ∈ [0, 1] as
fuzzy inputs and proposed a classification approach based
on k-nearest neighbors. This method is difficult to scale
to high-dimensional tasks, and lacks theoretical guarantees.
Ishida et al. (2018) proposed another scheme that trains a
classifier only from positive data equipped with confidence.
Our proposed method, 2IWIL, also considers training a
classifier with confidence scores of given demonstrations.
Nevertheless, 2IWIL can train a classifier from fewer con-
fidence data, with the aid of a large number of unlabeled
data.

3. Background
In this section, we provide backgrounds of RL and GAIL.
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3.1. Reinforcement Learning

We consider the standard Markov Decision Process (MDP)
(Sutton & Barto, 1998). MDP is represented by a tuple
〈S,A,P,R, γ〉, where S is the state space, A is the action
space, P(st+1|st, at) is the transition density of state st+1

at time step t+1 given action at made under state st at time
step t,R(s, a) is the reward function, and γ ∈ (0, 1) is the
discount factor.

A stochastic policy π(a|s) is a density of action a given
state s. The performance of π is evaluated in the γ-
discounted infinite horizon setting and its expectation can be
represented with respect to the trajectories generated by π:

Eπ[R(s, a)] = E

[ ∞∑
t=0

γtR(st, at)

]
, (1)

where the expectation on the right-hand side is taken over
the densities p0(s0), P(st+1|st, at), and π(at|st) for all
time steps t. Reinforcement learning algorithms (Sutton &
Barto, 1998) aim to maximize Eq. (1) with respect to π.

To characterize the distribution of state-action pairs gen-
erated by an arbitrary policy π, the occupancy measure is
defined as follows.
Definition 3.1 (Puterman (1994)). Define occupancy mea-
sure ρπ : S ×A → R,

ρπ(s, a) = π(a|s)
∞∑
t=0

γt Pr(st = s|π), (2)

where Pr(st = s|π) is the probability density of state s at
time step t following policy π.

The occupancy measure of π, ρπ(s, a), can be interpreted
as an unnormalized density of state-action pairs.

The occupancy measure plays an important role in IL liter-
ature because of the following one-to-one correspondence
with the policy.
Theorem 3.2. (Theorem 2 of Syed et al. (2008)) Suppose ρ
is the occupancy measure for πρ(a|s) , ρ(s,a)∑

a′ ρ(s,a
′) . Then

πρ is the only policy whose occupancy measure is ρ.

In this work, we also define the normalized occupancy mea-
sure p(s, a),

p(s, a) ,
ρ(s, a)∑
s,a ρ(s, a)

=
ρ(s, a)∑

s,a π(a|s)
∑∞
t=0 γ

t Pr(st = s|π)

=
ρ(s, a)∑∞
t=0 γ

t
= (1− γ)ρ(s, a).

The normalized occupancy measure can be interpreted as a
probability density of state-action pairs that an agent experi-
ences in the environment with policy π.

3.2. Generative adversarial imitation learning (GAIL)

The problem setting of IL is that given trajectories
{(si, ai)}ni=1 generated by an expert πE, we are interested
in optimizing the agent policy πθ to recover the expert policy
πE with {(si, ai)}ni=1 and the MDP tuple without reward
functionR.

GAIL (Ho & Ermon, 2016) is a state-of-the-art IL method
that performs occupancy measure matching to learn a pa-
rameterized policy. Occupancy measure matching aims to
minimize the objective d(ρπE , ρπθ ), where d is a distance
function. The key idea behind GAIL is that it uses generative
adversarial training to estimate the distance and minimize
it alternatively. To be precise, the distance is the Jensen-
Shannon divergence (JSD), which is estimated by solving a
binary classification problem. This leads to the following
min-max optimization problem:

min
θ

max
w

E
s, a ∼ pθ

[logDw(s, a)] + E
s, a ∼ popt

[log(1−Dw(s, a))],

(3)

where pθ and popt are the corresponding normalized occu-
pancy measures for πθ and πopt respectively. Dw is called
a discriminator and it can be shown that if the discrimi-
nator has infinite capacity, the global optimum of Eq. (3)
corresponds to the JSD up to a constant (Goodfellow et al.,
2014). To update the agent policy πθ, GAIL treats the loss
− log(Dw(s, a)) as a reward signal and the agent can be
updated with RL methods such as trust region policy opti-
mization (TRPO) (Schulman et al., 2015). A weakness of
GAIL is that if the given demonstrations are non-optimal
then the learned policy will be non-optimal as well.

4. Imitation learning with confidence and
unlabeled data

In this section, we present two approaches to learning from
imperfect demonstrations with confidence and unlabeled
data. The first approach is 2IWIL, which aims to learn a
probabilistic classifier to predict confidence scores of unla-
beled demonstration data and then performs standard GAIL
with reweighted distribution. The second approach is IC-
GAIL, which forgoes learning a classifier and learns an
optimal policy by performing occupancy measure matching
with unlabeled demonstration data. Details of derivation
and proofs in this section can be found in Appendix.

4.1. Problem setting

Firstly, we formalize the problem setting considered in this
paper. For conciseness, in what follows we use x in place
of (s, a). Consider the case where given imperfect demon-
strations are sampled from an optimal policy πopt and non-
optimal policies Π = {πi}ni=1. Denote that the correspond-
ing normalized occupancy measure of πopt and Π are popt
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and {pi}ni=1, respectively. The normalized occupancy mea-
sure p(x) of a state-action pair x is therefore the weighted
sum of popt and {pi}ni=1,

p(x) =αpopt(x) +

n∑
i=1

νipi(x)

=αpopt(x) + (1− α)pnon(x),

where α +
∑n
i=1 νi = 1 and pnon(x) =

1
(1−α)

∑n
i=1 νipi(x). We may further follow traditional

classification notation by defining popt(x) , p(x|y = +1)

and pnon(x) , p(x|y = −1), where y = +1 indicates that
x is drawn from the occupancy measure of the optimal
policy and y = −1 indicates the non-optimal policies.
Here, α = Pr(y = +1) is the class-prior probability of the
optimal policy. We further assume that an oracle labels
state-action pairs in the demonstration data with confidence
scores r(x) , p(y = +1|x). Based on this, the normalized
occupancy measure of the optimal policy can be expressed
by the Bayes’ rule as

p(x|y = +1) =
r(x)p(x)

α
. (4)

We assume that labeling state-action pairs by the oracle can
be costly and only some pairs are labeled with confidence.
More precisely, we obtain demonstration datasets as follows,

Dc , {(xc,i, ri)}nc
i=1

i.i.d.∼ q(x, r),

Du , {xu,i}nu
i=1

i.i.d.∼ p(x),

where q(x, r) = p(x)pr(r|x) and pr(ri|x) = δ(ri − r(x))
is a delta distribution. Our goal is to consider the case where
Dc is scarce and we want to learn the optimal policy πopt
with Dc and Du jointly.

4.2. Two-step importance weighting imitation learning

We first propose an approach based on the importance sam-
pling scheme. By Eq. (4), the GAIL objective in Eq. (3) can
be rewritten as follows:

min
θ

max
w

Ex∼pθ [logDw(x)]

+ Ex,r∼q
[ r
α

log(1−Dw(x))
]
. (5)

In practice, we may use the mean of confidence scores to
estimate the class prior α. Although we can reweight the
confidence data Dc to match the optimal distribution, we
have a limited number of confidence data and it is difficult
to perform accurate sample estimation. To make full use
of unlabeled data, the key idea is to identify confidence
scores of the given unlabeled data Du and reweight both
confidence data and unlabeled data. To achieve this, we train
a probabilistic classifier from confidence data and unlabeled

data, where we call this learning problem semi-conf (SC)
classification.

Let us first consider a standard binary classification problem
to classify samples into popt (y = +1) and pnon (y = −1).
Let g : Rd → R be a prediction function and ` : R → R+

be a loss function. The optimal classifier can be learned by
minimizing the following risk:

RPN,`(g) = αEx∼popt [`(g(x))]

+ (1− α)Ex∼pnon [`(−g(x))] , (6)

where PN stands for “positive-negative”. However, as we
only have samples from the mixture distribution p instead
of samples separately drawn from popt and pnon, it is not
straightforward to conduct sample estimation of the risk in
Eq. (6). To overcome this issue, we express the risk in an
alternative way that can be estimated only from Dc and Du

in the following theorem.

Theorem 4.1. The classification risk (6) can be equiva-
lently expressed as

RSC,`(g) = Ex,r∼q[r(`(g(x))− `(−g(x)))

+ (1− β)`(−g(x))] + Ex∼p[β`(−g(x))],
(7)

where β ∈ [0, 1] is an arbitrary weight.

Thus, we can obtain a probabilistic classifier by minimizing
Eq. (7), which can be estimated only with Dc and Du. Once
we obtain the prediction function g, we can use it to give
confidence scores for Du.

To make the prediction function g estimate confidence ac-
curately, the loss function ` in Eq. (7) should come from
a class of strictly proper composite loss (Buja et al., 2005;
Reid & Williamson, 2010). Many losses such as the squared
loss, logistic loss, and exponential loss are proper com-
posite. For example, if we obtain g∗log that minimizes a
logistic loss `log(z) = (log(1 + exp(−z)), we can obtain
confidence scores by passing prediction outputs to a sig-
moid function p̂(y = 1|x) = [1 + exp(−g∗log(x))]−1 (Reid
& Williamson, 2010). On the other hand, the hinge loss
cannot be applied since it is not a proper composite loss
and cannot estimate confidence reliably (Bartlett & Tewari,
2007; Reid & Williamson, 2010). Therefore, we can obtain
a probabilistic classifier from the prediction function g that
learned from a strictly proper composite loss. After obtain-
ing a probabilistic classifier, we optimize the importance
weighted objective in Eq. (5), where both Dc and Du are
used to estimate the second expectation. We summarize this
training procedure in Algorithm 1.

Next, we discuss the choice of the combination coefficient β.
Since we have access to the empirical unbiased estimator
R̂SC,`(g) from Eq. (7), it is natural to find the minimum
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Algorithm 1 2IWIL

1: Input: Expert trajectories and confidence Dc =
{(xc,i, ri)}nc

i=1, Du = {xu,i}nu
i=1

2: Estimate the class prior by α̂ = 1
nc

∑nc

i=1 ri
3: Train a probabilistic classifier by minimizing Eq. (7)

with β = nu
nu+nc

4: Predict confidence scores {r̂u,i}nu
i=1 for {xu,i}nu

i=1

5: for i = 0, 1, 2, ... do
6: Sample trajectories {xi}nai=1 ∼ πθ
7: Update the discriminator parameters by maximizing

Eq. (5)
8: Update πθ with reward − logDw(x) using TRPO
9: end for

variance estimator among them. The following theorem
gives the optimal β in terms of the estimator variance.

Proposition 4.2 (variance minimality). Let σcov de-
note the covariance between n−1c

∑nc

i=1 ri{`(g(xc,i)) −
`(−g(xc,i))} and n−1c

∑nc

i=1 `(−g(xc,i)). For a fixed g,
the estimator R̂SC,`(g) has the minimum variance when
β = clip[0,1](

nu

nc+nu
+ σcov

Var(`(−g(x)))
ncnu

nc+nu
).2

Thus, β lies in (0, 1) when the covariance σcov is not so
large. If β 6= 0, it means that the unlabeled data Du does
help the classifier by reducing empirical variance when
Eq. (7) is adopted. However, computing the β that mini-
mizes empirical variance is computationally inefficient since
it involves computing σcov and Var(l(−g(x))). In practice,
we use β = nu

nc+nu
for all experiments by assuming that the

covariance is small enough.

In our preliminary experiments, we sometimes observed that
the empirical estimate R̂SC,` of Eq. (7) became negative and
led to overfitting. We can mitigate this phenomenon by em-
ploying a simple yet highly effective technique from Kiryo
et al. (2017), which is proposed to solve a similar overfitting
problem (see Appendix for implementation details).

4.2.1. THEORETICAL ANALYSIS

Below, we show that the estimation error of Eq. (7) can
be bounded. This means that its minimizer is asymptoti-
cally equivalent to the minimizer of the standard classifica-
tion risk RPN,`, which provides a consistent estimator of
p(y = +1|x). We provide the estimation error bound with
Rademacher complexity (Bartlett & Mendelson, 2002). De-
note Rn(G) be the Rademacher complexity of the function
class G with the sample size n.

Theorem 4.3. Let G be the hypothesis class we use. As-
sume that the loss function ` is ρ`-Lipschitz continu-
ous, and that there exists a constant C` > 0 such that
supx∈X ,y∈{±1} |`(yg(x))| ≤ C` for any g ∈ G. Let

2clip[l,u](v) , max{l,min{v, u}}.

ĝ , arg min
g∈G

R̂SC,`(g) and g∗ , arg min
g∈G

RSC,`(g). For

δ ∈ (0, 1), with probability at least 1 − δ over repeated
sampling of data for training ĝ,

RSC,`(ĝ)−RSC,`(g
∗)

≤ 16ρ`((3− β)Rnc
(G) + βRnu

(G))

+ 4C`

√
log(8/δ)

2

(
(3− β)n

− 1
2

c + βn
− 1

2
u

)
.

Thus, we may safely obtain a probabilistic classifier by
minimizing R̂SC,`, which gives a consistent estimator.

4.3. IC-GAIL

Since 2IWIL is a two-step approach by first gathering more
confidence data and then conducting importance sampling,
the error may accumulate over two steps and degrade the
performance. Therefore, we propose IC-GAIL that can be
trained in an end-to-end fashion and perform occupancy
measure matching with the optimal normalized occupancy
measure popt directly.

Recall that p = αpopt + (1 − α)pnon. Our key idea here
is to minimize the divergence between p and p′, where
p′ = αpθ + (1 − α)pnon. Intuitively, the divergence be-
tween pθ and popt is minimized if that between p and p′ is
minimized. For Jensen-Shannon divergence, this intuition
can be justified in the following theorem.
Theorem 4.4. Denote that

V (πθ, Dw) = Ex∼p[log(1−Dw(x))] + Ex∼p′ [logDw(x)],

and that C(πθ) = maxw V (πθ, Dw). Then, V (πθ, Dw) is
maximized when Dw = p′

p+p′ (, Dw∗), and its maximum
value is C(πθ) = − log 4 + 2JSD(p‖p′). Thus, C(πθ) is
minimized if and only if pθ = popt almost everywhere.

Theorem 4.4 implies that the optimal policy can be found
by solving the following objective,

min
θ

max
w

Ex∼p[log(1−Dw(x))] + Ex∼p′ [logDw(x)].

(8)

The expectation in the first term can be approximated
from Du, while the expectation in the second term is the
weighted sum of the expectation over pθ and pnon. Data
Da = {xa,i}na

i sampled from pθ can be obtained by exe-
cuting the current policy πθ. However, we cannot directly
obtain samples from pnon since it is unknown. To overcome
this issue, we establish the following theorem.
Theorem 4.5. V (πθ, Dw) can be transformed to
Ṽ (πθ, Dw), which is defined as follows:

Ṽ (πθ, Dw) = Ex∼p[log(1−Dw(x))]

+ αEx∼pθ [logDw(x)] + Ex,r∼q[(1− r) logDw(x)].
(9)
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We can approximate Eq. (9) given finite samples Dc, Du,
and Da. In practice, we perform alternative gradient de-
scent with respect to θ and w to solve this optimization
problem. Below, we show that the estimation error of Ṽ can
be bounded for a fixed agent policy πθ.

4.3.1. THEORETICAL ANALYSIS

In this subsection, we show that the estimation error of
Eq. (9) can be bounded, given a fixed agent policy πθ. Let
V̂ (πθ, Dw) be the empirical estimate of Eq. (9).
Theorem 4.6. LetW be a parameter space for training the
discriminator and DW , {Dw | w ∈ W} be its hypothesis
space. Assume that there exist a constant CL > 0 such
that | logDw(x)| ≤ CL and | log(1 − Dw(x))| ≤ CL for
any x ∈ X and w ∈ W . Assume that both logDw(x) and
log(1 −Dw(x)) for any w ∈ W have Lipschitz norms no
more than ρL > 0. For a fixed agent policy πθ, let {xa,i}nai=1

be a sample generated from πθ,Dŵ , arg max
w∈W

V̂ (πθ, Dw),

and Dw∗ , arg max
w∈W

V (πθ, Dw). Then, for δ ∈ (0, 1), the

following holds with probability at least 1− δ:

V (πθ, Dw∗)− V (πθ, Dŵ)

≤ 16ρL(Rnu(DW) + αRna(DW) + Rnc(DW))

+ 4CL

√
log(6/δ)

2

(
n
− 1

2
u + αn

− 1
2

a + n
− 1

2
c

)
.

Theorem 4.6 guarantees that the estimation of Eq. (9) pro-
vides a consistent maximizer with respect to the original
objective in Eq. (8) at each step of the discriminator training.

4.3.2. PRACTICAL IMPLEMENTATION OF IC-GAIL

Even though Eq. (9) is theoretically supported, when the
class prior α is low, the influence of the agent become
marginal in the discriminator training. This issue can be
mitigated by thresholding α in Eq. (9) as follows:

min
θ

max
w

Ex∼p[log(1−Dw(x))] + λEx∼pθ [logDw(x)]

+ (1− λ)Ex,r∼q
[

(1− r)
(1− α)

logDw(x)

]
, (10)

where λ = max{τ, α} and τ ∈ (0, 1]. The training proce-
dure of IC-GAIL is summarized in Algorithm 2. Note that
Eq. (10) returns to Eq. (3) and learns an sub-optimal policy
when τ = 1.

4.4. Discussion

To understand the difference between 2IWIL and IC-GAIL,
we discuss it from three different perspectives: unlabeled
data, confidence data, and the class prior.

Role of unlabeled data: It should be noted that unlabeled
data plays different roles in the two methods. In 2IWIL,

Algorithm 2 IC-GAIL

1: Input: Expert trajectories, confidence, and weight
threshold {xu,i}nu

i=1, {(xc,i, ri)}nc
i=1, τ

2: Estimate the class prior by α̂ = 1
nc

∑nc

i=1 ri
3: λ = max{τ, α̂}
4: for i = 0, 1, 2, ... do
5: Sample trajectories {xi}nai=1 ∼ πθ
6: Update the discriminator parameters by maximizing

Eq. (10)
7: Update πθ with reward − logDw(x) using TRPO
8: end for

we show that unlabeled data reduces the variance of the
empirical risk estimator as shown in Proposition 4.2.

On the other hand, in addition to making more accurate esti-
mation, the usefulness of unlabeled data in IC-GAIL is simi-
lar to guided exploration (Kang et al., 2018). We may analo-
gize confidence information in the imperfect demonstration
setting to reward functions since both of them allow agents
to learn an optimal policy in IL and RL, respectively. Like-
wise, fewer confidence data can be analogous to sparse re-
ward functions. Even though a small number of confidence
data and sparse reward functions do not make objective such
as Eqs. (5) and (1) biased, they cause practical issues such
as a deficiency in information for exploration. To mitigate
the problem, we imitate from sub-optimal demonstrations
and use confidence information to refine the learned policy,
which is similar to Kang et al. (2018) in the sense that they
imitate a sub-optimal policy to guide RL algorithms in the
sparse reward setting.

Role of confidence data: Confidence data is utilized to
train a classifier and to reweight popt in 2IWIL, which
causes the two-step training scheme and therefore the error
is accumulated in the prediction phase and the occupancy
measure matching phase. Differently, IC-GAIL instead
compensates the pnon portion in the given imperfect demon-
strations by mimicking the composition of p. The advantage
of IC-GAIL over 2IWIL is that it avoids the prediction error
by employing an end-to-end training scheme.

Influence of the class-prior α: The class prior in 2IWIL
as shown in Eq. (5) serves as a normalizing constant so
that the weight r(x)

α for reweighting p to popt has unit
mean. Consequently, the class prior α does not affect the
convergence of the agent policy. On the other hand, the term
with respect to the agent pθ is directly scaled by α in Eq. (9)
of IC-GAIL. To comprehend the influence, we may expand
the reward function from the discriminator − logD∗w(x) =

− log
((

α
(1−α)pθ + pnon

)
/
(

α
(1−α) (popt + pθ) + 2pnon

))
and it shows that the agent term is scaled by α

(1−α) , which
makes the reward function prone to be a constant when α
is small. Therefore the agent learns slower than in 2IWIL,
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Table 1. Comparison between proposed methods (IC-GAIL and
2IWIL) and baselines.

METHOD INPUT OBJECTIVE

IC-GAIL Du ∪ Dc EQ. (9)
2IWIL Du ∪ Dc EQ. (7)

GAIL (U+C) Du ∪ Dx
c EQ. (3)

GAIL (C) Dx
c EQ. (3)

GAIL (REWEIGHT) Dc EQ. (5)

where the reward function is − log (pθ/(pθ + popt)).

5. Experiments
In this section, we aim to answer the following questions
with experiments. (1) Do 2IWIL and IC-GAIL methods
allow agents to learn near-optimal policies when limited
confidence information is given? (2) Are the methods robust
enough when the given confidence is less accurate? and
(3) Do more unlabeled data results in better performance
in terms of average return? The discussions are given in
Sec. 5.1, 5.2, and 5.3 respectively.

Setup To collect demonstration data, we train an optimal
policy (πopt) using TRPO (Schulman et al., 2015) and select
two intermediate policies (π1 and π2). The three policies are
used to generate the same number of state-action pairs. In
real-world tasks, the confidence should be given by human
labelers. We simulate such labelers by using a probabilistic
classifier p?(y = +1|x) pre-trained with demonstration data
and randomly choose 20% of demonstration data to label
confidence scores r(x) = p?(y = +1|x).

We compare the proposed methods against three baselines.
Denote thatDxc , {xc,i}nc

i=1,Drc , {ri}nc
i=1, andDxu , Du.

GAIL (U+C) takes all the pairs as input without consid-
ering confidence. To show if reweighting using Eq. (5)
makes difference, GAIL (C) and GAIL (Reweight) use the
same state-action pairs Dxc but GAIL (Reweight) addition-
ally utilizes reweighting with confidence information Drc .
The baselines and the proposed methods are summarized in
Table 1.

To assess our methods, we conduct experiments on Mu-
joco (Todorov et al., 2012). Each experiment is performed
with five random seeds. The hyper-parameter τ of IC-GAIL
is set to 0.7 for all tasks. To show the performance with
respect to the optimal policy that we try to imitate, the ac-
cumulative reward is normalized with that of the optimal
policy and a uniform random policy so that 1.0 indicates
the optimal policy and 0.0 the random one. Due to space
limit, we defer implementation details, the performance of
the optimal and the random policies, the specification of
each task, and the uncropped figures of Ant-v2 to Appendix.

5.1. Performance comparison

The average return against training epochs in Fig. 1 shows
that the proposed IC-GAIL and 2IWIL outperform other
baselines by a large margin. Due to the mentioned exper-
iment setup, the class prior of the optimal demonstration
distribution is around 33%. To interpret the experiment re-
sults, we would like to emphasize that our experiments are
under incomplete optimality setting such that confidence it-
self is not enough to learn the optimal policy as indicated by
the GAIL (Reweight) baseline. Since the difficulty of each
task varies, we use different number of nc+nu for different
tasks. Our contribution is that in addition to the confidence,
our methods are able to utilize the demonstration mixture
(sub-optimal demonstration) and learn near-optimal poli-
cies.

We can observe that IC-GAIL converges slower than 2IWIL.
As discussed in Section 4.4, it can be attributed to that the
term with respect to the agent in Eq. (10) is scaled by 0.7 as
specified by τ , which decreases the influence of the agent
policy in updating discriminator. The faster convergence of
2IWIL can be an advantage over IC-GAIL when interactions
with environments are expensive. Even though the objective
of IC-GAIL becomes biased by not using the class prior α,
it still converges to near-optimal policies in four tasks.

In Walker2d-v2, the improvement in performance of our
methods is not as significant as in other tasks. We conjec-
ture that it is caused by the insufficiency of confidence in-
formation. This can be verified by observing that the GAIL
(Reweight) baseline in Walker2d-v2 gradually converges to
0.2 whereas in other tasks it achieves the performance of at
least 0.4. In HalfCheetah-v2, we observe that the discrimi-
nator is stuck in a local maximum in the middle of learning,
which influences all methods significantly.

The baseline GAIL (Reweight) surpasses GAIL (C) in all
tasks, which shows that reweighting enables the agent to
learn policies that obtain higher average return. However,
since the number of confidence instances is small, the infor-
mation is not enough to derive the optimal policies. GAIL
(U+C) is the standard GAIL without considering confidence
information. Although the baseline uses the same num-
ber of demonstrations nc + nu as our proposed methods,
the performance difference is significant due to the use of
confidence.

5.2. Robustness to Gaussian noise in confidence

In practice, the oracle that gives confidence scores is basi-
cally human labelers and they may not be able to accurately
label confidence all the time. To investigate robustness
of our approaches against noise in the confidence scores,
we further conduct an experiment on Ant-v2 where the
Gaussian noise is added to confidence scores as follows:
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Figure 1. Learning curves of our 2IWIL and IC-GAIL versus baselines given imperfect demonstrations. The x-axis is the number of
training epochs and the shaded area indicates standard error.
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Figure 2. Learning curves of proposed methods with different stan-
dard deviations of Gaussian noise added to confidence. The num-
bers in the legend indicate the standard deviation of the Gaussian
noise.

r(x) = p?(y = 1|x)+ε, where ε ∼ N (0, σ2). Fig. 2 shows
the performance of our methods in this noisy confidence
scenario. It reveals that both methods are quite robust to
noisy confidence, which suggests that the proposed methods
are robust enough to human labelers, who may not always
correctly assign confidence scores.

5.3. Influence of unlabeled data

In this experiment, we would like to evaluate the perfor-
mance of both 2IWIL and IC-GAIL with different numbers
of unlabeled data to verify whether unlabeled data is useful.
As we can see in Fig. 3, the performance of both methods
grows as the number of unlabeled data increases, which con-
firms our motivation that using unlabeled data can improve
the performance of imitation learning when confidence data
is scarce. As discussed in Sec. 4.4, the different roles of un-
labeled data in the two proposed methods result in dissimilar
learning curves with respect to unlabeled data.

6. Conclusion
In this work, we proposed two general approaches IC-GAIL
and 2IWIL, which allow the agent to utilize both confi-
dence and unlabeled data in imitation learning. The setting
considered in this paper is usually the case in real-world
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Figure 3. Learning curves of the proposed methods with different
number of unlabeled data. The numbers in the legend suggest the
proportion of unlabeled data used as demonstrations. 1.0 is the
same as the data used in Fig. 1.

scenarios because collecting optimal demonstrations is nor-
mally costly. In 2IWIL, we utilized unlabeled data to derive
a risk estimator and obtained the minimum variance with
respect to the combination coefficient β. 2IWIL predicts
confidence scores for unlabeled data and matches the opti-
mal occupancy measure based on the GAIL objective with
importance sampling. For IC-GAIL, we showed that the
agent learns an optimal policy by matching a mixture of
normalized occupancy measures p′ with the normalized
occupancy measure of the given demonstrations p.

Practically, we conducted extensive experiments to show
that our methods outperform baselines by a large margin,
to confirm that our methods are robust to noise, and to
verify that unlabeled data has a positive correlation with the
performance. The proposed approaches are general and can
be easily extended to other IL and IRL methods (Li et al.,
2017; Fu et al., 2018; Kostrikov et al., 2019).

For future work, we may extend it to a variety of appli-
cations such as discrete sequence generation because the
confidence in our work can be treated as a property indica-
tor. For instance, to generate soluble chemicals, we may
not have enough soluble chemicals, whereas the Crippen
function (Crippen & Snow, 1990) can be used to evaluate
the solubility as the confidence in this work easily.
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