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Abstract
The recent Attend-Infer-Repeat (AIR) framework
marks a milestone in structured probabilistic mod-
eling, as it tackles the challenging problem of
unsupervised scene understanding via Bayesian
inference. AIR expresses the composition of vi-
sual scenes from individual objects, and uses vari-
ational autoencoders to model the appearance of
those objects. However, inference in the overall
model is highly intractable, which hampers its
learning speed and makes it prone to suboptimal
solutions. In this paper, we show that the speed
and robustness of learning in AIR can be con-
siderably improved by replacing the intractable
object representations with tractable probabilistic
models. In particular, we opt for sum-product
networks (SPNs), expressive deep probabilistic
models with a rich set of tractable inference rou-
tines. The resulting model, called SuPAIR, learns
an order of magnitude faster than AIR, treats ob-
ject occlusions in a consistent manner, and allows
for the inclusion of a background noise model,
improving the robustness of Bayesian scene un-
derstanding.

1. Introduction
Deriving meaningful representations from data with inherent
structure is a key problem in machine learning and artificial
intelligence. A natural approach to this problem is gener-
ative modeling, which postulates a latent data generating
process, and reasons about this process conditioned on data.
In the vision domain, for example, the idea of “vision as
inverse graphics” has a particularly long history (Grenander,
1976) due to its natural appeal. Unfortunately, it has suf-
fered from the highly intractable posterior of the graphical
rendering process.
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Recently, deep neural generative models such as variational
autoencoders (VAEs) (Kingma & Welling, 2014) and gen-
erative adversarial networks (GANs) (Goodfellow et al.,
2014) have shown remarkable success in generative image
modeling. However, since their basic variants deliver rather
unstructured latent representations, several structured latent
variable models based on VAEs have been proposed. A
particularly notable model is Attend-Infer-Repeat (AIR) (Es-
lami et al., 2016), which incorporates VAEs as object models
within a scene generation process and learns a recurrent neu-
ral network (RNN) to dynamically detect multiple objects
composed in a scene. Other examples of structured models
are (Johnson et al., 2016), which incorporate VAEs into a
latent switching linear dynamical system to infer behavioral
patterns from mice depth videos, and SketchRNN (Ha &
Eck, 2018), which uses an RNN to infer the trajectory of a
pen from given sketches.

None of these models require supervision in the form of
observed latent representations. Instead, the nature of these
representations is specified through the model structure.
To this end, the structure is imbued with available prior
knowledge, such as the rules of object interaction, pen stroke
rendering, or Markovian assumptions of biological behavior.
Other parts such as the appearance of objects or typical
pen trajectories are subject to learning. Exact inference is
almost always intractable, either because the global model
structure is already intractable itself or because intractable
components such as VAEs are used.

Recent advances in variational inference, see e.g. (Zhang
et al., 2017) for an overview, have enabled impressive re-
sults in such highly intractable models. Some of the key con-
tributing factors in these advances are inference networks
and amortization (Gershman & Goodman, 2014; Kingma
& Welling, 2014), the reparameterization trick (Kingma &
Welling, 2014; Titsias & Gredilla-Lázaro, 2014; Schulman
et al., 2015), and techniques for reducing the variance in
gradient estimates (Mnih & Gregor, 2014). Despite these
improvements, however, inference in such large-scale struc-
tured models is far from solved, leading to slow learning or
suboptimal inference results, expressed in e.g. poor local
optima in the variational objective.

In this paper, we demonstrate that these issues can be ef-
fectively mitigated by replacing intractable components in
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these systems with expressive tractable probabilistic models.
Here we focus on AIR, but our insights generalize and are
easily translated to other structured models. In particular, we
propose a modification of AIR, which uses sum-product net-
works (SPNs) (Darwiche, 2003; Poon & Domingos, 2011)
as object models, instead of VAEs. SPNs are a class of
rich hierarchical latent variable models (Zhao et al., 2015;
Peharz et al., 2017), which has been successfully applied
in tasks like image recognition (Gens & Domingos, 2012),
language modeling (Cheng et al., 2014), speech process-
ing (Peharz et al., 2014), and robotics (Zheng et al., 2018).
Compared to other deep probabilistic models, SPNs have
a crucial advantage: any marginal probability can be ef-
ficiently and exactly computed in a simple forward pass.
The availability of marginals plays a key role in our deriva-
tion of the variational lower bound for our model – called
Sum-Product Attend-Infer-Repeat (SuPAIR) – and allows
us to robustly handle noisy backgrounds and treat object
occlusions in a principled manner.

Replacing intractable VAEs with SPNs leads to a dramatic
reduction of the inference effort. In particular, our inference
network does not need to predict latent object codes nor do
we require object reconstructions—rather, we are able to
directly assign well-calibrated likelihood scores to proposed
scene descriptions. This approach can be understood as a
form of Rao-Blackwellization and drastically reduces the
variance in gradient estimates for the variational objective.
As shown in our experiments, SuPAIR yields significant
reductions in training time as well as increased robustness
compared to the original AIR system. Our code is available
online.1

We proceed with touching upon related work and reviewing
the required background on AIR and SPNs. Based on this,
we introduce the SuPAIR model and derive a learning objec-
tive for it. Before concluding, we present our experimental
evaluation.

2. Related Work and Background
Let us start off by discussing related work and introducing
the required background on SuPAIR.

2.1. Attend-Infer-Repeat (AIR)

Unlike previous work, e.g. (Lempitsky & Zisserman, 2010),
the Attend-Infer-Repeat (AIR) framework approaches the
problem of object counting and scene understanding in an
unsupervised way, using a Bayesian approach. In particular,
it is assumed that a given scene (image) x is generated ac-
cording to some generative process p(x, z) = p(x | z) p(z).
Here, z denotes a latent scene description equipped with
prior p(z), and p(x | z) represents the synthesis process

1github.com/stelzner/supair

(scene rendering) of the generative model. In this frame-
work, scene analysis is cast into standard Bayesian infer-
ence, i.e. we condition on a scene x and infer the poste-
rior p(z |x) ∝ p(x | z) p(z). The posterior might be used
to derive a single scene description via a MAP solution
argmaxz p(z |x), or the whole posterior might be incor-
porated into a downstream decision making process. This
interpretation of computer vision as inverse graphics has a
long tradition (Grenander, 1976), but poses a notoriously
hard inference problem.

Although general Bayesian scene understanding is hard, sig-
nificant progress has been made by utilizing recent advances
in variational inference. To this end, Eslami et al. (2016) in-
troduced the following assumptions. The scene descriptor z
is organized inN blocks, i.e. z = (z1, . . . , zN ), correspond-
ing toN objects in the scene. Each block zi = (ziwhere, z

i
what)

contains a description for its respective object, where zwhere
contains pose parameters (translation and scale) and zwhat de-
scribes object appearance (object class, texture, etc). Since
the number of objects in a scene varies, N is also a random
variable, taking values between zero and some Nmax.

Assuming a priori independence among the objects and the
descriptor components, the prior of the entire scene descrip-
tion z takes the form p(z) = p(N)

∏N
i=1 p(z

i
where) p(z

i
what).

The number of objects N is straightforwardly modeled via
e.g. a categorical or (truncated) geometric distribution. The
distribution over pose parameters ziwhere can also take a sim-
ple form, such as a uniform distribution over a suitable range.
In order to describe the appearance of objects, however, a
more expressive model is required. The approach taken by
Eslami et al. (2016) is to leverage a variational autoencoder
(VAE) (Kingma & Welling, 2014) using the Gaussian dis-
tributed ziwhat as its latent code. ziwhat is processed by a neural
net, generating an object draft yi, the visual appearance of
a single object. Each yi is then transformed by its corre-
sponding pose parameters ziwhere and inserted into a private
canvas, denoted as ỹi. Finally, the pixelwise means of scene
x are generated as the sum of all ỹi which are present in the
scene, i.e., for which i ≤ N . The final distribution over x is
then given by an isotropic Gaussian with these means and
fixed variance.

Inference in AIR is addressed by recent variational infer-
ence techniques. First, it uses amortization (Gershman &
Goodman, 2014; Kingma & Welling, 2014) by using an
inference network to approximate the posterior p(z |x). Fol-
lowing the compositional structure of the model, an RNN is
employed as the inference network, at each step outputting
a variational distribution q(ziwhere, z

i
what, z

i
pres), conditioned

on the input x and the previously inferred object descriptors.
Here, the binary variable zipres indicates at each inference
step whether the ith object is present or if all objects have
been found and the inference process should terminate. This

github.com/stelzner/supair
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effectively parameterizes q(N) as a series of yes/no deci-
sions, such that

q(N=n) = (1− q(zn+1
pres ))

∏n

i=1
q(zipres). (1)

Both the model and inference parameters are learned by
stochastic optimization of the evidence lower bound (ELBO)
(Hoffman et al., 2013). To yield gradient estimates of the
ELBO, the reparameterization trick (Kingma & Welling,
2014; Titsias & Gredilla-Lázaro, 2014) is employed where
possible. For discrete variables, in particular for the zipres,
score estimators with variance reduction techniques are used
(Mnih & Gregor, 2014; Schulman et al., 2015).

While Eslami et al. (2016) delivered impressive results,
learning and inference in AIR – and other structured prob-
abilistic models – is far form solved. One issue is the non-
trivial interplay between the generative model and the infer-
ence network, which frequently causes the generative model
to adapt to a too weak inference network (Cremer et al.,
2018). On the other hand, and somewhat paradoxically,
trying to improve the quality of the variational approxima-
tion might also be detrimental for learning (Rainforth et al.,
2018).

In this paper, we argue that these problems can be mitigated
by switching to a model with significantly simplified in-
ference. In particular, we propose to replace the biggest
intractable part – the object VAEs – with tractable mod-
els, waiving the necessity to infer high-dimensional latent
codes representing the objects. To this end, we propose to
use models which are both tractable yet expressive, such as
SPNs (Darwiche, 2003; Poon & Domingos, 2011), which
are introduced next.

2.2. Sum-Product Networks (SPNs)

Let x = (x1, . . . , xD) denote a random vector. A sum-
product network (SPN) over x is defined via an acyclic
directed graph, containing leaf distributions, sum nodes, and
product nodes. Each leaf of an SPN is a distribution function
over some sub-vector y of x. The sub-vector y for which the
leaf is a distribution, is denoted as the scope of the leaf. For
internal nodes, we recursively define the scope as the union
of the children’s scopes. Internal nodes are either mixtures
(sum nodes), i.e. they compute a convex combination of
their children, or factorized distributions (product nodes),
i.e. they compute a product of their children. An SPN needs
to fulfill two structural requirements (Poon & Domingos,
2011), namely completeness (i.e. for each sum, all children
have identical scope) and decomposability (i.e. for each
product, the scopes of its children are non-overlapping). It
follows by induction that every node in the SPN computes a
proper distribution function over its scope. We assume that
the SPN has a single root with scope x, which represents
our model distribution over x.

ziwhere yi

x

ybgN

i = 1, . . . ,Nmax

Figure 1. The generative model forming the basis for SuPAIR. The
scene x is modeled to be composed of background ybg and up to
Nmax objects drafts yi. Position and scale of object yi within the
scene is encoded in the latent parameter vector ziwhere. The number
of present objects is given by the discrete variable N .

A crucial advantage of SPNs is that they can compute any
sub-marginal of the overall distribution. As shown in (Pe-
harz et al., 2015), marginalization in SPNs reduces to the
corresponding marginalization tasks at the leaves, and eval-
uating the rest of the SPN as usual, in a single feedforward
pass. This marginalization is particularly easy when single-
dimensional leaves are used, since in this case we simply
need to set leaves of marginalized variables to 1.

The modeled distribution depends on both the SPN structure
(the graph) and its parameters (sum weights and parameters
of leaf distributions), which are both subject to learning. For
structure learning, various approaches have been proposed,
such as specifying the structure based on domain knowledge
(Poon & Domingos, 2011), top-down co-clustering (Den-
nis & Ventura, 2012; Gens & Domingos, 2013; Rooshenas
& Lowd, 2014; Vergari et al., 2015; Molina et al., 2018),
and bottom-up greedy learning (Peharz et al., 2013). The
parameters can be learned using gradient descent (Gens
& Domingos, 2012), expectation-maximization (Poon &
Domingos, 2011; Peharz et al., 2017), the convex-concave
procedure (Zhao et al., 2016a), or Bayesian methods (Zhao
et al., 2016b; Trapp et al., 2017; Vergari et al., 2019). Re-
cently, random tensorized SPNs (RAT-SPNs) (Peharz et al.,
2018) have been proposed, which use a random overparame-
terized structure, waiving the necessity of structure learning.
In the setting of AIR, we do not know the dataset that each
SPN will need to model a priori, complicating the applica-
tion of structure learning. To demonstrate that our approach
does not depend on domain knowledge informing the choice
of SPN structure, we use RAT-SPNs in our proposed Su-
PAIR system. For details on their structure, we refer to the
supplementary and Peharz et al. (2018).

3. Sum-Product Attend-Infer-Repeat
We now develop the Sum-Product AIR (SuPAIR) frame-
work, following the generative model shown in Fig. 1. There
are three main differences to the original AIR system:
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x RNN zi STL M i

M bg

SPNobj

SPNbg

pobj(x
i=1)

pbg(x
bg=1)

p(z)/q(z |x)

× L

i = 1 . . . Nmax

Figure 2. Computation graph for learning in SuPAIR. Given an image x, an RNN infers the number, position and size of objects, encoded
in object descriptors zi. The spatial transformer layer (STL) then computes object and background masks (M i, M bg) which indicate the
marginalization domains for the object SPN and the background SPN. Due to our deterministic cut-and-paste interaction model and the
tractable marginalization property in SPNs, a Rao-Blackwellized evidence lower bound is obtained from the SPNs’ outputs.

1. We directly model the distribution over object drafts
yi with SPNs. Therefore, we do not need to infer
latent object codes during learning, instead, we effec-
tively marginalize both the latent SPN variables and yi,
which can be seen as a type of Rao-Blackwellization,
speeding up the training process.

2. We incorporate a background model ybg which al-
lows for the capture of image noise and increases the
model’s robustness.

3. We use an alternative interaction (scene rendering)
model, which plays well with efficient SPN inference.

Let us now devise the SuPAIR model in detail, touching in
turn upon the priors, the interaction model, how to marginal-
ize objects and the background, and finally how to perform
variational inference. As a whole, this results in the SuPAIR
computation graph shown in Fig. 2.

3.1. Objects, Background, and Scene Priors

The SuPAIR model generates a scene x of sizeB×B. Each
scene contains 0 ≤ N ≤ Nmax objects, where the prior over
N is modelled as a truncated geometric distribution. Each
object i has latent pose parameters ziwhere, a 4-tuple repre-
senting the coordinates and size of the object’s bounding
box. The prior over each ziwhere is modeled as a uniform
distribution with suitable bounds. To prevent highly or even
fully occluded objects, we add an unnormalized penalty
term modelled as a Gamma distribution over each object’s
occlusion ratio, the ratio of its pixels which are occluded in
the scene.

The visual content yi of object i is generated by a RAT-
SPN over an A × A pixel array. To model the individual
pixels, we employ univariate Gaussians at the leaf nodes. In
this paper, we let the objects share the SPN’s parameters,
i.e. all objects have the same prior distribution, denoted
yi ∼ pobj(·). However, objects could also be easily equipped

xxbg=1

x̃1=1

x̃2=1

Figure 3. Cut-and-Paste Interaction Model: We assume that objects
occlude the background and each other. Consequently, at inference
time, we use the scene description z to decompose scenes x into
their parts, the (rescaled) objects x̃i=1 and the background xbg=1.
Occluded parts of background and objects are unobserved and
drawn in yellow. The marginal likelihood of each component can
then be evaluated using SPNs. (Best viewed in color)

with private SPNs, and the SPNs could also be conditioned
on some context, such as a class variable. While SuPAIR
does not explicitly include latent object codes like AIR’s
zwhat, if necessary such representations can still be obtained
from the object SPN via the procedure proposed by Vergari
et al. (2018). Furthermore, and differently from AIR, we
assume a background model ybg of the same size as the
canvas, i.e. B × B, also represented by a RAT-SPN with
Gaussian leaves. We denote this density as ybg ∼ pbg(·).
Background and present objects are then combined into a
scene according to an interaction (rendering) model, which
is described next.

3.2. Cut-and-Paste Interaction Model

To render a scene, we follow a natural cut-and-paste ap-
proach, as illustrated by Fig. 3. First, the background is
inserted into the canvas, and then, one after the other, each
object is inserted, occluding portions of the background and
possibly other previously drawn objects. We assume that ob-
jects with smaller indices are in front of objects with larger
indices, similar to how graphics engines employ z-buffers.

More formally, let the latent factors of SuPAIR N , ybg,
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and all yi, ziwhere be given. To avoid cluttered notation,
we sometimes use y1...Nmax for all objects, y for all objects
and background, and z for all scene descriptors. Now, we
define B × B object indicator matrices Ii which are 1
within the transformation window of the ith object, and
0 elsewhere. Furthermore, we recursively define the mask
matricesM i := Ii

∏
j<i(1−Ij) andM bg :=

∏N
i=1(1−Ij).

Note that {M i}Ni=1 and M bg encode a partition of the scene,
i.e. they are all binary B × B-matrices and sum up to the
constant 1 matrix. In particular, they indicate visible pixels
for the objects (if present) and the background. We define
the scaled version of the objects ỹi = ỹi(yi, ziwhere) as the
result of transforming yi according to ziwhere, and inserting it
into an empty (black) B ×B-canvas. Now, the interaction
model can be formalized as

p(x | y, z) = δx

[
M bg × ybg +

N∑
i=1

M i × ỹi
]
, (2)

where × denotes element-wise multiplication, and δx[·] the
Dirac delta at x. Note that in this interaction model each
pixel in x is deterministically given by either the background
ybg or one of the transformed objects ỹi. This allows us to
marginalize the scene components y, which will tremen-
dously speed up the inference and learning process.

3.3. Marginalizing Objects and Background

Putting everything together, we arrive at the joint distribu-
tion of our model, given as p(x, y, z) =

p(x | y, z)pbg(y
bg)p(N)

Nmax∏
i=1

pobj(y
i)p(ziwhere). (3)

By conditioning on x, we can obtain a posterior over y and
z. However, since we use SPNs as priors for the objects
and the background, and since we use the deterministic
interaction model (2), we are able to marginalize y:

p(x, z) =

∫
...

∫
p(x, ybg, y1...Nmax , z) dybgdy1...Nmax . (4)

This is highly beneficial for learning, since we are ultimately
interested in the posterior over the scene description z, and
not in the latent scene components y. Note that each of the
multi-dimensional integrals in (4) can be written as a series
of single-dimensional integrals.

Marginalizing non-present objects (i.e. where i > N ) is
trivial, since the interaction model (2) does not depend on
them. Thus, the integration over their appearances yi can be
switched with the product in (3). Since their priors p(yi) are
normalized, the integrals over them evaluate to 1, i.e. they
are effectively removed from the product.

Next, we discuss how to marginalize ybg. To this end, let
the entries in ybg be split into two groups ybg=0 and ybg=1,

indicated by M bg = 0 and M bg = 1, respectively. Since
the interaction model p(x | y, z) does not depend on ybg=0,
these pixels are just marginalized from the prior over ybg

in (3). On the other hand, for ybg=1, we know that for all
i, M i = 0 at these pixels, so that (2) puts all probability
mass on the event ybg=1 = xbg=1, where, akin to the defi-
nition above, xbg=1 are those pixels in x where M bg = 1.
Consequently, marginalizing over ybg yields p(x, z) =

pbg(x
bg=1)

∫
...

∫
p(xbg=0, y1...N , z) dy1...N . (5)

Here, we can readily draw on the remarkable property of
SPNs, which allows us to evaluate the marginal pbg(x

bg=1)
using a single network pass. Moreover, by applying auto-
matic differentiation, we can obtain the gradients required
for learning without any extra effort.

We can, in principle, proceed in a similar way as with ybg

and eliminate one object yi after the other, as there is no
difference in the functional form for objects and background
in (2). However, note that while the background ybg enters
directly in (2), each object yi is incorporated via its trans-
formation ỹi(yi, ziwhere). Following the same argument as
above, the ith object is marginalized from (5), by integrating
yi over the event ỹi=1(yi, ziwhere) = xi=1, where ỹi=1 and
xi=1 are the pixels indicated by M i = 1. Unfortunately,
when standard image transformations such as bilinear in-
terpolation are employed, the mapping from yi to ỹi is
many-to-one, rendering this integral analytically intractable,
even for SPNs.

One approach for addressing this problem is to choose
a transformation which makes each pixel in yi either in-
dependent of, or uniquely determined by, ỹi, such as the
probabilistic hard downsampling procedure described in the
following. We assume that the size A × A of the objects
yi is chosen such that ziwhere only involves downsampling,
i.e. the objects are modeled at their maximal resolution. Let
W ×H be the size of the transformed object, as determined
by ziwhere. By interpreting the coefficients of the bilinear
transform from size W ×H to A×A as probabilities, we
randomly select a pixel from yi for each pixel in xi=1. Now,
given such a hard mapping, xi=1 can be evaluated as a
marginal of pobj such that the joint (5) reduces to p(x, z) =

p(N)pbg(x
bg=1)

N∏
i=1

pobj(x
i=1)

Nmax∏
i=1

p(ziwhere). (6)

For a fixed downsampling scheme, only one random sub-
marginal of the SPN is queried with xi=1, and thus “in-
formed” during learning. Ideally, we should marginalize
over all possible downsampling schemes in order to get a
smooth transformation in expectation. This marginalization
can be efficiently incorporated into stochastic variational op-
timization, by simply drawing a new downsampling scheme
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in each iteration. This introduces some additional noise into
the learning process, but does not introduce bias into the
SuPAIR model.

In practice, we choose a more pragmatic approach by using
a simple but biased method to approximate probabilistic
downsampling. Rather than evaluating the object SPN at a
random sub-marginal, we scale the content of the object’s
bounding box xi=1 to the SPN’s native dimensions A×A,
approximating the inverse of ỹi. We can then evaluate the
SPN on this scaled version of xi=1. We also scale the
content of M i to respect marginalized pixels stemming
from occlusion. Since this scaling of the input introduces
“artificial” dimensions in the model, we renormalize the
result by p← pWiHi/A

2

. In sum, the approximate version
of probabilistic downsampling is computed as p(x, z) =

p(N)pbg(x
bg=1)

N∏
i=1

pobj(x̃
i=1)WiHi/A

2
Nmax∏
i=1

p(ziwhere) (7)

where x̃i=1 denotes the scaled input.

3.4. Variational Inference

The joint, obtained from either (6) or (7), can now be used
to perform posterior inference over the latent scene descrip-
tion z. To this end, we employ an RNN as an inference
network, representing the variational distribution qφ(z |x),
which detects one object in each iteration. We process the
input scene x using an LSTM layer with 256 hidden units,
the output of which is fed into two fully connected layers
with 50 and 9 units, respectively. The 9 outputs are the pa-
rameters for SuPAIR’s scene descriptors for a single object,
namely 8 parameters (means and standard deviations) for
the 4-dimensional q(ziwhere), modeled as Gaussian, and one
parameter for the Bernoulli q(zipres). As in AIR, the latter
is used to parameterize q(N |x) as defined in (1). We sum-
marize all parameters of the inference networks in φ and all
SPN parameters in θ. The prior parameters of z are kept
fixed (see supplementary).

We simultaneously learn the SuPAIR model and the in-
ference network by optimizing the evidence lower bound
(ELBO)

L = Eqφ(z | x) [log pθ(x, z)− log qφ(z |x)] (8)

with respect to θ and φ. The ELBO can be estimated us-
ing Monte Carlo samples from the variational distribution
qφ(z |x), yielding an unbiased but potentially high-variance
estimator. The reparameterization trick (Kingma & Welling,
2014; Schulman et al., 2015) is one of the most effective
techniques to reduce the gradient’s variance, and is straight-
forwardly applied to ziwhere. To ensure differentiability of
the likelihood with respect to ziwhere, we use bilinear interpo-
lation when computing the mask matrices M . This allows

the masks to take non-integer values, slightly blending the
scene components at their edges. The main invariant of
the cut-and-paste model is still maintained, however, as the
mask matrices continue to sum to one. Following AIR, we
refer to this interpolation step as spatial transformer layer
(STL), originally proposed as a subcomponent in (Jaderberg
et al., 2015).

While the discrete variable N cannot be easily reparame-
terized, its expectation in (8) can be computed exactly via
enumeration for only a low computational cost. Since our
variational distribution factorizes over z, we can write the
ELBO as L =

Eq(zwhere)

[
Nmax∑
n=0

q(n |x) (log p(x, z)− log q(z |x))

]
. (9)

As mentioned above, the outer expectation in (9) is handled
by stochastic variational inference and the reparameteriza-
tion of zwhere. The expectation over N is treated as a sum
over the possible numbers of objects. To compute it, we
merely require Nmax + 1 evaluations of the background
network, to compute pbg(x

bg=1) for each of the possible
occlusion masks. Similarly, the object SPN only needs to be
evaluated once for each of the Nmax potential objects, since
objects with higher indices are behind objects with lower
indices. Thus, the object related terms in the joint are either
not included (object is missing) or the same for each n.

4. Experiments
In this section we compare SuPAIR to the original AIR
system (Eslami et al., 2016), and investigate the follow-
ing two questions: (Q1) Do tractable appearance models
lead to faster and more stable learning, i.e. with smaller
variance? (Q2) Does an explicit background model make
SuPAIR more robust to noise than AIR? To this end, we im-
plemented SuPAIR in TensorFlow, making use of the RAT-
SPN implementation by Peharz et al. (2018). We have also
experimented with the SPN structure formulated by Poon &
Domingos (2011) for the image domain, but have not found
it to deliver significant improvements in learning speed or
accuracy. We therefore report the results obtained using
the more generally applicable random structures. All ex-
periments were conducted using a single NVIDIA GeForce
GTX 1080 Ti and a AMD Ryzen Threadripper 1950X CPU.
Since the original code by Eslami et al. (2016) is not publi-
cally available, we made use of the well-documented AIR
implementation in Pyro (Bingham et al., 2018) as our base-
line, adopting the hyperparameter settings recommended by
the authors.

4.1. Benchmark Datasets

We conducted experiments on two standard benchmarks
for AIR, each with a different set of objects: Multi-MNIST,
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Table 1. Number of parameters for SuPAIR and AIR. Note that
AIR does not feature a (parameterized) background model, while
SuPAIR does not require data-dependent baselines.

SuPAIR AIR
Inference network 2,836,477 2,879,488
Object model 286,560 344,884
Background model 90,108 0
Baselines 0 2,879,745
Total 3,213,145 6,104,117

using MNIST-digits as objects, and Sprites, a dataset using
artificially generated geometric shapes. In both datasets,
each scene is a 50 × 50 grayscale image containing zero,
one or two objects, with their positions and scale varied
according to uniform distributions. Scenes with excessively
overlapping objects are discarded. 20% of each dataset was
retained as a test set to evaluate the count accuracy achieved
by the inference network.

4.2. Hyperparameters and Inductive Bias

Unlike AIR, our model does not make the hard assumption
that the background will always be black. It is therefore
necessary to provide SuPAIR with some inductive bias ex-
pressing what ought and ought not to be considered back-
ground. As is common for unsupervised models, we specify
this bias by means of hyperparameters.

Since we expect the background to be less visually complex
than the objects, we make the background-SPN shallower
and narrower, giving it less room to model dependencies. In
turn, we set a lower limit for the variance of its Gaussian leaf
nodes, allowing it to achieve higher likelihood scores on low
variance data, such as black background. We have found
this to be a surprisingly subtle yet effective way of guiding
the model. While stronger biases could of course be speci-
fied, for instance by constraining the means of the Gaussian
leaves or even by pretraining the SPNs on manually labelled
data, we have found this not to be necessary to achieve good
performance. The total number of learnable parameters in
SuPAIR is given by Table 1 and is comparable to AIR, with
the main difference being the lack of a baseline inference
network, a consequence of our choice to enumerate N .

4.3. (Q1) Counting Objects

Fig. 4 depicts the inference results obtained at various stages
of training, illustrating that our model learns to correctly
count and locate the objects. A comparison of the count
accuracies achieved over the course of training is provided
in Fig. 5, highlighting the main advantage of our approach:
training on MNIST is close to an order of magnitude faster
when compared to the original AIR system. We have found
that executing a single training epoch for SuPAIR is about

Table 2. Count accuracies and ELBO values achieved after con-
vergence. Note that the ELBO scores are not directly comparable
between SuPAIR and AIR, due to the different formulations of the
generative model.

Count Accuracy ELBO
SuPAIR AIR SuPAIR AIR

Multi-MNIST 98.3% 94.7% 4923 615
Sprites 99.2% 95.9% 5022 685
Noisy-MNIST 93.8% 0.0% 1047 232
Grid-MNIST 97.5% 0.0% 3564 228

Figure 4. Inference results of SuPAIR on Multi-MNIST (left) and
Sprites (right) after t training epochs. The outlines of the up to
three predicted object positions are displayed as bounding boxes.
The model reliably learns to count and locate the objects in both
datasets.

40% faster than for AIR, likely a consequence of the lack of
baseline networks. This also suggests that most of the over-
all speedup can be attributed to faster statistical convergence
as opposed to computational speed. The final accuracies and
ELBO values achieved are given by Table 2. We note that
the convergence speed we observed for AIR compares favor-
ably with the numbers reported in the literature: Eslami et al.
(2016) state they achieved convergence after two days of
training on a NVIDIA Quadro K4000, while Bingham et al.
(2018) report convergence after about 15 minutes on the
much more powerful NVIDIA K80. On the sprite dataset,
SuPAIR converged even faster, reaching a count accuracy
of over 95% in less than a minute.

4.4. (Q2) Robustness to Noise

In order to evaluate the robustness of our model, we also
trained it on two variants of the Multi-MNIST dataset, each
featuring a different type of background, one resembling
pure noise, the other structured background. For the first
case, we simply add Gaussian noise to the entire scene. For
the second, we generate a regular grid by coloring every
fifth row and column of pixels gray, starting at a randomly
selected offset. The MNIST digits are then overlaid on top.

Fig. 6 depicts the inference results of both SuPAIR and
AIR after training on these datasets. Our model is still
able to locate the digits, albeit with a slightly decreased
count accuracy of about 90%. The results of the ablation
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Figure 5. Learning progress of SuPAIR and AIR on the four
datasets. As an ablation test, we also report results for a variant
of SuPAIR without a learned background model (”w/o bg”). On
Multi-MNIST and Sprites, SuPAIR achieves a high count accuracy
almost an order of magnitude faster than AIR.

test reported in Fig. 5 indicate that the background model
is indeed crucial for this. AIR on the other hand fails in
this setting: unsurprisingly, due to its lack of background
model, it is forced to allocate at least one object to the entire
image in order to attempt to reconstruct the background.
More severe, however, is the fact that AIR’s variational
autoencoder fails to properly capture the distribution over
objects. Its reconstructions only render a vague blur in the
place of detected objects. This effect significantly degrades
the training signal for the RNN, which consequently fails to
accurately detect and locate the digits.

5. Conclusion
Structured probabilistic models such as AIR have achieved
impressive results in various applications, mainly fueled
by recent advances in approximate inference. We cannot,
however, expect approximate inference to be a silver bullet,
in particular for models of increasing complexity. Mean-
while, advances in probabilistic deep learning have shown
that tractable models, such as sum-product networks (SPNs),
can also be used to faithfully capture high-dimensional dis-
tributions. Consequently, building structured probabilistic
models which combine the best of both worlds appears to
be a fruitful avenue.

We presented a modification of AIR called SuPAIR, which
learns to count and locate scene elements using SPNs as ob-
ject appearance models. This allows SuPAIR to marginalize
object and background models, yielding a well-calibrated
scene likelihood. As a result, the SuPAIR inference network
does not need to predict latent object codes, drastically re-

original

input

SuPAIR
result

SuPAIR
recon-

struction

AIR
result

AIR
recon-

struction

Figure 6. Comparison of the inference results and reconstructions
of SuPAIR and AIR on two variants of Multi-MNIST featuring
either Gaussian noise (left) or a regular grid background drawn at
a random offset (right). Reconstructions for SuPAIR are obtained
according to the procedure proposed by Vergari et al. (2018). Note
that AIR always predicts Nmax = 3 objects.

ducing the variance of gradient estimates for the variational
objective. As shown in our experiments, this property yields
a dramatic reduction in training time, higher object detec-
tion accuracy, and improved noise robustness compared to
the original AIR system.

There are several interesting avenues for future work. One
possible direction is to combine the insights in this paper
with the various extensions of AIR which have been pro-
posed since the original paper. SQAIR (Kosiorek et al.,
2018) extends AIR to the sequential domain, SPAIR (Craw-
ford & Pineau, 2019) proposes a more scalable inference
network, and MONet (Burgess et al., 2019) features learned
object masks. Since these models all use VAEs as object
models, and since our contributions are independent of the
inference network used, they should transfer seamlessly.
More generally, other structured probabilistic models that do
not address scene understanding (Lake et al., 2015; George
et al., 2017) may also benefit from tractable components.
To this end, the use of other explicit probabilistic models
should also be explored, including autoregressive models
such as NADE (Uria et al., 2014) or PixelCNNs (van den
Oord et al., 2016) and normalizing flows (Rezende & Mo-
hamed, 2015). While these models do not deliver tractable
marginals, which formed the basis for our scene interac-
tion model, this feature may not be required in other do-
mains. Finally, one could apply the example set by SuPAIR
to deep probabilistic programming in general (Tran et al.,
2017; Bingham et al., 2018), striving for a framework which
combines generic probabilistic modeling with ameliorated
inference, by using tractable models as subcomponents and
inference machines.
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