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Abstract

Computing Nash equilibrium (NE) of multi-
player games has witnessed renewed interest due
to recent advances in generative adversarial net-
works. However, computing equilibrium effi-
ciently is challenging. To this end, we introduce
the Gradient-based Nikaido-Isoda (GNI) func-
tion which serves: (i) as a merit function, vanish-
ing only at the first-order stationary points of each
player’s optimization problem, and (ii) provides
error bounds to a stationary Nash point. Gradi-
ent descent is shown to converge sublinearly to
a first-order stationary point of the GNI function.
For the particular case of bilinear min-max games
and multi-player quadratic games the GNI func-
tion is convex. Hence, the application of gradient
descent in this case yields linear convergence to
an NE (when one exists). In our numerical exper-
iments we observe that the GNI formulation al-
ways converges to the first-order stationary point
of each player’s optimization problem.

1. Introduction
In this work, we consider the general N-player game:

Find * = (27,...,2%) s.t.
min  fi(z) (1)

nxe_ ;=

*
xr; = arg
g xR

where z; € R™, n = Zf\ilnl fi :R" - R,z =
(21,...,2n) € R™ denotes the collection of all z;’s, while

x _; denotes the collection of all x;’s except for index 4, i.e.

x ;= (T1,..., % 1,2it1,...,2y) € R Observe
that the choice of x_; are specified when performing the
minimization in (1) for player 3.

A point x* satisfying (1) is called a Nash Equilibrium
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(NE). We denote by SNE the set of all NE points, i.e.,
SNE = {z*|(1) holds}. In the absence of convexity for
the functions f; we may not be able to obtain a minimizer
in (1) and have to settle for a first-order stationary point. Ac-
cordingly, define SN to be the set of all Stationary Nash
Points, i.e., SSNF = {x* |V, f;(z*) =0;Vi=1,...,N}
where V; f denotes the derivative of function f w.rt. z;.

There has been renewed interest in Nash equilibrium com-
putation for games owing to the success of Generative
Adversarial Networks (GANSs) (Goodfellow et al., 2014).
GANSs have been successful in learning probability distribu-
tions and have found application in tasks including image-
to-image translation (Isola et al., 2016), domain adapta-
tion (Tzeng et al., 2017), probabilistic inference (Dumoulin
et al., 2016; Mescheder et al., 2017) among others. De-
spite their popularity, GANs are known to be difficult to
train. In order to stabilize training recent approaches have
resorted to carefully designed models, either by adapting
an architecture (Radford et al., 2015) or by selecting an
easy-to-optimize objective function (Salimans et al., 2016;
Arjovsky et al., 2017; Gulrajani et al., 2017).

The Nikaido-Isoda (NI) function (Nikaido & Isoda, 1955)
(formally introduced in §3) is popular in equilibrium compu-
tation (Uryasev & Rubinstein, 1994; Contreras et al., 2004;
Facchinei & Kanzow, 2007; von Heusinger & Kanzow,
2009a;b) and often used as a merit function for NE. The eval-
uation of the NI function requires optimizing each player’s
problem globally which can be intractable for non-convex
objectives.

In this paper, we introduce Gradient-based Nikaido-Isoda
(GNI) function which allows us to computationally sim-
plify the original NI formulation. Instead of computing a
globally optimal solution, every player can locally improve
their objectives using the steepest descent direction. The
proposed GNI function simplifies the original NI formula-
tion by relaxing the requirement on optimizing individual
player’s objective globally. We prove that GNI is a valid
merit function for multi-player games and vanishes only at
the first-order stationary points of each player’s optimiza-
tion problem (§3). The GNI function is shown to be locally
stable in a neighborhood of a stationary Nash point (§3.1)
and convex when the player’s objective function is quadratic
(§3.2). The gradient descent algorithm applied to the GNI
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function converges to a stationary Nash point (§4). In ad-
dition, if each of the player’s objective is convex in the
player’s variables (x;) then the algorithm converges to the
NE point as long as one exists (§4). A secant approximation
is provided to simplify the computation of the gradient of
the GNI function and the convergence of the modified algo-
rithm is also analyzed (§5). Numerical experiments in §6
show that the proposed algorithm is effective in converging
to stationary Nash points of the games.

We believe our proposed GNI formulation could be an effec-
tive approach for training GANs. However, we emphasize
that the focus of this paper is to provide a rigorous analysis
of the GNI formulation for games and explore its properties
in a non-stochastic setting. The adaptation of our proposed
formulations to a stochastic setting (which is the typical
framework commonly used in GANs) will need additional
results, which will be explored in a future paper.

2. Related Work

Nash Equilibrium (NE) computation, a key area in algo-
rithmic game theory, has seen a number of developments
since the pioneering work of John von Neumann (Basar
& Olsder, 1999). It is well known that the Nash equilib-
rium problem can be reformulated as a variational inequality
problem, VIP for short, see, for example, (Facchinei & Pang,
2003a). The VIP is a generalization of the first-order opti-
mality condition in SN to the case where the decision
variables of player i’s x; are constrained to be in a convex
set. Facchinei & Kanzow (2010) proposed penalty methods
for the solution of generalized Nash equilibrium problems
(Nash equilibrium problems with joint constraints). Tusem
et al. (2017) provides a detailed analysis of the extragra-
dient algorithm for stochastic pseudomonotone variational
inequalities (corresponding to games with pseudoconvex
costs).

Nash Equilibrium computation has found renewed inter-
est due to the emergence of Generative Adversarial Net-
works (GANSs). It has been observed that the alternating
stochastic gradient descent (SGD) is oscillatory when train-
ing GANs (Goodfellow, 2016). Several papers proposed
to modify the GAN formulation in order to stabilize the
convergence of the iterates. These include non-saturating
GAN formulation of (Goodfellow et al., 2014; Fedus et al.,
2018), the DCGAN formulation (Radford et al., 2015), the
gradient penalty formulation for WGANSs (Gulrajani et al.,
2017). The authors in (Yadav et al., 2017) proposed a mo-
mentum based step on the generator in the alternating SGD
for convex-concave saddle point problems. Daskalakis et
al. (Daskalakis et al., 2018) proposed the optimistic mir-
ror descent (OMD) algorithm, and showed convergence for
bilinear games and divergence of the gradient descent iter-
ates. In a subsequent work, Daskalakis et al. (Daskalakis

& Panageas, 2018) analyzed the limit points of gradient
descent and OMD, and showed that the limit points of
OMD is a superset of alternating gradient descent. Mer-
tikopoulos et al. (2019) generalized and extended the work
of Daskalakis et al. (2018) for bilinear games. Li et al.
(2017) dualize the GAN objective to reformulate it as a
maximization problem and Mescheder et al. (2017) add
the norm of the gradient in the objective. The norm of
the gradient is shown to locally stabilize the gradient de-
scent iterations in Nagarajan & Kolter (2017). Gidel et al.
(2018) formulate the GAN equilibrium as a VIP and pro-
pose an extrapolation technique to prevent oscillations. The
authors show convergence of stochastic algorithm under
the assumption of monotonicity of VIP, which is stronger
than the convex-concave assumption in min-max games.
Finally, the convergence of stochastic gradient descent in
non-convex games has also been studied in Bervoets et al.
(2018); Mertikopoulos & Zhou (2019).

In contrast to existing approaches, the GNI approach does
not assume monotonicity in the game formulations. The
GNI approach is also closely related to the idea of minimiz-
ing residuals (Facchinei & Pang, 2003a;b).

3. Gradient-based Nikaido-Isoda Function

The Nikaido-Isoda (NI) function introduced in (Nikaido &
Isoda, 1955) is defined as

b= (h@) . jnt

2 zER":_,=x_;
i=1

@)

=i ()

From the definition of NI function ¢ (x), it is easy to show
that ¢)(z) > 0 for all z € R™. Further, ¢)(x) = 0 is the
global minimum which is only achieved if the NE point
x* = (xF,...,x)) occurs at points where x; are global
minimizers of the respective optimization problems in (1).
A number of papers (Uryasev & Rubinstein, 1994; von
Heusinger & Kanzow, 2009a;b) have proposed algorithms
that minimize v (x) to compute NE points. However, the
infimum needed to compute 1);(x) can be prohibitive for
all but a handful of functions. For bilinear min-max games
(.e., fi(x) = 2Txy = — fo(x)), the infimum is unbounded
below and the approach of minimizing NI fails. To rectify
this recent papers have proposed regularized variants (von
Heusinger & Kanzow, 2009b). However, the cost of globally
minimizing the nonlinear function can still be prohibitive.

To rectify the shortcoming of the NI function, we introduce
the Gradient-based Nikaido-Isoda (GNI) function

N
V(zin) = filx) - fily(x;i,n) 2)

i=1
=:V;(a;m)
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x; —nVifi(x),ifj =1

where yj(ﬁc; iﬂl) = { ., otherwise
J» ’

where V, f(x) denotes the derivative of function f w.r.t. ;.

The GNI function is obtained by replacing the infimum in
the NI function for player ¢ with a point y(x;¢,7) in the
steepest descent direction. This provides a local measure of
decrease that can be obtained in the objective for player 3.
The point y(x; ¢, 7) is similar in spirit to the Cauchy point
that is used in trust-region methods (Nocedal & Wright,
2006). We will show that any point satisfying V;(x;n) =0
also satisfies V; f;(x) = 0. To show this, we first provide
bounds on V;(z;7n) in terms of the distance from first-order
optimality conditions for each of the players.

We make the following standing assumption.

Assumption 1. The functions f; are at least twice con-
tinuously differentiable and gradients of f; (i.e., V f;) are
Lipschitz continuous with constant L y.

Lemma 1. 2||V;f;(z)|? < Vi(z;n) < 3|V, fi(2)]|? for
allz e R"and 0 < n < L%

Proof. Using the Taylor’s series expansion of f; around x
and substituting for y(x;i,7), we obtain

fily(zsi,n)) = fi(z) —n||Vifi(z)]?

1
L / . ()T V2 £ (£ (1) Vs fi()tdt
0

where Li'l(t) = T; — thsz(:c) and {i'j(t) = Tj, fOI'j 75 1.
From the Lipschitz continuity of the gradient of f;, we have
that —LfIi = V?fl (i(t)) = Lf[i, where I; is the (n; X n;)
identity matrix. Substituting in the above and using 1 < L%
yields the claim. O

We now state our main result relating the zeros of V;(z; n)
and the first-order critical points of the players’s optimiza-
tion problems.

Theorem 1. The global minimizers of V (x;n) are all sta-
tionary Nash points, i.e., {x* |V (x*;n) = 0} = SNF for
all0 <n < L% If the individual functions f; are convex,

then the global minimizers of V (x;n) are precisely the set
SNE,

Proof. The nonnnegativity of V(x;n) follows from
Lemma 1. Further, V(x;n) = 0if and only if V, f; () = 0.
This proves the claim. The second claim follows by noting
that SVE = SSNP _if the functions fi are convex. O

Theorem 1 shows that the function V' (x; 7) can be employed
as a merit function for obtaining a stationary Nash point.

When f;(x) are non-convex, the convergence to first-order
point is possibly the best that one can hope for.

We provide the expressions for the gradient and Hessian of
V;(x; n) next. These expressions follow from the chain rule
of differentiation. The gradient of V;(x; ) is

VVi(z;n) = 3

Vii(®) — (I —nV2fi(2)E:) V fi(y(e;i,n))
where E; = F,F! with F; € R" " defined as F] =
[Oning;i n, i Onixz]N:M m] I eR"™" and I; €

R™*™ are identity matrices. The Hessian of V;(x;7) is
given by

V2Vi(ain) = V2 fi(@) + 0V (@) [EV fi(y,(2:4,m)]
— (I =V fi(2) E) V2 fi(y (i, ) (I — nE;V? fi())
“)
where V3 f;(@)[d] = limg o L@t =V2i@) i the
action of the third derivative along the direction d. These
expressions will come useful in our analysis to follow.

3.1. GNI is Locally Stable

GAN formulations typically result in objective functions
fi(x) that are not convex. Nagarajan and Kolter (Na-
garajan & Kolter, 2017) showed that the gradient descent
for min-max games is not stable for Wasserstein GANSs.
This is due to the concave-concave nature of Wasser-
stein GAN around stationary Nash points (Nagarajan &
Kolter, 2017). Daskalakis et al. (Daskalakis et al., 2018)
showed that the gradient descent diverges for simple bilin-
ear min-max games, while the optimistic gradient decent
algorithm of Rakhlin and Sridharan (Rakhlin & Sridha-
ran, 2013) was shown to be convergent. Daskalakis and
Pangeas (Daskalakis & Panageas, 2018) further analyzed
the limit points of gradient descent and optimistic gradient
descent using dynamical systems theory.

In this section, we show that at every stationary Nash point,
the Hessian of V' (a¢; ) is positive semidefinite. This ensures
that the points in S*V are all stable limit points for the
gradient descent algorithm on V' (x; ).

Lemma 2. For 0 < n < L% VV3(x*n) =

Zﬁvzl V2V, (x*;n) is positive semidefinite for all * €
SS’NP.

Proof. Letx* € SSNP. Since V, fi(x*) = 0, we have that
y(*;i,n) = @* and V3 fi(a*)[E:V fi(y(x;d,m))] = 0.
Substituting in the expression for V2V;(x;n) in (4) and
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simplifying, we obtain
) =20V fi(a*) BV fi(x")
— PV fi(a*) BV fi(x*) BV fi(x*)
=0V fi(*) 2E; — nE;V? fi(x*)

V2V;(w

®)

From the Lipschitz continuity of f;(x) we have that
V2f;(z*) = L;I,. Substituting into (5), we obtain
VEVi(a*in) =0V fi(a®) (2E; — (nLy) EF)V? fi(x¥)
=0V fi(x*) BV fi(x*)
where the final simplification follows from Ly < 1 and
E? = E;. The claim follows from the positive semidefinite-

ness of V2f;(x*)E;V2f;(z*). Since V2V (z*;n) is the
sum of positive semidefinite matrices the claim holds. [

3.2. Convexity Properties of GNI: An Example

In this section, we present an example NE reformulation
of a (non-) convex game using the GNI setup. Suppose the

player’s objective is quadratic, i.e., f;(x) = %:BTQiZB +
rTx. Then, the GNI function is
Vi(z) = fi(z) — fi(x —nE(Qix + 7)) (6)

—a’ (Q‘ - Qsz@z) x+nr] BiQ,(I + @z)x
+ 27’]"” (2E ’I]ElQllCz)’l"Z

where @
n < <

(I —nE;Q);). Suppose ||Q;|| < Ly and let
, then

= @?Qi@» = 0(Q,E) (21 —nQ,)(E:Q,) = 0 (7)

where the positive semidefiniteness holds since for all
uw A 0 uT(QE)(21 — nQ)(EQ)u = (Q,Eu) (2 -
1Q;)(Q,;E;u) > 0. Hence, when f;(x) is quadratic, the
GNI function is a convex, quadratic function. Note that
the convexity of GNI function holds regardless of the con-
vexity of the original function f;(x). However, for general
nonlinear functions f;(x), the GNI function V;(z) does not
preserve convexity.

4. Descent Algorithm for GNI

Consider the gradient descent iteration minimizing V (:; n)

2"t =zF — pVV(zF;in) fork=0,1,2,... (8)

where p > 0 is a stepsize. The restrictions on p, if any, are
provided in subsequent discussions.

Theorem 2 proves sublinear convergence of {z*} to a sta-
tionary point of GNI function based on standard analysis.

Ei)Vin(:c*

Linear convergence to a stationary point point is shown
under the assumption of the Polyak-Lojasiewicz inequal-
ity (Lojasiewicz, 1963; Polyak, 1963; Karimi et al., 2018).
Luo & Tseng (1993) employed similar error bound con-
)ditions in the context of descent algorithms of variational
inequalities.

Theorem 2. Suppose VV (x) is Ly -Lipschitz continuous.
Let p = - for 0 < a < 1. Then, the {z*} gen-
erated by (8) converges sublinearly to x* a first-order
stationary point of V(x;n), i.e. VV(x*;n) = 0. If
V(x;n) < iHVV(:I:;n)H2 then the sequence {V (x*)}

converges linearly to 0, i.e., {z"*} converges to x* € SSNF.

Proof. From Lipschitz continuity of VV (x; n)

V(xtthn) <V(ahin) + vV (hn)" (@ - 2F)
L
+ 7V||wk+1 _ ZCkHQ
<V(z",n) —p(l - 7)||VV( n|?
< k. _ «a . 2
<V(x";n) 5Ly [VV(z;n)]
&)

where @ = a(2 — «). Telescoping the sum for k = 0, ..., K,
we obtain

V(") <V Z IV (";m|? 10

Since V (z; n) is bounded below by 0, we have that

o vav n? < V() - V(@) < V()
V(x?)
Sre i VV@ES P < 2

This proves the claim on sublinear convergence to a first-
order stationary point of V(x;n). Suppose V(x;n) <
i [VV (z;n)||* holds. Substituting in (9) obtain

V(@) < (1 —au> V(x";n) (11)
Ly
which proves the claim on linear convergence of {V (x*; )}

to 0. By Theorem 1, {z*} converges to z* € SSNP. [0

4.1. Quadratic Objectives

In the following, we explore a popular setting of quadratic
objective function and explore the implication of Theorem 2.
Note that the bilinear case is a special case of the quadratic
objective. Consider the f;(x)’s to be quadratic. For this
setting §3.2 showed that GNI function V;(x) is a convex
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quadratic function. This proves that V;(x;n) has (3Ly)-
Lipschitz continuous gradient. It is well known that for
a composition of a linear function with a strongly con-
vex function, we have that Polyak-Lojasiewicz inequality
holds (Luo & Tseng, 1993), i.e., there exists x > 0 such that
Vix;n) < iu |[VV (x;n)||* holds. Hence, we can state the
following stronger result for quadratic objective functions.

Corollary 1. Suppose f;(x) are quadratic and player con-
vex, i.e. f;(x) is convex in x;. Let p = 3L ~- Then, the

sequence {V (x*)} converges linearly to 0, i.e. {x*} con-
verges to x* € SNE,

5. Modified Descent Algorithm for GNI

The evaluation of the gradient VV (x; n) requires the com-
putation of the Hessian of the functions f;(x) (see (3))
which can be prohibitive to compute. A close examination
of the expression of VV (x;n) in (3) reveals that we only
require the action of the Hessian in a particular direction,
ie. Vfi(x —nE;V f;(x)). This immediately suggests the
use of an approximation for this term inspired by secant
methods (Nocedal & Wright, 2006)

V2 fi(@)(nEV fi(x — nEV fi(z)))

~ Vfi(x +nEV fi(x —nE;V fi(x))) — Vfi(x) (12)

Substituting (12) for the term involving the HeAssian in
VV;(x;n) and simplifying obtain the direction VV;(x;n):

VVi(z;n) = Vfi(z + nEV fi(z — nEV fi(2)))

— Vfi(x —nE;V fi(x)) (13)

Substituting (12) in the gradient descent iteration (9), we
obtain the modified iteration

gt = af — pVVi(xin) fork =0,1,2,...  (14)

where VV(z;n) = We assume that the

Z VVi(@;n).

following bound on the error in the approximation

IVV (x;n) — VV(z;n)|| < 7|VV(z;n),  (15)

for some 7 € (0,1). Such a bound on the error in the
gradients has also been used in Luo & Tseng (1993).

Theorem 3. Suppose VV (x) is Ly -Lipschitz continuous.
Let p = aﬁ for 0 < a < 1 and (15) holds. Then,
the {x*} generated by (14) converges sublinearly tox* a
first-order stationary point of V(x;n), i.e., VV (x*;n) = 0.
IfV(x;n) < ZHHVV(CB n)||?, then the sequence {V( k)Y

converges linearly to 0, i.e., {x"} converges to x* € SSNP,

Proof. Let VV(z*:n) = VV(x*;n) + ¢*. From (15),
]| < T VV (a*

*sn)||- Applying the trlangle inequality to

[V V (z*;n)|| and use (15) obtain

IVV @*)]| < [VV(@*sn) + |||

. (16)
< (+DIVV(tin)l.

The term —(VV (z*;n)T(VV (zF

bounded as

;m)) can be upper

— (VV("m)" (v

— Vv (®;n)l* -

—[VV(= k,n)ll2+|\VV(
— (1 =n)[VV (")

V(x*;n))
(VV (z*;m)) e

(17)
sl el

where the final inequality follows from (15). From Lipschitz
continuity of VV (x;n)

V(zF )
<V(zF;n) + VV(zF;n)T (=" — 2")

Y b gt P
<V(a®, 1) — p(VV (;0) T (VV (a*;9))+

LV” IV ()2
<V< 1) = p(1 = )|V (s )|+

B 04 2219V (e P

T 2

<V(zFin) —p (1 -7 - va(l;)> IV V (5 n)]?
<viahin) - 3 0oV

(18)
where @ = «(2 — «), the third inequality is obtained by
substituting (16) and (17), and the final inequality follows
from the definition of p in the statement of the theorem. By
similar arguments to those in Theorem 2 obtain

(1—7)2 V(z)

— 2
YLy (1+7)2 kefor HVV( ™ s T

This proves the claim on sublinear convergence to a first-
order stationary point of V(x;n). Suppose V(x;n) <
ﬁ |[VV (x;n)||? holds. Substituting in (18) obtain

V(m]”l;n) < (1 -«

which proves the claim on linear convergence of {V (x*; 1)}
to 0. By Theorem 1, {x*} converges to * € SSNF. [J

The approximation in (12) is in fact exact when the function
fi(x) is quadratic. Consequently, the claims on the conver-
gence of the iterates continue to hold when the iterates are
generated by (14).
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6. Experiments

In this section, we present several empirical results on simu-
lated data demonstrating the effectiveness of the proposed
GNI formulation. To demonstrate the correctness of our the-
oretical results, we show numerical results on several simple
game settings with known equilibrium. Specifically, we con-
sider the following payoff functions: i) bilinear two-player
games, ii) quadratic games with convex and non-convex pay-
offs, iii) linear GAN using a Dirac delta generator, and iv) a
more general linear GAN with linear generator and discrim-
inator. We compare our descent algorithm against several
popular choices such as (i) gradient descent, (ii) gradient
descent with Adam-style updates (Kingma & Ba, 2014),
(iii) optimistic mirror descent (Rakhlin & Sridharan, 2013;
Daskalakis et al., 2018), (iv) the extrapolation scheme (Gidel
et al., 2018), and (v) the extra-gradient method (Korpele-
vich, 1976). For all these methods, we either follow the
standard hyperparameter settings (e.g., in Adam), or we
find the hyperparameters that lead to the best convergence.
For each of these games, we observe convergence of the
proposed algorithm to stationary Nash points and contrast
the quality of solutions against what can be theoretically
guaranteed. As discussed in Section 3.2, the quadratic and
bilinear cases lead to convex GNI function and thus, the
game always converges to a NE. Refer to supplementary
materials for extra experiments. Below, we detail each of
the game settings.

6.1. Bi-Linear Two-player Game:

We consider the following two-player game:
fi(e) = 2{Qra + qf 71 + g3 22 = —falz),  (20)

where fq and f, are the player’s payoff functions — a setting
explored in (Gidel et al., 2018). The GNI for this game leads
to a convex objective. For GNI, we use a step-size n = 1/L,
where L = ||@Q]|, and p = 0.01, while for other methods we
use a stepsize of 7 = 0.001'. The methods are initialized
randomly — the initialization is seen to have little impact on
the convergence of GNI, however changed drastically for
that of others.

In Figure 1(a), we plot the gradient convergence (using
10-d data). In this plot (and all subsequent plots of gradi-
ent convergence), the norm of the gradient ||V f(z")|| =
|(V1fi(zF),...,Vnfn(xb))|. We see that GNI con-
verges linearly. However, other methods, such as gradient
descent and mirror descent iterates diverge, while the extra-
gradient and Adam are seen to converge slowly. To under-
stand the descent better, in Figure 1(b), we use x1, 22 € RY,
and plot them for every 100-th iteration starting from the
same initial point (shown by the red-diamond). Interestingly,

!Other values of 7 did not seem to result in stable descent.

14 05
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Figure 1. (a) shows GNI against other methods for bilinear min-
max game. (b) shows convergence trajectories for 1-dimensional
players. For (b), the initial point is shown in red diamond.

we find that the extragradient and mirror-descent methods
show a circular trajectory, while Adam (with 8; = 0.9
and B2 = 0.999) takes a spiral convergence path. GNI
takes a more straight trajectory steadily decreasing to op-
tima (shown by the blue straight line).
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v Al

(a) non-convex QP

Figure 2. Convergence of GNI against other methods for Quadratic
games. (a) Non-convex QP with indefinite Q matrices for each
player, (b) convex QP with semi-definite Q matrices.

6.2. Two-Player Quadratic Games:

We consider two-player games (multiplayer extensions are
trivial) with the payoff functions:

fi(z) = %ITQZ-:C + 7l fori=1,2 1)
where @; € R"*" is symmetric. We consider cases when
each @); is indefinite (i.e., non-convex QP) and positive
semi-definite. As with the bilinear case, all the QP payoffs
result in convex GNI reformulations. We used 20-d data,
the same stepsizes = max;(]|Q;||) and p = 0.01 for GNI,
while using 7 = 10~* for other methods. The players are
initialized from N (0, I).

In Figure 2, we compare the descent on these quadratic
games. We find that the competitive methods are difficult
to optimize for the non-convex QP and almost all of them
diverge, except Adam which converges slowly. GNI is found
to converge to the stationary Nash point (as it is convex—
in §3.2). For the convex case, all methods are found to
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converge. To gain insight, we plot the convergence trajectory
for a 1-d convex quadratic game (i.e., 1,72 € R!) in
Figure 3. The initializations are random for both players
and the parameters are equal. We see that all schemes
follow similar trajectories, except for Adam and GNI — all
converging to the same point.

1 —gradNI|
4 \‘ — Adam 0.05
35 (IS —- extragradient
A =+ grad 0
-opt. mirror descent
A extrapolation 0.05

—gradNi
AN R — Adam t

/|- extragradient ’
\ N 0.1 lee- grad
opt. mirror descent

T, -0.25
[ 200 400 600 800 1000 02 o 02 04 06 08
lierations 1

Figure 3. Convergence of GNI against other methods on a convex
1—d quadratic game. Left: the convergence achieved by different
algorithms. Right: the trajectories of the two players to the NE.

6.3. Dirac Delta GAN

This is a one-dimensional GAN explored in (Gidel et al.,
2018). In this case, the real data is assumed to follow a
Dirac delta distribution (with a spike at say point -2). The
payoff functions for the two players are:

f1 =log(1 + exp(fz1)) + log(1 + exp(z122))
fo = —log(1 + exp(z122)), (22)

where 6 € R! is the location of the delta spike. Unlike other
game settings described above, we do not have an analytical
formula to find the Lipscitz constant for the payoffs. To this
end, we did an empirical estimate (more details to follow).
We used L = 2, n = p = 1/L and initialized all players
uniformly from [0, 4].

Figure 4 shows the comparison of the convergence of the
dirac delta GAN game to a stationary Nash point. The GNI
achieves faster convergence than all other methods, albeit
having a non-convex reformulation in contrast to the bilinear
and QP cases discussed above. The game has multiple
local solutions and the schemes may converge to varied
points depending on their initialization (see supplementary
material for details).

6.4. Linear GAN

We now introduce a more general GAN setup — a variant of
the non-saturating GAN described in (Goodfellow, 2016),
however using a linear generator and discriminator. We de-
signed this experiment to serve two key goals: (i) to exposit
the influence of the GNI hyperparameters in a more general
GAN setting, and (ii) show the performance of GNI on a
setting for which it is harder to estimate a Lipschitz constant

—gradNI
- — Adam
R — —- extragradient
==+ grad
30 opt. mirror descent
extrapolation

0 E )
0 200 400 600 800 1000
lterations

Figure 4. Convergence of GNI against other methods on the Dirac-
Delta GAN.

L. While, our proposed setting is not a neural network, it
allows to understand the behavior of GNI when other non-
linearities arising from the layers of a neural network are
absent, and thereby study GNI in isolation.

Experimental Setup: The payoff functions are:
f1=—Eg.plog (xf@) —E..p, log (1 — m{ diag (z2) z) ,
fo=—=E..p, log (xQT diag (z1) z) , (23)

where P, and P, are the real and the noise data distributions,
the latter being the standard normal distribution N (0, I).
The operator diag returns a diagonal matrix with its argu-
ment as its diagonal. We consider two cases for P,: (i)
P, = N(u,I) for a mean y and (ii) P, = N(u,X) for a
covariance matrix ¥ € R%*?_ In our experiments to follow,
we use i1 = 2e, e being a d-dimensional vector (d = 10) of
all ones. We initialized x; = x2 = e/d for all the methods.

Evaluation Metrics: To evaluate the performance on var-
ious hyper-parameters of GNI, we define two metrics: (i)
discriminator-accuracy, and (ii) the distance-to-mean. The
discriminator-accuracy measures how well the learned dis-
criminator classifies the two distributions, defined as:

M
1 .
dacczm§ Z(2T6; > O+ (2T diag(ab)z < (1 - ),

where Z is the indicator function, M is the number of data
points sampled from the respective distributions, and ¢ €
[0,1] is a threshold for the indicator function. We use ¢ =
0.7. While d,.. measures the quality of the discriminator
learned, it does not tell us anything on the convergence of
the generator. To this end, we present another measure to
evaluate the generator; specifically, the distance-to-mean,
that computes the distance of the generated distribution from
the first moment of the true distribution, defined as:

dmean = ||]Ez~Pz dlag($2)2 - EONPTQH (24)

Hyper-parameter Study: The goal of this experiment is
to analyze the descent trajectory of GNI-based gradient de-
scent when the hyper-parameters are changed. To this end,



GNI Formulation for Games

distance to mean

—7=0.00001
— 7=0.0001
—11=0.001
—11=0.01
—n=0.1

=1

discriminator accuracy

—7=0.00001
— 7=0.0001
—1=0.001
—1=0.01

o
©

o
)

o
3

o
o
-

distance to mean

—=0.00001

0 500 1000 1500

iterations

(a) Varyingn, p =1

2000 2500 3000

0.5

0 500 1000 1500

iterations

(b) varyingn, p =1

2000 2500

3000

5
0 500 1000 1500

iterations

(c) varying p, 7 = 0.1

2000 2500 3000

Figure 5. Study of the influence of the step sizes (p and 7)) on the convergence of GNI reformulations for the linear GAN game.
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Figure 6. Convergence of GNI against other methods on the linear GAN two-player game. The real-data distribution is sampled from
N(u, I) for (a) and (b), while we use N (p, ) for (c), where 3 = diag(&), & ~ U(0, 1]. Note that, when the optimization converges, the
discriminator is expected to be confused between the real and fake data distributions (i.e., classification accuracy is 0.5).

we vary 1 and p separately in the range 10~° to 10 in mul-
tiples of 10, while keeping the other parameter fixed (we
use n = 0.1 and p = 1 as the base settings). In Figure 5,
we plot the discriminator-accuracy and distance-to-mean
against GNI iterations for the generator and discriminator
separately. From Figures 5(a) and (b), it appears that higher
value of 7 biases the descents on the generator and discrim-
inator separately. For example, 7 > 0.01 leads to a sharp
descent to the optimal solution of the discriminator, how-
ever, 7 > 1 leads to a generator breakdown (Figure 5(a)).
Similarly, a small value of p, such as p < 10~° shows high
distance-to-mean, i.e., generator is weak, while, p = 1 leads
to good descents for both the generator and the discrimi-
nator. We found that a higher p leads to unstable descent,
skewing the plots and thus not shown. In short, we found
that making the discriminator quickly converge to its opti-
mum could lead to a better convergence trajectory for the
generator for this linear GAN setup using the GNI scheme.

Comparisons to Other Algorithms: In Figures 6(a)
and (b), we plot the distance-to-mean and discriminator-
accuracy of linear GAN using = 0.1 and p = 1, and
compare it to all other descent schemes. Interestingly, we
found that Adam shows a different pattern of convergence,
with the distance-to-mean steadily decreasing to zero; on

close inspection (Figure 6(b)), we see that the discriminator-
accuracy simultaneously goes to zero as well, suggesting
the non-optimality of the descent. In contrast, our GNI
converges quickly. In Figure 6(c), we plot the convergence
when using a real data distribution P, = N(u, Y), where
u ~ U(0,1)%; a d-dimensional uniform distribution and
Y is a randomly-sampled diagonal covariance matrix. The
descent in this general setting also looks similar to the one
in Figure 6(a).

7. Conclusions

We presented a novel formulation for Nash equilibrium com-
putation in multi-player games by introducing the Gradient-
based Nikaido-Isoda (GNI) function. The GNI formulation
for games allows individual players to locally improve their
objectives using steepest descent while preserving local sta-
bility and convergence guarantees. We showed that the GNI
function is a valid merit function for multi-player games and
presented an approximate descent algorithm. We compared
our method against several popular descent schemes on mul-
tiple game settings and empirically demonstrated that our
method outperforms all other techniques. Future research
will explore the GNI method in stochastic settings, that may
enable their applicability to GAN optimization.
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