
Insertion Transformer:
Flexible Sequence Generation via Insertion Operations

Mitchell Stern 1 2 William Chan 1 Jamie Kiros 1 Jakob Uszkoreit 1

Abstract

We present the Insertion Transformer, an itera-
tive, partially autoregressive model for sequence
generation based on insertion operations. Unlike
typical autoregressive models which rely on a
fixed, often left-to-right ordering of the output,
our approach accommodates arbitrary orderings
by allowing for tokens to be inserted anywhere
in the sequence during decoding. This flexibil-
ity confers a number of advantages: for instance,
not only can our model be trained to follow spe-
cific orderings such as left-to-right generation or
a binary tree traversal, but it can also be trained
to maximize entropy over all valid insertions for
robustness. In addition, our model seamlessly ac-
commodates both fully autoregressive generation
(one insertion at a time) and partially autoregres-
sive generation (simultaneous insertions at multi-
ple locations). We validate our approach by ana-
lyzing its performance on the WMT 2014 English-
German machine translation task under various
settings for training and decoding. We find that
the Insertion Transformer outperforms many prior
non-autoregressive approaches to translation at
comparable or better levels of parallelism, and
successfully recovers the performance of the orig-
inal Transformer while requiring only logarithmi-
cally many iterations during decoding.

1. Introduction
Neural sequence models (Sutskever et al., 2014; Cho et al.,
2014) have been successfully applied to many applications,
including machine translation (Bahdanau et al., 2015; Lu-
ong et al., 2015), speech recognition (Bahdanau et al., 2016;
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Chan et al., 2016), speech synthesis (Oord et al., 2016a;
Wang et al., 2017), image captioning (Vinyals et al., 2015b;
Xu et al., 2015) and image generation (Oord et al., 2016b;c).
These models have a common theme: they rely on the chain-
rule factorization and have an autoregressive left-to-right
structure. This formulation bestows many advantages in
both training and inference. Log-likelihood computation is
tractable, allowing for efficient maximum likelihood learn-
ing. Efficient approximate inference is also made possible
through beam search decoding. However, the autoregressive
framework does not easily accommodate for parallel token
generation or more elaborate generation orderings (e.g., tree
orders).

More recently, there has been work on non-autoregressive
sequence models such as the Non-Autoregressive Trans-
former (NAT) (Gu et al., 2018) and the Iterative Refinement
model (Lee et al., 2018). In both of these models, the de-
coder is seeded with an initial input derived from the source
sequence, then produces the entire target sequence in paral-
lel. Lee et al. (2018) adds an iterative refinement stage to the
decoder in which a new hypothesis is produced conditioning
on the input and the previous output.

While allowing for highly parallel generation, there are a
few drawbacks to such approaches. The first is that the target
sequence length needs to be chosen up front, preventing the
output from growing dynamically as generation proceeds.
This can be problematic if the chosen length is too short
to accommodate the desired target, or can be wasteful if
it is too long. In the case of Gu et al. (2018), there is
also a strong conditional independence assumption between
output tokens, limiting the model’s expressive power. Lee
et al. (2018) relaxes this assumption but in turn requires two
separate decoders for the initial hypothesis generation and
the iterative refinement stage.

In this work, we present a flexible sequence generation
framework based on insertion operations. The Insertion
Transformer is an iterative, partially autoregressive model
which can be trained in a fully end-to-end fashion. Gen-
eration is accomplished by repeatedly making insertions
into an initially-empty output sequence until a termination
condition is met. Our approach bypasses the problem of
needing to predict the target sequence length ahead of time
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Serial generation:

t Canvas Insertion

0 [] (ate, 0)
1 [ate] (together, 1)
2 [ate, together] (friends, 0)
3 [friends, ate, together] (three, 0)
4 [three, friends, ate, together] (lunch, 3)
5 [three, friends, ate, lunch, together] (〈EOS〉, 5)

Parallel generation:

t Canvas Insertions

0 [] (ate, 0)
1 [ate] (friends, 0), (together, 1)
2 [friends, ate, together] (three, 0), (lunch, 2)
3 [three, friends, ate, lunch, together] (〈EOS〉, 5)

Figure 1. Examples demonstrating how the clause “three friends ate lunch together” can be generated using our insertion framework. On
the left, a serial generation process is used in which one insertion is performed at a time. On the right, a parallel generation process is used
with multiple insertions being allowed per time step. Our model can either be trained to follow specific orderings or to maximize entropy
over all valid actions. Some options permit highly efficient parallel decoding, as shown in our experiments.

by allowing the output to grow dynamically, and also per-
mits deviation from classic left-to-right generation, allowing
for more exotic orderings like balanced binary trees.

During inference, the Insertion Transformer can be used
in an autoregressive manner for serial decoding, with one
insertion operation being applied at a time, or in a partially
autoregressive manner for parallel decoding, with insertions
at multiple locations being applied simultaneously. This
allows for the target sequence to grow exponentially in
length. In the case of a balanced binary tree order, our
model can use as few as blog2 nc+ 1 operations to produce
a sequence of length n, which we find achievable in practice
using an appropriately chosen loss function during training.

2. Sequence Generation via Insertion
Operations

In this section, we describe the abstract framework used by
the Insertion Transformer for sequence generation. The next
section then describes the concrete model architecture we
use to implement this framework.

We begin with some notation. Let x be our source can-
vas and y be our target canvas. In the regime of sequence
modeling, a canvas is a sequence and we use the terms
interchangeably. While this paper focuses on sequence gen-
eration, we note that our framework can be generalized to
higher-dimensional outputs (e.g., image generation).

Let ŷt be the hypothesis canvas at time t. Because our
framework only supports insertions and not reordering
operations, it must be a subsequence of the final output
hypothesis ŷ. For example, if the eventual output were
ŷ = [A,B,C,D,E], then ŷt = [B,D] would be a valid
intermediate canvas while ŷt = [B,A] would not. We do
not restrict ourselves to one insertion per step, meaning ŷt
could have more than t tokens.

Further, let C be our content vocabulary (i.e., token vocabu-
lary for sequences). At each iteration t, the Insertion Trans-
former produces a joint distribution over the choice of con-

tent c ∈ C and all available insertion locations l ∈ [0, |ŷt|]
in the current hypothesis canvas ŷt. In other words, the
Insertion Transformer models both what to insert and where
to insert relative to the current canvas hypothesis ŷt:

p(c, l | x, ŷt) = InsertionTransformer(x, ŷt). (1)

As an example, suppose our current hypothesis canvas
is ŷt = [B,D] and we select the insertion operation
(c = C, l = 1). This will result in the new hypothesis
canvas ŷt+1 = [B,C,D]. Also see Figure 1 for an example
showing the full generation process for a typical English
sentence.

The permitted insertion locations allow for insertions any-
where in the canvas from the leftmost slot (l = 0) to the
rightmost slot (l = |ŷt|). Generation always begins with an
empty canvas ŷ0 = [] with just a single insertion location
l = 0, and concludes when a special marker token is emit-
ted. Exact details on termination handling can be found in
Section 4.4, where we describe two variants.

3. Insertion Transformer Model
The concrete model we use for the Insertion Transformer
is a modified version of the original Transformer (Vaswani
et al., 2017), with the decoder having been altered to induce
a distribution over insertions anywhere in the current output
rather than just at the end. We outline the key changes
below.

Full Decoder Self-Attention. We remove the causal self-
attention mask from the decoder so that all positions can
attend to all other positions, as opposed to just those to the
left of the current position. This allows each decision to
condition on the full context of the canvas hypothesis for
the current iteration.

Slot Representations via Concatenated Outputs. The
standard Transformer decoder produces n vectors for a se-
quence of length n, one per position, with the last one being
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used to pick the next word. Our model instead requires
n + 1 vectors, one for each of the n − 1 slots between
words plus 2 for the beginning and end slots. We achieve
this by adding special marker tokens at the beginning and
end of the decoder input to extend the sequence length by
two. We then take the resulting n + 2 vectors in the final
layer and concatenate each adjacent pair to obtain n+ 1 slot
representations. Hence each slot is summarized by the final
representations of the positions to its left and right.

3.1. Model Variants

Beyond the required structural changes above, there are
several variations of our model that we explore.

Content-Location Distribution. We need to model the
joint content-location distribution for the insertion opera-
tions. We present two approaches: the first directly models
the joint distribution, the second relies on a factorization.

Let H ∈ R(T+1)×h be the matrix of slot representations,
where h is the size of the hidden state and T is the length
of the current partial hypothesis. Let W ∈ Rh×|C| be the
standard softmax projection matrix from the Transformer
model. We can simply use this projection matrix to compute
the content-location logits, then flatten this matrix into a
vector and directly take the softmax over all the content-
location logits to obtain a jointly normalized distribution:

p(c, l) = softmax(flatten(HW )). (2)

Another approach is to model the joint distribution using
a conditional factorization, p(c, l) = p(c | l)p(l). We can
model the conditional content distribution as is done in the
normal Transformer:

p(c | l) = softmax(hlW ), (3)

where hl ∈ Rh is the l-th row of H . In other words, we
apply the softmax per-row in the matrixHW . We separately
model the location distribution by taking the softmax of the
dot product of the hidden states and a learnable query vector
q ∈ Rh:

p(l) = softmax(Hq). (4)

This approach requires a small number of additional param-
eters h compared to modeling the joint distribution directly.

Contextualized Vocabulary Bias. To increase informa-
tion sharing across slots, we can perform a max pooling
operation over the final decoder hidden vectors H to obtain
a context vector g ∈ Rh. We then project g into the vocabu-
lary space using a learned projection matrix V ∈ Rh×|C| to
produce a shared bias b ∈ R|C|. We then add b to the result
to the vocabulary logits at each position as an additional

shared bias. We believe this may be useful in providing the
model with coverage information, or in propagating count
information about common words that should appear in
multiple places in the output. Formally, we have

b = maxpool(H)V (5)
B = repmat(b, [T + 1, 1]) (6)

p(c, l) = softmax(HW +B) (7)

Mixture-of-Softmaxes Output Layer. Unlike the output
vectors of a typical autoregressive model which only need to
capture distributional information about the next word, the
slot vectors in our model are responsible for representing
entire bags of words. Moreover, depending on the order
of generation, they might correspond to any contiguous
span of the final output, making this a highly nontrivial
modeling problem. We posit that the language modeling
softmax bottleneck identified by Yang et al. (2018) poses
even greater challenges for our setup. We try including the
mixture-of-softmaxes layer proposed in their work as one
means of addressing the issue.

4. Training and Loss Functions
The Insertion Transformer framework is flexible enough to
accommodate arbitrary generation orders, including those
which are input- and context-dependent. We discuss several
order loss functions that we can optimize for.

4.1. Left-to-Right

As a special case, the Insertion Transformer can be trained
to produce its output in a left-to-right fashion, imitating
the conventional setting where this ordering is enforced by
construction. To do so, given a training example (x, y), we
randomly sample a length k ∼ Uniform([0, |y|]) and take
the current hypothesis to be the left prefix ŷ = (y1, . . . , yk).
We then aim to maximize the probability of the next content
in the sequence c = yk in the rightmost slot location l = k,
using the negative log-likelihood of this action as our loss
to be minimized:

loss(x, ŷ) = − log p(yk+1, k | x, ŷ). (8)

When the sequence is complete, i.e. k = n, we take yk+1

to be the end-of-sequence token 〈EOS〉. We note that there
are several differences between our left-to-right order loss
and a standard autoregressive Transformer log-probability
loss. We describe them in detail in Section 4.5.

4.2. Balanced Binary Tree

A left-to-right strategy only allows for one token to be in-
serted at a time. On the other end of the spectrum, we
can train for maximal parallelism by using a balanced bi-
nary tree ordering. The centermost token is produced first,
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then the center tokens of the spans on either side are pro-
duced next, and this process is recursively continued un-
til the full sequence has been generated. As an example,
for the target output [A,B,C,D,E, F,G], the desired or-
der of production would be [] → [D] → [B,D,F ] →
[A,B,C,D,E, F,G], where multiple insertions are exe-
cuted in parallel. See Section 5 for more details on parallel
decoding.

To achieve this goal, we use a soft binary tree loss encour-
aging the model to assign high probability to tokens near
the middle of the span represented by a given slot. Partial
canvas hypotheses are generated randomly so as to improve
robustness and reduce exposure bias.

In more detail, given a training example (x, y), we first
sample a subsequence ŷ from the set of all subsequences of
the target y. One option would be to sample uniformly from
this set, which could be accomplished by iterating through
each token and keeping or throwing it out with probability
1/2. Though simple, this approach would overexpose the
model to partial outputs with length close to |y|/2 and would
underexpose it to hypotheses that are nearly empty or nearly
complete.

To circumvent this issue, we instead use a biased sam-
pling procedure that gives uniform treatment to all lengths.
In particular, we first sample a random length k ∼
Uniform([0, |y|]), then sample a random subsequence of
y of length k. The latter step is carried out by constructing
an index list [1, . . . , |y|], shuffling it, and extracting the to-
kens corresponding to the first k indices in the order they
appear in the target sequence y.

Once we have our randomly chosen hypothesis ŷ, it remains
to compute the loss itself. For each of the k + 1 slots
at locations l = 0, . . . , k, let (yil , yil+1, . . . , yjl) be the
span of tokens from the target output yet to be produced at
location l. We first define a function dl giving the distance
from the center of the span corresponding to location l:

dl(i) =

∣∣∣∣ il + jl
2
− i
∣∣∣∣ . (9)

We use the negative distance function −dl as the reward
function for a softmax weighting policy wl (Rusu et al.,
2016; Norouzi et al., 2016) (see Figure 2 for an illustration):

wl(i) =
exp(−dl(i)/τ)∑jl

i′=il
exp(−dl(i′)/τ)

. (10)

Next we define the slot loss at location l as a weighted
sum of the negative log-likelihoods of the tokens from its
corresponding span:

slot-loss(x, ŷ, l) =

jl∑
i=il

− log p(yi, l | x, ŷ) · wl(i). (11)

A B C D E F G H I
Uniform Loss Balanced Binary Tree Loss

J K L M N O

Figure 2. A visualization of the weighting of the per-token negative
log-likelihoods in the balanced binary tree and uniform losses. The
balanced binary tree loss strongly incentivizes the generation of
the center word or center words within each slot.

In other words, the loss encourages the model to prioritize
the tokens closest to the center based on dl. The temperature
hyperparameter τ allows us to control the sharpness of the
weight distribution, with τ → 0 approaching a peaked dis-
tribution placing all the weight on the centermost token (or
centermost two tokens in the case of an even-length span),
and τ →∞ approaching a uniform distribution over all the
missing content for a slot.

Finally, we define the full loss as the average of slot losses
across all locations:

loss(x, ŷ) =
1

k + 1

k∑
l=0

slot-loss(x, ŷ, l). (12)

4.3. Uniform

In addition to encouraging the model to follow a particular
generation order, we can also train it to learn an agnostic
view of the world in which it assigns equal probability mass
to each correct action with no special preference. This neu-
tral approach is useful insofar as it forces the model to be
aware of all valid actions during each step of decoding, pro-
viding a rich learning signal during training and maximizing
robustness.

Such an approach also bears resemblance to the principle of
maximum entropy, which has successfully been employed
for maximum entropy modeling across a number of domains
in machine learning.

To implement this loss, we simply take τ →∞ in the binary
tree loss of the previous section, yielding a slot loss of

slot-loss(x, ŷ, l) =
1

jl − il + 1

jl∑
i=il

− log p(yi, l | x, ŷ).

(13)

This is the mean of the negative log-probabilities of the cor-
rect actions for the given slot, which we note is maximized
by a uniform distribution. Then as before, we take the full
loss to be the mean of the slot losses.

4.4. Termination

We experiment with two termination conditions for the bi-
nary tree and uniform losses, slot finalization and sequence
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finalization, and compare their empirical performance in our
experiments.

For slot finalization, when computing the slot loss for a
location corresponding to an empty span in the true output,
we take the target to be a single end-of-slot token. Then, all
slot losses are always well-defined, and at generation time
we can cease decoding when all slots predict an end-of-slot.
We note for clarity that this special token appears in the
vocabulary of the model but is never actually produced; see
Section 5 for more details.

Alternatively, for sequence finalization, we leave the slot
losses undefined for empty spans and exclude them from the
overall loss. Once the entire sequence has been produced
and all locations correspond to empty spans, we take the slot
loss at every location to be the negative log-likelihood of an
end-of-sequence token. This is identical to the slot finaliza-
tion approach at the very end, but differs while generation
is ongoing as no signal is provided for empty slots.

4.5. Training Differences

In a typical neural autoregressive model, there is a unidi-
rectional flow of information in the decoder. This allows
hidden states to be propagated (and reused) across time steps
during the generation process, since they will remain unal-
tered as the hypothesis is extended rightward. In contrast,
because we allow for insertions anywhere in the sequence,
our approach lacks this unidirectional property and we must
recompute the decoder hidden states for each position after
every insertion.

This has several consequences. First, there is no state (or
gradient) propagation between generation steps. Next, in-
stead of being able to efficiently compute the losses for all
generation steps of an example in one fell swoop as is usu-
ally done, we can only compute the loss for one generation
step at a time under the same memory constraints. Accord-
ingly, our batch size is effectively reduced by a factor of the
average sequence length, which has the potential to affect
convergence speed and/or model quality. Finally, since we
need to subsample generation steps during training, as op-
posed to a standard Transformer that can compute all the
generation steps in a sequence for free, our gradient suffers
from extra variance due to the sampling process. Under the
right training conditions, however, we find these not to be
major hindrances.

5. Inference
Recall that at each time step t, the Insertion Transformer
yields a distribution p(c, l | x, ŷt) over content c and loca-
tion l given the input sequence x and current partial output
sequence ŷt. This highly flexible model opens the door for
both sequential and parallel inference techniques, which we

describe in more detail below.

5.1. Greedy Decoding

First we have a standard greedy approach to decoding, in
which the action with the highest probability across all
choices of content c and location l is selected:

(ĉt, l̂t) = argmax
c,l

p(c, l | x, ŷt). (14)

Once the best decision has been identified, we insert token
ĉt at location l̂t to obtain the next partial output ŷt+1.

For models trained towards sequence finalization, this pro-
cess continues until an end-of-sequence token gets selected
at any location, at which point the final output is returned.

For models trained towards slot finalization, we restrict the
argmax to locations whose maximum-probability decision
is not end-of-slot, and finish only when the model predicts
an end-of-slot token for every location.

5.2. Parallel Decoding

If we train an Insertion Transformer towards slot finaliza-
tion, we can also parallelize inference across slots within
each time step to obtain a simple partially autoregressive
decoding algorithm.

In more detail, for each location l we first compute the
following maximum-probability actions:

ĉl,t = argmax
c

p(c | l, x, ŷt). (15)

For the version of the model whose joint distribution factors
as p(c, l) = p(l)p(c | l), the required conditional distribu-
tion p(c | l) is already available. For the jointly normalized
model, we can either obtain the conditional via renormal-
ization as p(c | l) = p(c, l)/p(l) = p(c, l)/

∑
c′ p(c

′, l), or
compute it directly by taking a softmax over the subset of
logits at location l. In both cases, all the required conditional
distributions can be computed in parallel.

Next, we filter out the locations for which the maximum-
probability decision is an end-of-slot token, and for each
location l that remains, insert the selected token ĉl,t into that
slot. The resulting sequence becomes the next partial output
ŷt+1. This process continues until an end-of-slot token is
predicted at every location.

Since the parallel decoding scheme described here allows
for a token to be inserted in every slot at every time step,
a sequence of length n could theoretically be generated in
as few as blog2 nc+ 1 steps. We find that this logarithmic
complexity is attainable in practice in our experiments.
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Loss Termination BLEU (+EOS) BLEU (+EOS) BLEU (+EOS)

+Distillation +Distillation, +Parallel

Left-to-Right Sequence 20.92 (20.92) 23.29 (23.36) -

Binary Tree (τ = 0.5) Slot 20.35 (21.39) 24.49 (25.55) 25.33 (25.70)
Binary Tree (τ = 1.0) Slot 21.02 (22.37) 24.36 (25.43) 25.43 (25.76)
Binary Tree (τ = 2.0) Slot 20.52 (21.95) 24.59 (25.80) 25.33 (25.80)

Uniform Sequence 19.34 (22.64) 22.75 (25.45) -
Uniform Slot 18.26 (22.16) 22.39 (25.58) 24.31 (24.91)

Table 1. Development BLEU scores obtained via greedy decoding for our basic models trained with various loss functions and termination
strategies. The +EOS numbers are the BLEU score obtained when an EOS penalty is applied during decoding to discourage premature
stopping. The +Distillation numbers are for models trained with distilled data. The +Parallel numbers are obtained with parallel decoding,
which is applicable to models trained with the slot finalization termination condition.

6. Experiments
In this section, we explore the efficacy of our approach
on a machine translation task, analyzing its performance
under different training conditions, architectural choices,
and decoding procedures. We experiment on the WMT 2014
English-German translation dataset, using newstest2013 for
development and newstest2014 for testing, respectively. All
our experiments are implemented in TensorFlow (Abadi
et al., 2015) using the Tensor2Tensor framework (Vaswani
et al., 2018). We use the default transformer base
hyperparameter set reported by Vaswani et al. (2018) for
all hyperparameters not specific to our model. We perform
no additional hyperparameter tuning. All our models are
trained for 1,000,000 steps on eight P100 GPUs.

6.1. Baseline Results

We first train the baseline version of our model with different
choices of loss functions and termination strategies. Greedy
decoding results on the development set are given for each
setting in the third column of Table 1.

We observe that the binary tree loss performs the best when
standard greedy decoding is used, attaining a development
BLEU score of 21.02. We also find that our left-to-right
models do poorly compared to other orderings. One expla-
nation is that the gradients of the binary tree and uniform
losses are much more informative, in that they capture in-
formation on all the missing tokens, whereas left-to-right
only provides information about the next one. We note that
in all cases, even after 1,000,000 steps the models are still
improving and do not appear to overfit.

Upon inspecting the outputs of these models, we found
that some of the most common and severe mistakes were
due to the model assigning high probability to the terminal
token (end-of-slot or end-of-sequence, both abbreviated
as EOS) too early in the decoding process, resulting in
artificially short outputs. To rectify this, we introduce an
EOS penalty hyperparameter, which is a scalar subtracted

from the log-probability assigned by the model to an EOS
at each location during decoding. Using a penalty of β
prevents the model from selecting an EOS unless there is
a difference of at least β between the log-probability of
EOS and the log-probability of the second-best choice. This
approach is similar the length normalization techniques used
in many sequence models (Graves, 2012). We perform a
sweep over the range [0, 7] and report the best result for
each model in parentheses. A well-chosen EOS penalty
can have a sizable effect, increasing the BLEU score by
nearly 4 points in some cases, and its inclusion brings the
highest development score to 22.64 for the uniform loss
with sequence-level finalization.

6.2. Knowledge Distillation

Following prior work (Gu et al., 2018; Stern et al., 2018), we
also train our models with knowledge distillation (Hinton
et al., 2015; Kim & Rush, 2016) from a standard Trans-
former. We observe improvements of 3 to 4 BLEU points
across the board, showing that distillation is remarkably
effective for our setting. As before, the models trained with
a binary tree loss are approximately 2 BLEU points better
than those trained with a uniform loss when standard decod-
ing is performed, but the differences largely vanish when
using a properly-tuned EOS penalty for each model. The
best model by a small margin is the one trained with a binary
tree loss with temperature τ = 2.0, which achieves a 25.80
BLEU score on the development set.

6.3. Architectural Variants

Next we explore different combinations of the architectural
variants described in Section 3.1. Using the uniform loss,
slot finalization, and distillation as a neutral baseline con-
figuration, we train each variant and decode on the develop-
ment set to obtain the results given in Table 2.

Many of the configurations help improve performance when
decoding without an EOS penalty. In particular, using joint
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Joint Contextual Mixture BLEU (+EOS)

7 7 7 22.39 (25.58)
3 7 7 22.92 (25.14)
7 3 7 23.00 (25.41)
7 7 3 22.19 (25.58)
3 3 7 23.22 (25.44)
3 7 3 20.17 (24.19)
7 3 3 23.29 (25.48)
3 3 3 22.16 (25.44)

Table 2. Development BLEU scores obtained via greedy decoding
when training models with the architectural variants discussed in
Section 3.1. All models are trained with a uniform loss and slot
finalization on distilled data.

Model BLEU (+EOS)

Binary Tree (τ = 0.5) 25.33 (25.70)
Binary Tree (τ = 1.0) 25.43 (25.76)
Binary Tree (τ = 2.0) 25.33 (25.80)

Uniform 24.31 (24.91)
Uniform + Contextual 24.54 (24.74)
Uniform + Mixture 24.33 (25.11)
Uniform + Contextual + Mixture 24.68 (25.02)

Table 3. Parallel decoding results on the development set for some
of our stronger models. All numbers are comparable to or even
slightly better than those obtained via greedy decoding, demon-
strating that our model can perform insertions in parallel with little
to no cost for end performance.

normalization, a contextualized vocabulary bias, or both
leads to improvements of 0.5-0.8 BLEU over the baseline.
Once we tune the EOS penalty for each setting, however,
the improvements largely disappear. The best configura-
tions, primarily those involving mixture-of-softmaxes, are
within 0.1 BLEU of the baseline. This suggests that the core
architecture is already sufficiently powerful when decoding
is well-tuned, but that it may be useful to consider some
variations when looking at other inference settings.

6.4. Parallel Decoding

Thus far, all our experiments have used greedy decoding.
However, as described in Section 5, models trained towards
slot finalization also permit a parallel decoding scheme in
which tokens are simultaneously inserted into every unfin-
ished slot at each time step until no such slots remain. We
decode the development set using this strategy for some of
our more promising models, giving results in Table 3. An
example decode is provided in Figure 4 for reference.

First and foremost, we observe that all scores are on par with
those obtained via greedy decoding, and in some cases are
even better. This demonstrates that with a proper training
objective, our model can seamlessly accommodate parallel
insertions with little effect on end performance. The fact
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Figure 3. Plot showing number of decoding iterations versus output
length as measured on the development set for our best models. To
produce an output of length n, an insertion-based model requires
at least blog2 nc+1 iterations and at most n. While greedy decod-
ing cannot do better than the upper bound, our parallel decoding
scheme nearly achieves the lower bound in all cases.

that some scores are improved suggests that greedy search
may suffer from issues related to local search that are cir-
cumvented by making multiple updates to the hypothesis
at once. We leave this as an interesting topic for future
investigation.

In addition, we find that parallel decoding also helps close
the gap between results obtained with and without an EOS
penalty. We believe this may be due in part to the fact
that the number of decoding iterations is reduced substan-
tially, thereby giving fewer opportunities for the model to
erroneously stop at an intermediate state.

We also perform a more careful analysis of the extent of
the parallelism achieved by our highest-scoring models. In
Figure 3, we plot the number of decoding iterations taken
vs. the output length n for each development sentence. We
also plot the theoretical lower bound of blog2 nc + 1 and
the upper bound of n on the number of iterations. Note
that greedy decoding takes n steps by definition. Our best
model comes impressively close to the lower bound across
the entire development set, rarely deviating by more than
1 or 2 iterations. This demonstrates that our framework is
capable of producing high-quality output using a sub-linear
(i.e. logarithmic) number of generation steps. In terms of
wall-clock speedup, our best binary tree model exhibits a
4.19x latency improvement over a baseline Transformer for
single-sentence decoding of the development set on GPU.

6.5. Test Results

Finally we report results in Table 4 on the newstest2014
test set using our best hyperparameters as measured on the
development set. When compared with related approaches,
we find that we match the high quality of models requiring a
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Input: But on the other side of the state, that is not the impression many people have of their former governor.

Output: Aber auf der anderen Seite des Staates ist das nicht der Eindruck, den viele von ihrem ehemaligen Gouverneur haben.

Parallel decode (binary tree loss):
Aber auf der anderen Seite des Staates ist das nicht der Eindruck , den viele von ihrem ehemaligen Gouverneur haben .
Aber auf der anderen Seite des Staates ist das nicht der Eindruck , den viele von ihrem ehemaligen Gouverneur haben .
Aber auf der anderen Seite des Staates ist das nicht der Eindruck , den viele von ihrem ehemaligen Gouverneur haben .
Aber auf der anderen Seite des Staates ist das nicht der Eindruck , den viele von ihrem ehemaligen Gouverneur haben .
Aber auf der anderen Seite des Staates ist das nicht der Eindruck , den viele von ihrem ehemaligen Gouverneur haben .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 4. Example decode using a model trained with the binary tree loss. Within each row, the underlined blue words are those being
inserted, and the gray words represent those from the final output that have not yet been generated. We observe that the model is able to
achieve a high degree of parallelism, matching the logarithmic theoretical lower bound on the number of parallel decoding iterations
thanks to its training objective.

Model BLEU Iterations

Autoregressive Left-to-Right
Transformer (Vaswani et al., 2017) 27.3 n

Semi-Autoregressive Left-to-Right
SAT (Wang et al., 2018) 24.83 n/6
Blockwise Parallel (Stern et al., 2018) 27.40 ≈ n/5

Non-Autoregressive
NAT (Gu et al., 2018) 17.69 1
Iterative Refinement (Lee et al., 2018) 21.61 10

Our Approach (Greedy)
Insertion Transformer + Left-to-Right 23.94 n
Insertion Transformer + Binary Tree 27.29 n
Insertion Transformer + Uniform 27.12 n

Our Approach (Parallel)
Insertion Transformer + Binary Tree 27.41 ≈ log2 n
Insertion Transformer + Uniform 26.72 ≈ log2 n

Table 4. BLEU scores on the newstest2014 test set for the WMT
2014 English-German translation task. Our parallel decoding strat-
egy attains the same level of accuracy reached by linear-complexity
models while using only a logarithmic number of decoding steps.

linear number of iterations while using a logarithmic number
of generation steps. In practice, as shown in Figure 3, we
rarely require more than 10 generation steps, meaning our
empirical complexity even matches that of Lee et al. (2018)
who use a constant 10 steps. When trained with the binary
tree loss, we find that the Insertion Transformer is able
to match the standard Transformer model while requiring
substantially fewer generation iterations.

7. Related Work
There has been prior work on non-left-to-right autoregres-
sive generation. Vinyals et al. (2015a) explores the modeling
of sets, where generation order does not matter. Ford et al.
(2018) explores language modeling where select words (i.e.,
functional words) are generated first, and the rest are filled
in using a two-pass process. There has also been prior work
in hierarchical autoregressive image generation (Reed et al.,

2017), where log n steps are required to generate n tokens.
This bears some similarity to our balanced binary tree order.

Shah et al. (2018) also recently proposed generating lan-
guage with a dynamic canvas. Their work can be seen as a
continuous relaxation version of our model, wherein their
canvas is an embedding space, while our canvas contains
discrete tokens. They applied their approach to language
modeling tasks, whereas we apply ours to conditional lan-
guage generation in machine translation.

In addition, there has been recent work on non-
autoregressive machine translation (Gu et al., 2018; Lee
et al., 2018) and semi-autoregressive translation (Stern et al.,
2018; Wang et al., 2018). The key difference between our
work and prior work is that the Insertion Transformer frame-
work can accommodate for a dynamically growing canvas
size while still achieving sub-linear generation complexity.
Other models also tend to degrade with increasing paral-
lelism, while our model trained with the balanced binary tree
loss suffers no model degradation under parallel decoding.

8. Conclusion
In this paper, we presented the Insertion Transformer, a par-
tially autoregressive model for sequence generation based
on insertion operations. Our model can be trained to fol-
low arbitrary generation orderings, such as a left-to-right
order or a balanced binary tree order, or can be optimized
to learn all possible orderings, making it also applicable to
completion or infilling tasks. The model can be decoded
serially, producing one token at a time, or it can be decoded
in parallel with simultaneous insertions at multiple locations.
When using the binary tree loss, we find empirically that
we can generate sequences of length n using close to the
asymptomatic limit of blog2 nc+1 steps without any quality
degradation. This allows us to match the performance of the
standard Transformer on the WMT 2014 English-German
translation task while using substantially fewer iterations
during decoding.
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