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Abstract

While meta reinforcement learning (Meta-RL)
methods have achieved remarkable success, ob-
taining correct and low variance estimates for
policy gradients remains a significant challenge.
In particular, estimating a large Hessian, poor
sample efficiency and unstable training continue
to make Meta-RL difficult. We propose a surro-
gate objective function named, Taming MAML
(TMAML), that adds control variates into gradient
estimation via automatic differentiation. TMAML
improves the quality of gradient estimation by re-
ducing variance without introducing bias. We
further propose a version of our method that ex-
tends the meta-learning framework to learning the
control variates themselves, enabling efficient and
scalable learning from a distribution of MDPs. We
empirically compare our approach with MAML
and other variance-bias trade-off methods includ-
ing DICE, LVC, and action-dependent control
variates. Our approach is easy to implement and
outperforms existing methods in terms of the vari-
ance and accuracy of gradient estimation, ulti-
mately yielding higher performance across a vari-
ety of challenging Meta-RL environments.

1. Introduction
Recent progress in deep reinforcement learning (Deep RL)
has achieved very impressive results in domains ranging
from playing games (Mnih et al., 2015; Silver et al., 2016;
2017; Vinyals et al., 2019), to applications in program syn-
thesis (Liang et al., 2018) and robotics (Andrychowicz et al.,
2018; Gu et al., 2017; Liu et al., 2019). Despite this progress,
Deep RL suffers from high sample complexity in learning
even a single task and often fails to generalize to new situa-
tions. In contrast, human intelligence is capable of adapting
to new situations in the face of limited experience. Meta
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reinforcement learning (Meta-RL) (Wang et al., 2016; Duan
et al., 2016; Mishra et al., 2018; Finn et al., 2017; Nichol
et al., 2018) aims to mitigate this issue by acquiring induc-
tive bias in a data-driven manner. Specifically, Meta-RL
considers a distribution of different yet related tasks that
differ in, for instance, the reward function or the transi-
tion probabilities from one state to another. Its objective is
to enable artificial agents to efficiently learn new tasks by
learning strategies for fast adaptation from prior tasks (a.k.a,
learning to learn) (Schmidhuber, 1987; Thrun & Pratt, 2012).
Recent work demonstrates this approach to be promising
in a diverse range of reinforcement learning tasks includ-
ing robotics, synthetic rewards, and model-based learning,
among others (Clavera et al., 2018; Xu et al., 2018b).

One particular type of gradient-based Meta-RL is Model
Agnostic Meta Learning (MAML) (Finn et al., 2017), which
directly trains for model parameters that can quickly adapt
to individual tasks with standard gradient descent. This
method allows acceleration of learning to achieve similar
asymptotic performance as learning from scratch on new
tasks. Despite its wide utilization, Meta-RL, in particu-
lar gradient-based Meta-RL, suffers from biased and high
variance estimates for policy gradients. This is due to the
small number of samples and the difficulty of calculating
the Hessian, leading to poor sample efficiency and unsta-
ble behavior during training. Prior work in gradient-based
Meta-RL mostly used biased gradients, either due to biased
estimation in implementation (Finn et al., 2017), trading off
bias for lower variance estimation (Rothfuss et al., 2019), or
neglecting the complicated dependencies (Al-Shedivat et al.,
2018; Stadie et al., 2018; Nichol et al., 2018). An existing
method for unbiased estimation of Meta-RL gradients (Fo-
erster et al., 2018) suffers from high variance and doesn’t
work well in challenging, continuous control tasks.

To tackle this problem, we focus on the control variate
method, one of the most widely used variance reduction
techniques in policy gradient. The idea of the control variate
method is to subtract a Monte Carlo gradient estimator by a
baseline function that analytically has zero expectation. If
the baseline function is properly chosen such that it cancels
out the variance of the original gradient estimator, it can
achieve a lower variance estimation without introducing bias.
Different variance reduction methods stem from different
control variates. For example, in REINFORCE (Williams,
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Figure 1. Diagram comparing MAML and our method, TMAML.
A biased implementation of MAML (e.g, Finn et al. (2017); Roth-
fuss et al. (2019)) is illustrated in red. TMAML is illustrated in
green. Meta-learning steps are shown using solid lines while adap-
tation is shown in dashed lines. δ refers to bias while shading refers
to variance. In contrast to MAML, TMAML provides unbiased
and low variance gradient estimates to optimize θ to quickly adapt
to new tasks.

1992), a constant baseline function is chosen as a control
variate; advantage actor-critic (A2C) (Sutton & Barto, 2018)
considers a state-dependent baseline function as the control
variate, which is often set to be an estimated value function.

Despite the effectiveness of control variates, incorporating
them into the gradient of Meta-RL turns out to be fairly chal-
lenging due to the involved calculation of the Hessian and
the gradient. In this work, we propose a simple and novel
surrogate objective that incorporates control variates into
gradient estimation in the context of Meta-RL, allowing low
variance and unbiased gradient estimations, as shown in Fig-
ure 1. In addition, we introduce a method to meta-learn the
control variates themselves, enabling efficient and scalable
learning from a distribution of MDPs. We call this technique
Taming MAML (TMAML). TMAML can be convenient
implemented via automatic differentiation toolboxes and is
well suited to combine and improve other gradient-based
Meta-RL methods. We provide an analytical motivation for
TMAML and demonstrate experimentally that it achieves
substantial variance reduction during gradient estimation.
Furthermore, we show that TMAML improves performance
compared to existing Meta-RL methods on several challeng-
ing benchmarks.

Finally, we evaluate TMAML and meta-learning trained
control variates on an extensive set of environments. We
compare against recent approaches including DICE (Foer-
ster et al., 2018) and LVC (Rothfuss et al., 2019), based on
recent optimization method Proximal Policy Optimization
(PPO) (Schulman et al., 2017), and demonstrate the effec-
tiveness of TMAML in both variance reduction and sample
efficiency.

2. Related Work
Learning agents that are capable of doing well in a dis-
tribution of different but related tasks is a long standing
challenge. Perhaps most relevant are works related to the
concept of meta-learning or learning to learn (Schmidhuber,
1987; Thrun & Pratt, 2012) which aims to discover, from
experience, in order to accelerate learning process in unseen
problem settings. Different approaches have been investi-
gated in the literature. One type of approach trains recurrent
networks on a set of environments/datasets drawn i.i.d. from
the distribution to exploit the structure of multiple tasks to
output the parameters of the trained model (Chen et al.,
2017; Andrychowicz et al., 2016; Ravi & Larochelle, 2016)
or directly output the prediction on given inputs (Duan et al.,
2016; Mishra et al., 2018; Santoro et al., 2016; Xu et al.,
2018a). Alternatively, the parameters of the model can be
explicitly trained in such a way that they can learn a new
task from the task distribution in only a small number of
gradient steps (Finn et al., 2017; Nichol et al., 2018). De-
spite the wide utilization of this gradient-based approach, it
suffers from biased or high variance gradient estimate.

Our work, which builds on the latter class of approaches, is
also related to recent work on variance reduction for policy
gradient using control variates in various settings (Grath-
wohl et al., 2018; Wu et al., 2018; Liu et al., 2017; Mao
et al., 2019a). Tucker et al. (2018) compare recent differ-
ent variance reduction method analytically. Learning task-
dependent policies or value functions for multiple goals
within similar environments was proposed in Schaul et al.
(2015). The issue of bias-variance trade-off in policy gradi-
ent estimation has also received previous attention (Heess
et al., 2015). Similarly, Xu et al. (2018b) learns to find meta-
parameters (e.g., discount factor) such that the agent can
achieve bias-variance trade-off to learn efficiently within a
single task, while Schulman et al. (2016) analyse different
effects of meta-parameters in return. Variance reduction
for general stochastic computational graphs is discussed
in Schulman et al. (2015) and Weber et al. (2019). In paral-
lel to our work, Mao et al. (2019b) proposes using control
variates to reduce variance of high order gradient estima-
tion, our work differs in proposing a practical algorithm and
meta-learn scalable meta control variates and empirically
demonstrate its effectiveness in a set of Meta-RL tasks.

3. Background
This section establishes the notation and provides an
overview of policy gradient and gradient-based Meta-RL.

3.1. Reinforcement Learning and Policy Gradient

We consider a discrete-time Markov decision process
(MDP), defined by (S,A,P, ρ0, r, γ), where S ⊆ Rn is
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a set of n-dimensional states, A ⊆ Rm is a set of m-
dimensional actions, P : S × A × S → [0, 1] is the
state transition probability distribution, ρ0 : S → [0, 1]
is the distribution over initial states, r : S × A → R is
the reward function, and γ ∈ (0, 1] is the discount fac-
tor. We denote a stochastic policy as π : S × A →
[0, 1], which aims to optimize the expected return η(π) =
Eτ [

∑∞
t=0 r(st, at)], where τ = (s0, a0, ...) is the trajectory

following s0 ∼ ρ0, at ∼ π(at|st), st+1 ∼ P(st+1|st, at).
We use Vπ(st) = Eat,st+1,at+1,...

[∑∞
l=0 γ

lr(st+l, at+l)
]

to define the value function, and Qπ(st, at) =
Est+1,at+1,...

[∑∞
l=0 γ

lr(st+l, at+l)
]

to define the state-
action value function.

Policy gradient methods estimate the gradient of expected
returns with respect to the policy parameters (Sutton &
Barto, 2018). To train a policy πθ parameterized by θ, the
Policy Gradient Theorem (Sutton & Barto, 2018) states that

∇θη(πθ) = Es∼ρπ
a∼πθ

[∇θ log πθ(a|s)Qπθ (s, a)] , (1)

where ρπ(s) =
∑∞
t=0 [γ

t Pr(st = s)] denotes the dis-
counted state visitation frequency. Practical algorithms
often use the undiscounted state visitation frequency (i.e.,
γ = 1 in ρπ), which can make the estimation slightly bi-
ased (Thomas, 2014).

Estimating the policy gradient using Monte Carlo estima-
tion for the Q function suffers from high variance (Mnih
et al., 2016; Liu et al., 2017; Grathwohl et al., 2018; Wu
et al., 2018). To reduce variance, an appropriately cho-
sen baseline b(st) can be subtracted from the Q-estimate
without introducing bias (Greensmith et al., 2004). The
policy gradient estimation with a baseline in Eq. 1 becomes
Eρπ,πθ [∇θ log πθ(a|s) (Qπθ (s, a)− b(s))]. While an op-
timal baseline (Greensmith et al., 2004; Wu et al., 2018)
and action-dependent baseline exist (Liu et al., 2017; Grath-
wohl et al., 2018), they are hard to estimate and are often
replaced by the value function b(st) = Vπ(st) (Sutton &
Barto, 2018).

Proximal Policy Optimization (PPO) (Schulman et al., 2017;
Heess et al., 2017) is recent method for policy optimization.
It uses a proximal KL divergence penalty to regularize and
stabilize the policy gradient update. Given an existing policy
πold, PPO obtains a new policy by maximizing the following
surrogate loss function

Jppo(θ) =

Eπold

[
πθ(a|s)
πold(a|s)

Qπ(s, a)− λKL [πold(·|s) || πθ(·|s)]
]

where the first term is an approximation of the expected
reward, and the second term enforces the the updated policy
to be close to the previous policy under KL divergence.

Using a baseline in the TRPO objective, i.e. replacing

Qπ(s, a) with Qπ(s, a)− b(s), empirically improves policy
performance (Schulman et al., 2016).

3.2. Gradient-based Meta-reinforcement learning

Deep RL typically requires an enormous number of samples
to learn a single task and rarely allows generalization to new
tasks, even similar ones. Meta-RL aims to use a distribution
of tasks ρ(T ) to learn a policy that can be rapidly adapted
to optimize performance on a specific task T from the dis-
tribution, where each task corresponds to a distinct MDP.
Tasks are generally defined such that they share a state and
action space but differ somehow with regard to transition
dynamics and/or reward function.

Policy gradient in the Meta-RL context therefore equates to
learning the parameters θ of a policy πθ such that the param-
eters can be optimized for a specific task T ∼ ρ(T ) with
only one or several vanilla policy gradient (VPG) updates.
This is the motivation behind MAML (Finn et al., 2017),
which aims to maximize the following objective:

J(θ) = ET ∼ρ(T )

[
Eτ ′∼PT (τ ′|θ′) [R(τ

′)]
]

(2)
with θ′ := U(θ, T ) = θ + α∇θEτ∼PT (τ |θ) [R(τ )] ,

where T ∼ ρ(T ) denotes the task sampled from task dis-
tribution, R(τ) denotes the sum of rewards along a trajec-
tory τ = {(st, at, rt)}Nt=0, ρ(T ) and U denotes the task-
dependent update function and is equivalent to performing
one VPG step towards maximizing the performance of the
policy on task T , PT (τ |θ) denotes probability of sampled
trajectory τ = {(st, at, rt)}Nt=0 with policy θ and task T .
It is worth noting that this concept could be extended to
handle multiple update steps, though we only consider the
single step version here.

4. Method
In this section we first analyze challenges in obtain-
ing unbiased and low variance estimates of gradients in
MAML (Finn et al., 2017) and then briefly recap recent
two recent advances: DICE (Foerster et al., 2018) and
LVC (Rothfuss et al., 2019). Finally, we introduce our
method, called TMAML, which is a surrogate function used
to incorporate control variates into gradient estimates and
meta-learned control variates.

Obtaining unbiased and low variance estimates of gradients
in Meta-RL proves challenging due to the difficulty of esti-
mating the Hessian, As discussed by Foerster et al. (2018),
the score function surrogate objective approach is ill suited
for calculating higher order derivatives via automatic differ-
entiation toolboxes. This important fact was overlooked in
the original RL-MAML implementation (Finn et al., 2017)
leading to incorrect meta-gradient estimates which do not
comply with the theory. We can write the gradient of the
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meta-learning objective as

∇θJ(θ) = ET ∼ρ(T )

[
Eτ ′∼PT (τ ′|θ′)

[
∇θ′ logPT (τ ′|θ′)

R(τ ′)∇θU(θ, T )
]]
, (3)

Since the update function U resembles a policy gradient
step, its gradient ∇θθ′ = ∇θU(θ, T ) involves computing
the Hessian of the reinforcement learning objective, i.e.,
∇2
θ Eτ∼PT (τ |θ) [R(τ )].

This can be shown as:

∇θθ′ = ∇θ
(
θ + α ∇θEτ∼PT (τ |θ) [R(τ )]

)
, α is a step size

= I + α∇2
θEτ∼PT (τ |θ) [R(τ )]

= I + α∇θEτ∼PT (τ |θ) [∇θ log πθ(τ )R(τ )]

= I + α∇θ
∫
PT (τ |θ)∇θ log πθ(τ )R(τ )dτ

= I + α

∫
PT (τ |θ)∇2

θ log πθ(τ )R(τ )dτ

+ α

∫
PT (τ |θ)∇θ log πθ(τ )∇θ log πθ(τ )>R(τ )dτ

Due to the Hessian involved in the gradient estimation, even
when properly implemented to obtain an unbiased estima-
tion, we show that the meta-gradients exhibit high vari-
ance. Specifically, the estimation of the Hessian in the
RL-objective, which is inherent in the meta-gradients, re-
quires special consideration. In MAML (Finn et al., 2017),
the Hessian is ignored during implementation, the ∇θθ′
is approximated by I +

∫
PT (τ |θ)∇2

θ log πθ(τ )R(τ )dτ ,
giving a biased gradient estimate.

In this section, we motivate and introduce an unbiased and
low variance estimate: an improved estimator for the Hes-
sian of the RL-objective by using a control variate, trained
using meta-learning, which promotes better meta-policy
gradient updates.

Thus, the problem is how to estimate

∇2
θJinner = ∇2

θEτ∼PT (τ |θ) [R(τ )] (4)

We quickly recall the main results from Foerster et al. (2018)
which aims to provide an unbiased estimate of ∇2

θJinner but
still suffers from high variance. Then, we recap a recent
work on variance-bias trade-off (Rothfuss et al., 2019) to
get a biased but low variance estimate of∇2

θJinner.

Unbiased estimation In DICE (Foerster et al., 2018), the
surrogate function is given by:

JDICE =

H−1∑
t=0

(
t∏

t′=0

πθ(at′ |st′)
⊥(πθ(at′ |st′))

)
r(st, at), (5)

where ⊥ denotes the ‘stop gradient’ or ’detach’ operation
in automatic differentiation framework. In expectation, the
Monte Carlo estimate of the Hessian Eτ∼PT (τ |θ)[∇2

θJ
DICE]

is equivalent to the Hessian of the inner objective in Equa-
tion (4):

Eτ∼PT (τ |θ)[∇2
θJ

DICE]

= Eτ∼PT (τ |θ)

[H−1∑
t=0

(
t∑

t′=0

∇θ log πθ(at′ |st′)

)
(

t∑
t′=0

∇θ log πθ(at′ |st′)

)>
r(st, at)+(

t∑
t′=0

∇2
θ log πθ(at′ |st′)

)
r(st, at)

]
= ∇2

θJinner

however, DICE unbiased estimation Eτ∼PT (τ |θ)[∇2
θJ

DICE]
suffers from high variance.

Biased, lower variance estimation Rothfuss et al. (2019)
propose a surrogate function called LVC which is biased
and lower variance,

JLVC =

H−1∑
t=0

πθ(at|st)
⊥(πθ(at|st))

(
H−1∑
t′=t

r(st′ , at′)

)
(6)

In expectation, ∇2
θJ

LVC is approximately equivalent to
∇2
θJinner:

Eτ∼PT (τ |θ)
[
∇2
θJ

LVC] = Eτ∼PT (τ |θ)[
H−1∑
t=0

( t∑
t′=0

∇θ log πθ(at′ |st′)∇θ log πθ(at|st)>
)

r(st,at)

]
+ Eτ∼PT (τ |θ)

[
H−1∑
t=0( t∑

t′=0

∇2
θ log πθ(at′ |st′)

)
r(st,at)

]
≈ ∇2

θJinner

We leave the derivation of DICE in Section A and the deriva-
tion of LVC in Section B in the supplementary file. Note
that in JLVC, the bias term is not quantified, which can be
harmful for gradient optimization.

4.1. Meta-RL for a distribution of MDPs

We now formally define a distribution of task-dependent
MDPs and derive variance-reducing control variates for
policy gradient methods.

In this setting, the environment of the agent is a distribution
of different yet related tasks that differ in, for instance, the
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reward function or in the probabilities of transitions from
one state to another.

Definition 1. A distribution of task-dependent MDPs is
defined by (S,A,Ps,PT , ρs0, ρz0, r, γ), Ps(st+1|st, at, Ti)
is the transition kernel of the states for i-th MDP in the
group, PT (Ti+1|Ti) is the transition kernel of the input
process, ρT (T ) is the distribution of tasks, r(st, at, Ti) is
the reward function, and S, A, ρs0, γ follow the standard
definition in reinforcement learning in Section 3.1.

A task-dependent MDP adds a task description, Ti, to a
standard MDP. In a task-dependent MDP, the next state
st+1 depends on (st, at, Ti). We seek to learn policies that
maximize cumulative expected rewards on such a group
of MDPs. We now consider policy gradient methods for
learning a policy for a group of task-dependent MDPs.

4.2. Surrogate function to incorporate control variates

In this section, we propose a surrogate function, which when
twice differentiated, can incorporate a control variate for
each task.

In order to obtain unbiased and low variance estimates,
we propose to incorporate a control variate into gradient
estimation

JTMAML
i =

H−1∑
t=0

[
1−

(
t∏

t′=0

πθ(at′ |st′)
⊥(πθ(at′ |st′))

)]
(
1− πθ(at|st, z)
⊥(πθ(at|st, z))

)
b(st, Ti) (7)

where i represents the i-th task, and b(st, Ti) is a baseline
function that depends on state st and task Ti. Here, b(st, Ti)
serves as the control variate. Generalization of the above
to depend on action is also possible, which we will show
below.

Theorem 1. With a proper control variate b(st, Ti), we can
derive

Eτ∼PTi (τ |θ)[∇
2
θJ

TMAML
i ] = 0 (8)

Proof. We leave the proof to Section C in the supplementary
file.

Theorem 1 means we can combine JTMAML
i with existing

gradient estimates such as JDICE
i without introducing any

bias. That is, for each task Ti:

Eτ∼PT (τ |θ)
[
∇2
θ

(
JDICE
i + JTMAML

i

)]
(9)

= Eτ∼PT (τ |θ)
[
∇2
θJ

DICE
i

]
= ∇2

θJinner

Theorem 2. JTMAML
i is a surrogate function to incorporate

control variates b(st, Ti) into gradient estimation via auto-
matic differentiation toolboxes efficiently to reduce gradient
variance without introducing any bias into gradient estima-
tion, such as when combined with JDICE

i .

Proof. The detailed proof is left in Section C in supplemen-
tary file. To give an intuition, taking the Hessian of JTMAML

i

combined with JDICE
i gives

∇2
θ

(
JDICE
i + JTMAML

i

)
→

H−1∑
t=0

[
∇2
θ log πθ(at|st, z)

(
t∑

t′=0

r(at′ , st′ , z)

)]

+ 2

H−1∑
t=0

[
∇ log πθ(at|st, z)>

(
H−1∑
t′=t

∇ log πθ(at′ |st′ , z)(
H−1∑
k=t′

r(ak, sk)− b(st, Ti)

))]
, (10)

where→ denotes evaluate value.

As long as b(st, Ti) is a good baseline function that
correlates with

∑H−1
k=t′ r(ak, sk), then the product(∑H−1

t′=t ∇ log πθ(at′ |st′ , z)
(∑H−1

k=t′ r(ak, sk)− b(st, Ti)
))

has a lower variance than the same without b(st, Ti), leading
to a low variance estimate of∇2

θ

(
JDICE
i + JTMAML

i

)
.

Theorem 2 states that by auto-differentiating twice, our sur-
rogate function can incorporate control variates into the
gradient estimate, which can reduce the variance of estimat-
ing the Hessian.

Given the unbiased estimates, the next question is how to
learn an effective control variate to reduce variance. We
now present two approaches that exploit the distribution
of related MDPs to learn task-dependent control variates
efficiently.

Per-task control variates A straightforward way to learn
control variates is to have a separate control variates for each
task Ti. We use the recently proposed action-dependent con-
trol variates (Wu et al., 2018) and extend it to task dependent
reinforcement learning. It is straightforward to show that the
optimally of action-dependent control variates still holds for
each task Ti since we can view task id Ti as part of state st.
Although it maybe not optimal control varaites for reducing
variance of ∇θJ(θ). Specifically, for each task Ti, we learn
the control variate for the current task as

bi
(
st, a

−i
t , Ti

)
= Eaj∼π(ait|st)

[
Qπθ

(
st,
(
a−it , αj , z

))]
, (11)

where aj ∼ π(ait|st) means aj sampled from action coordi-
nate ai. For each Ti, we learn an optimal action-dependent
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control variate. The per-task optimal control variates has
two disadvantages: first, it does not scale if the task dis-
tribution contains a large number of task; second, it does
not exploit the similarity between different yet related envi-
ronments. In order to utilize samples from other tasks, we
derive a meta control variate for each task which utilizes
samples from other tasks.

Algorithm 1 Learning Meta Control Variates

Require: Step size α′, β′; meta control variates parameters
θV ; episodes D = {τ1:N}.

1: repeat
2: Adapt θV with the first half of episodes {τ1:N/2}:

θ1V = θV − α′∇θV LθV (τ1:N/2)
3: Estimate meta control variates Vθ1V (st) for st ∼

τN/2:N using adapted θ1V with Equation (12)
4: Adapt θV with the second half of episodes {τN/2:N}:

θ2V = θV − α∇θV LθV (τN/2:N )
5: Estimate meta control variates Vθ2V (st) for st ∼

τ1:N/2 using adapted θ2V with Equation (12)
6: Update meta control variates: θV ← θV −

β′∇θV Lθ1V (τN/2:N )− β′∇θV Lθ2V (τ1:N/2)
7: Swap trajectories {τ1:N/2} and {τN/2:N}
8: until θV converge

Meta control variates Ideally, we would like an approach
that enables shared learning across different tasks. We
present a method based on meta learning to maximize the
use of information across tasks. The idea is to use all tasks
to learn a meta baseline function. The part that learns the
weights of this meta baseline uses MAML.

Note that here we use the original implementation to learn
meta control variate, which means the resulting control
variates may be not exactly the one we want. Fortunately,
it can be proved that the gradient still remains unbiased as
long as the control variates depends on state and task (see
Theorem 1 for details).

The pseudocode in Algorithm 1 describes the training algo-
rithm for learning control variates. We follow the notation
of MAML, denoting the loss in the value function VθV (·) as

LθV (τi:j) =
∑

st,at,rt∼τi:j

‖VθV (st)−
T∑
t′=t

γt
′−trt‖2, (12)

We use the first half trajectories to do adaptation of meta
control variates and then compute inner loss of meta control
variates on the other half of trajectories, then we do outer
gradient update using inner loss as in MAML. Finally, we
swap the two groups of trajectories and repeat the same
process until training loss converges. We do not use the
same rollouts to adapt the meta control variates and com-
pute the inner loss of it to avoid introducing extra bias to

the baseline function (Tucker et al., 2018). The pseudocode
in Algorithm 2 combines TMAML and meta control vari-
ates together, and describes the full training algorithm for
optimizing θ to quickly adapt to new tasks.

Algorithm 2 Meta-RL with TMAML Gradient Estimators

Require: Task distribution ρ, step sizes α, β.
1: Randomly initialize policy parameters θ and meta con-

trol variates parameters θV .
2: repeat
3: Sample batch of tasks Ti ∼ ρ(T )
4: // Fitting control variates
5: Learn meta control variates with Algorithm 1
6: (or learn per task control variates for each Ti with

Equation (11))
7: for all Ti do
8: // Inner gradient update θ
9: Sample pre-update episodes Di = {τi} from Ti

using πθ
10: Compute adapted parameters θ′Ti ← θ +

α ∇θ(JTMAML
Ti (θ) + JDICE

Ti (θ)) with Di = {τi}
11: Sample post-update episodes D′i = {τ ′i} from Ti

using πθ′
12: end for
13: // Outer gradient update θ
14: Update θ ← θ + β

∑
Ti ∇θ(J

TMAML
Ti (θ′Ti) +

JDICE
Ti (θ′Ti)) using each D′i = {τ ′i}

15: until θ converge

5. Experiment
5.1. Task Descriptions

In order to evaluate the effectiveness of our algorithm, we
examine its performance across several standardized contin-
uous control environments as implemented in the OpenAI
Gym (Brockman et al., 2016) in the MuJoCo physics simu-
lator (Todorov et al., 2012).

We list environments used in this paper here. Each environ-
ment contains a distribution of tasks for the agent to achieve.
Hyperparameters used in each environment can be found in
supplementary file.

Ant reaching target coordinates. In this environment,
each task is associated with a location randomly chosen
from a circle in the XY plane that the agent must reach. The
goal location is not given to the agent. Instead, the agent
must learn to locate, approach, and stop at the target. The
agent receives at each time step a reward composed of a
control cost, a contact cost, a survival reward, and a penalty
equal to its L1 distance to the target position. The tasks are
generated by sampling the target positions from the uniform
distribution on [−3, 3]2.
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Figure 2. Variance reduction and performance improvements with TMAML. (Left) Average variance of gradients sampled across different
mini-batches during evaluation. (Right) Mean task reward during evaluation. For consistency with published techniques, we use the TRPO
algorithm for everything except LVC, which is intended to make use of PPO. Shaded area represents one standard deviation, learning
curves are on 5 random seeds.

Ant, Humanoid, Walker, HalfCheetah moving forward
or backward. The task is chosen between two directions:
forward and backward. The agent must run along the goal
direction as far as possible and receives at each time step a
reward composed of a control cost and a reward equal to its
velocity in the target direction. The tasks are generated by
sampling the target directions from a Bernoulli distribution
on {−1, 1} with parameter 0.5 (-1: backward, +1: forward).

Ant and Humanoid reaching random direction in XY
plane. Each task corresponds to a random direction in the
XY plane. The agent receives a reward composed of a
control cost and a penalty equal to the difference between
its current direction and the target direction.

Walker, Swimmer, and HalfCheetah reaching random
velocity. Each task corresponds to a random velocity, and
the agent receives at each time step a reward composed of a
control cost and a penalty equal to the difference between
its current velocity and the target velocity. The tasks are
generated by sampling the target velocities from the uniform
distribution on [0, 2].

5.2. Variance of Gradient Estimation

We start by attempting to empirically validate that TMAML
indeed reduces the variance of the gradient estimates with-
out introducing bias or detracting from performance. To
that end, we compare both TMAML variants with MAML,
LVC, and DICE on two tasks where we exhaustively re-
sample gradients after each learning iteration. We compare
the gradients estimated from each such sample to measure
their variance. Figure 2 (left) shows the results, which
clearly show that gradients estimated with TMAML are
the most consistent across samples. Importantly, this is
unlikely to stem from some trivial degeneracy within the
gradients, as TMAML also yields the highest average re-
ward among the examined methods, see Figure 2 (right).
These empirical results support our analytical conclusion

that TMAML reduces variance without introducing bias.
While both TMAML variants substantially reduce variance,
meta-learned control variates seems to perform better.

5.3. Accuracy of Gradient Estimation

To further confirm that TMAML yields high quality gradi-
ents, we train a small network on a toy task where we can
estimate the ground-truth gradient (because calculating the
Hessian becomes computationally tractable). Our toy task
uses a simple 1D environment, where the agent starts in a
random position between [−2, 2] and has to reach a goal
location that is randomly sampled at the beginning of each
episode in [−1, 1]. We parameterize the Gaussian policy
as an MLP with two hidden layers that contains 400 pa-
rameters. Once the policy is partially trained, we estimate
the ground-truth gradient using a large number of rollouts
and compare them with the gradients estimated using each
technique. We perform this comparison across a range of
sample sizes used to obtain the latter estimate. Figure 4
shows the Pearson correlation between the estimated and
‘ground-truth’ gradients at each sample size for each method.
Gradients estimated using TMAML are consistently best
correlated with the ground-truth (even when using only a
small number of samples, where other methods produce
only weak correlations), further illustrating the high quality
gradient estimation produced by our technique.

5.4. Baseline Comparisons

To further demonstrate the benefit afforded by TMAML in
terms of task performance, we compare our methods to ex-
isting ones across the set of baseline tasks described above.
The mean reward as a function of training iterations is plot-
ted for each task and method in Figure 3. From these results,
we can see that TMAML with meta-learned control vari-
ates and TMAML with per-task control variates improve
upon MAML by a substantial margin and also typically
outperform both LVC and DICE. This result is most consis-
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Figure 3. Comparison of TMAML against MAML, LVC, and DICE across a set of Meta-RL environments. Shaded area represents one
standard deviation, learning curves are on 5 random seeds.
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Figure 4. Correlation between ‘ground-truth’ gradients and gradi-
ents estimated using each technique in a 1D environment.

tent for the version of TMAML with meta-learned control
variates, where performance either matches or exceeds the
per-task counterpart across each benchmark. For our more
exhaustive comparison shown in Figure 3, we train MAML,
DICE, and LVC with learning algorithm VPG for the sake
of fair comparison. From our observations, PPO generally
performs better than VPG, to study the effect of learning
algorithm choice, we include results on a pair of the baseline
tasks for each of the methods when using PPO. Final task
performance on these experiments is shown in Table 1. We
observe a general trend towards better performance when
using PPO and point out that TMAML continues to outper-
form other methods. Taken together, these results clearly
demonstrate that TMAML achieves better gradient estima-
tion, which directly translates into improved performance
in challenging Meta-RL environments.

Ant Humanoid
(forward/backward) (random direction)

Method Meta CV Per-Task CV Meta CV Per-Task CV
TMAML 513 ± 21.3513 ± 21.3513 ± 21.3 487 ± 23.9 557 ± 19.6557 ± 19.6557 ± 19.6 547 ± 16.7

LVC 386 ± 14.6 482 ± 18.3
MAML 401 ± 24.4 452 ± 27.9
DICE 281 ± 46.7 397 ± 52.3

Table 1. Results of different control variates and methods for esti-
mating Meta-RL gradient, when combined with PPO. The reported
results are the average reward at the 1000-th learning iteration.

6. Conclusion
We propose a surrogate objective function named TMAML
that adds control variates into gradient estimation via au-
tomatic differentiation frameworks. We show analytically
and empirically that TMAML reduces gradient variance
without introducing bias and illustrate its improved sam-
ple complexity and better asymptotic performance across
a set of challenging Meta-RL environments. In addition,
we introduce a method to meta-learn the control variates
themselves, enabling efficient and scalable learning from a
distribution of MDPs. TMAML is easy to implement and
computationally efficient with automatic differentiation, it
can be conveniently combined with other gradient-based
Meta-RL algorithms to improve sample efficiency. In multi-
agent reinforcement learning, higher order gradients are
common and are often high variance, which impedes learn-
ing and makes the application of TMAML with meta control
variates an attractive avenue for future research.
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