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Abstract
We introduce Compositional Imitation Learn-
ing and Execution (CompILE): a framework for
learning reusable, variable-length segments of
hierarchically-structured behavior from demon-
stration data. CompILE uses a novel unsuper-
vised, fully-differentiable sequence segmentation
module to learn latent encodings of sequential
data that can be re-composed and executed to per-
form new tasks. Once trained, our model gener-
alizes to sequences of longer length and from en-
vironment instances not seen during training. We
evaluate CompILE in a challenging 2D multi-task
environment and a continuous control task, and
show that it can find correct task boundaries and
event encodings in an unsupervised manner. La-
tent codes and associated behavior policies discov-
ered by CompILE can be used by a hierarchical
agent, where the high-level policy selects actions
in the latent code space, and the low-level, task-
specific policies are simply the learned decoders.
We found that our CompILE-based agent could
learn given only sparse rewards, where agents
without task-specific policies struggle.

1. Introduction
Discovering compositional structure in sequential data, with-
out supervision, is an important ability in human and ma-
chine learning. For example, when a cook prepares a meal,
they re-use similar behavioral sub-sequences (e.g., slicing,
dicing, chopping) and compose the components hierarchi-
cally (e.g., stirring together eggs and milk, pouring the mix-
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Figure 1: Joint unsupervised learning of task segmenta-
tion and encoding in CompILE. CompILE auto-encodes
sequential demonstration data by 1) softly breaking an input
sequence into segments of variable length, and 2) mapping
each such segment into a latent code, which can be executed
to reconstruct the input sequence. At test time, the latent
code can be re-composed to produce novel behavior.

ture into a hot pan and stirring it to form scrambled eggs).
Humans are adept at inferring event structure by hierar-
chically segmenting continuous sensory experience (Zacks
et al., 2001; Baldassano et al., 2017; Radvansky & Zacks,
2017), which may support building efficient event represen-
tations in episodic memory (Ezzyat & Davachi, 2011) and
constructing abstract plans (Richmond & Zacks, 2017).

An important benefit of compositional sub-sequence repre-
sentations is combinatorial generalization to never-before-
seen conjunctions (Davidson, 1984; Denil et al., 2017). Be-
havioral sub-components can also be used as high-level
actions in hierarchical decision-making, offering improved
credit assignment and efficient planning. To reap these ben-
efits in machines, however, the event structure and compos-
able representations must be discovered in an unsupervised
manner, as sub-sequence labels are rarely available.

In this work, we focus on the problem of jointly learning to
segment, explain, and imitate agent behavior (from demon-
strations) via an unsupervised auto-encoding objective. The
encoder learns to jointly infer event boundaries and high-
level abstractions (latent encodings) of activity within each
event segment, while the task of the decoder is to reconstruct
or imitate the original behavior by executing the inferred
sequence of latent codes.
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We introduce a fully differentiable, unsupervised segmenta-
tion model that we term CompILE (Compositional Imitation
Learning and Execution) that addresses the segmentation
problem by predicting soft segment masks. During training,
the model makes multiple passes over the input sequence,
explaining one segment of activity at a time. Segments ex-
plained by earlier passes are softly masked out and thereby
ignored by the model. Our approach to masking is related to
soft self-attention (Parikh et al., 2016; Vaswani et al., 2017),
where each mask predicted by our model is localized in time
(see Figure 1 for an example). At test time, these soft masks
can be replaced with discrete, consecutive masks that mark
the beginning and end of a segment. This allows us to pro-
cess sequences of arbitrary length by 1) identifying the next
segment, 2) explaining this segment with a latent variable,
and 3) cutting/removing this segment from the sequence and
continue the process on the remainder of the input.

Formally, our model takes the form of a conditional vari-
ational auto-encoder (VAE) (Kingma & Welling, 2014;
Rezende et al., 2014; Sohn et al., 2015). We introduce
a method for modeling segment boundaries as softly relaxed
discrete latent variables (Jang et al., 2017; Maddison et al.,
2017) which allows for efficient, low-variance training.

We demonstrate the efficacy of our approach in a multi-task,
multiple instruction-following domain similar to Oh et al.
(2017) and a continuous control environment. Our model
can reliably discover event boundaries and find effective
event (sub-task) encodings. In a number of experiments,
we found that CompILE generalizes to unseen environment
configurations and to task sequences which were longer than
those seen during training.

Once trained, the latent codes and associated behavior dis-
covered by CompILE can be reused and recomposed to
solve new, unseen tasks. We demonstrate this ability in a
set of experiments using a hierarchical agent, with a meta
controller that learns to operate over discovered policies
and associated latent codes to solve difficult sparse reward
tasks, where non-hierarchical, non-compositional baselines
struggle to learn.

2. Model overview
We consider the task of auto-encoding sequential data by
1) breaking an input sequence into disjoint segments of
variable length, and 2) mapping each segment individually
into some higher-level code, from which the input sequence
can be reconstructed.

More specifically, we focus on modeling state-action trajec-
tories of the form ρ = ((s1, a1), (s2, a2), ..., (sT , aT )) with
states st ∈ S and actions at ∈ A for time steps t = 1, ..., T ,
e.g. obtained from a dataset D = {ρ1, ρ2, ..., ρN} of N
expert demonstrations of variable length for a set of tasks.

2.1. Behavioral cloning

Our basic setup follows that of behavioral cloning (BC), i.e.,
we want to find an imitation policy πθ, parameterized by θ,
by solving the following optimization problem:

θ∗ = argmax
θ

Eρ∈D [pθ(a1:T |s1:T )] . (1)

In BC we have pθ(a1:T |s1:T ) =
∏
t=1:T πθ(at|st), where

πθ(a|s) denotes the probability of taking action a in state s
under the imitation policy πθ.

2.2. Sub-task identification and imitation

Differently from the default BC setup, our model breaks
trajectories ρ into M disjoint segments (c1, c2, ..., cM ):

ci = ((sbi′ , abi′ ), (sbi′+1, abi′+1), ..., (sbi−1, abi−1)),
(2)

where M is a hyperparameter, and i′ = i − 1. Here,
bi ∈ [1, T + 1] are discrete (latent) boundary indicator
variables with b0 = 1, bM = T + 1, and bi ≥ bi′ . We allow
segments ci to be empty if bi = bi′ . We model each part
independently with a sub-task policy πθ(a|s, z), where z
is a latent variable summarizing the segment. Framing BC
as a joint segmentation and auto-encoding problem allows
us to obtain imitation policies that are specific to different
inferred sub-tasks, and which can be re-combined for eas-
ier generalization to new settings. Each sub-task policy is
responsible for explaining a variable-length segment of the
demonstration trajectory.

We take the segment (sub-task) encoding z to be discrete in
the following, but we note that other choices are possible
and require only minor modifications to our framework. The
probability of an action sequence a1:T given a sequence of
states s1:T then takes the following form∗:

pθ(a1:T |s1:T ) = (3)∑
b1:M

∑
z1:M

pθ(a1:T |s1:T , b1:M , z1:M )p(b1:M , z1:M ) =

∑
b1:M
z1:M

∏
i=1:M

pθ(abi′ :bi−1|sbi′ :bi−1, zi)p(bi|bi′)p(zi) =

∑
b1:M
z1:M

∏
i=1:M

 ∏
j=bi′ :bi−1

πθ(aj |sj , zi)

 p(bi|bi′)p(zi),
where the double summation marginalizes over all allowed
configurations of the discrete latent variables z1:M and b1:M .
We omit p(b0) since we set b0 = 1. Note that our frame-
work supports both discrete and continuous latent variables
z1:M—for the latter case, the summation sign in Eq.(3) is re-
placed with an integral. Our (conditional) generative model
pθ(a1:T |s1:T , b1:M , z1:M ) factorizes across time steps if we
∗We again use the shorthand notation i′ = i− 1 for clarity.
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choose a non-recurrent policy πθ(a|s, z). Using recurrent
policies is necessary, e.g., for partially observable environ-
ments and is left for future work.

For simplicity, we assume independent priors over b and z as
follows: p(bi, zi|b1:i′ , z1:i′) := p(bi|bi′)p(zi). If more com-
plex dependencies are present in the data, this assumption
can be replaced with some mechanism for implementing
conditional probabilities between segments. We choose a
uniform categorical prior p(zi) and the following empirical
categorical prior for the boundary latent variables:

p(bi|bi′) ∝ Poisson(bi − bi′ , λ) = e−λ
λbi−bi′

(bi − bi′)!
, (4)

proportional to a Poisson distribution with rate λ, but trun-
cated to the interval [bi′ , T +1] and renormalized, as we are
dealing with sequences of finite length. This prior encour-
ages segments to be close to λ in length and helps avoid two
failure modes: 1) collapse of segments to unit length, and 2)
a single segment covering the full sequence length.

2.2.1. RECOGNITION MODEL

Following the standard VAE (Kingma & Welling, 2014;
Rezende et al., 2014) framework, we introduce a recogni-
tion model qφ(b1:M , z1:M |a1:T , s1:T ) that allows us to infer
a task decomposition via boundary variables b1:M and task
encodings z1:M for a given trajectory ρ. We would like our
recognition model to be able to generalize to new composi-
tions of the underlying latent code. We can encourage this
by dropping the dependence of qφ on any time steps before
the previous boundary position. In practice, this means that
once a segment (sub-task) has been identified and explained
by a latent variable z, the corresponding part of the input
trajectory will be masked out and the recognition model
proceeds on the remainder of the trajectory, until the end
is reached. This will further facilitate generalization to se-
quences of longer length (and with more segments) than
those seen during training.

Formally, we structure the recognition model as follows:

qφ(b1:M ,z1:M |x1:T ) =∏
i=1:M

qφz (zi|xbi′ :bi−1)qφb(bi|xbi′ :T ), (5)

where we have used xt = (at, st) and i′ = i− 1 to simplify
notation. Expressed in other words, we re-use the same
recognition model with shared parameters for each seg-
ment while masking out already explained segments. The
core modules are the encoding network qφz (z|x) and the
boundary prediction network qφb(b|x), both are modeled as
categorical distributions. We use recurrent neural networks
(RNN)—specifically, a uni-directional LSTM (Hochreiter
& Schmidhuber, 1997)—with shared parameters, but with

different output heads: one head for predicting the logits
hbi for the boundary latent variable bi at every time step,
and one head for predicting the logits hzi for the sub-task
encoding zi at the last time step in the current segment Ci.

We use multi-layer perceptrons (MLPs) to implement the
output heads:

hzi = MLPz(LSTMbi−1(x̃bi′ :bi−1)), (6)

htbi = MLPb(LSTMt(x̃bi′ :T )), (7)

where the MLPs have parameters specific to b or z (i.e.,
not shared between the output heads). The subscript t on
LSTMt denotes the time step at which the output is read.
Note that hzi is a K-dimensional vector where K is the
number of latent categories, whereas htbi is a scalar specific
to time step t. x̃t denotes a learned embedding of the input
xt at time step t. In practice, we implement this embedding
using a convolutional neural network (CNN), i.e., x̃t =
CNN(xt), with layer normalization (Ba et al., 2016) for
pixel-based inputs and using an MLP otherwise. Note that
the CNN is only applied to the state, but not on the action
component of xt.

2.2.2. CONTINUOUS RELAXATION

We can jointly train the recognition and the generative model
by using the usual ELBO as an objective for learning (see
supplementary material). To obtain low-variance gradient
estimates for learning, we can use the reparameterization
trick for VAEs (Kingma & Welling, 2014). Our current
model formulation, however, does not allow for reparame-
terization as both b and z are discrete latent variables. To
circumvent this issue, we make use of a continuous relax-
ation, i.e., we replace the respective categorical distributions
with Gumbel softmax / concrete (Maddison et al., 2017;
Jang et al., 2017) distributions. While this is straightforward
for the sub-task latent variables z, some extra consideration
is required to translate the constraint bi ≥ bi′ and the condi-
tioning on trajectory segments of the form xbi′ :bi−1 to the
continuous case. Note that we again summarize pairs of
states st and actions at in a single variable xt = (at, st) for
ease of notation. The continuous relaxation is only neces-
sary at training time, during testing we can fall back to the
discrete version explained in the previous section.

Soft segment masks In the relaxed/continuous case at
training time we cannot enforce a strict ordering bi ≥ bi′

on the boundaries directly as we are now dealing with “soft”
distributions and don’t have access to discrete samples at
training time. It is still possible, however, to evaluate seg-
ment probabilities of the form P (t ∈ Ci), i.e., the proba-
bility that a certain time step t in the trajectory ρ belongs
to the i-th segment Ci = [max0≤j≤i−1 bj , bi). The lower
boundary of the segment is now given by the maximum
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Boundary prediction

Figure 2: Differentiable segmentation of an input trajectory x composed of a sequence of sub-tasks. The recognition model
(encoder, marked as inference) predicts relaxed categorical (Gumbel softmax) boundary distributions q(bi|x) from which
we can obtain soft segment masks P (t ∈ Ci). Each segment Ci is encoded via q(zi|x). The generative model p(x|zi) is
executed once for every latent variable zi. The reconstruction loss is masked with P (t ∈ Ci), so that only the reconstructed
part corresponding to the i-th segment receives a training signal. For imitation learning, the generative model (decoder,
marked as generation) takes the form of a policy πθ(at|st, zi).

value of all previous boundary variables, as the ordering
bi ≥ bi′ is no longer guaranteed to hold. Ci is assumed
to be empty if any bj ≥ bi with j < i. We can evaluate
segment probabilities as follows:

P (t ∈ Ci) = P

(
max

0≤j≤i−1
bj ≤ t < bi

)
= (8)

[1− cumsum(qφb(bi|x), t)]
∏

j=0:i−1
cumsum(qφb(bj |x), t),

where cumsum(qφb(bj |x), t) =
∑
k≤t qφb(bj = k|x)

is a shorthand for the inclusive cumulative sum of the
posterior qφb(bj |x), evaluated at time step t, i.e., it is
equivalent to the CDF of qφb(bj |x). We further have
cumsum(qφb(b0|x), t) = 1 and cumsum(qφb(bM |x), t) =
0. It is easy to verify that

∑
i=1:M P (t ∈ Ci) = 1 for all

t. These segment probabilities can be seen as soft segment
masks. See Figure 2 for an example.

RNN state masking We softly mask out parts of the input
sequence explained by earlier segments. Using a soft mask-
ing mechanism allows us to find suitable segment bound-
aries via backpropagation, without the need to perform ex-
plicit and potentially expensive/intractable marginalization
over latent variables. Specifically, we mask out the hidden
states† of the encoding and boundary prediction networks’
RNNs. Thus, inputs belonging to earlier segments are effec-
tively hidden from the model while still allowing gradients
to be passed through. The hidden state mask for the i-th
segment takes the following form:

maski(t) = P

(
t ≥ max

0≤j≤i−1
bj

)
= (9)∏

j=0:i−1
P (t ≥ bj) =

∏
j=0:i−1

cumsum(qφb(bj |x), t),

†Including the cell state in the LSTM architecture.

where we set mask1 = 1. In other words, it is given by
the probability for a given time step to not belong to a
previous segment. Masking is performed by multiplying
the RNN’s hidden state with maski (after the RNN update
of the current time step). For every segment i ∈ [1,M ] we
thus need to run the RNN over the full input sequence, while
multiplying the hidden states with a segment-specific mask.
Nonetheless, the parameters of the RNN are shared over all
segments.

Soft RNN readout In addition to softly masking the RNN
hidden states in both qφb(bi|x) and qφz (zi|x), we mask out
illegal boundary positions by setting the respective logits
to a large negative value. Specifically, we mask out the
first time step (as any boundary placed on the first time step
would result in an empty segment) and any time steps corre-
sponding to padding values when training on mini-batches
of sequences with different length. We allow boundaries (as
they are exclusive) to be placed at time step T + 1. Further,
to obtain qφz (zi|x) from the z-specific output head htz—
where t denotes the time step at which we are reading from
the RNN—we perform the following weighted average:

qφz (zi|x) = concreteτ

( ∑
t=1:T

qφb(bi = t+ 1|x)htzi

)
,

(10)

which can be understood as the “soft” equivalent of read-
ing the output head htz for the last time step within the
corresponding segment. concreteτ is a concrete / Gum-
bel softmax distribution (Jang et al., 2017; Maddison et al.,
2017) with temperature τ . Note the necessary shift of the
boundary distribution by 1 time step, as qφb(bi|x) points to
the first time step of the following segment.
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Loss masking The reconstruction loss part of the ELBO
L = −Eqφ(b,z|a,s)[log pθ(a|s, b, z)] decomposes into inde-
pendent loss terms for each segment, i.e., L =

∑
i=1:M Li,

due to the structure of our generative model, Eq. (3). To
retain this property in the relaxed/continuous case, we softly
mask out irrelevant parts of the action trajectory when eval-
uating the loss term for a single segment:

Li = Eqφ(b,z|a,s)[segi · log pθ(a|s, zi)], (11)

where the segment mask for time step t is given by segi(t) =
P (t ∈ Ci), i.e. the probability of time step t being explained
by the i-th segment. The operator “·” denotes element-wise
multiplication. In practice, we use a single sample of the
(reparameterized) posterior to evaluate Eq. (11).

Number of segments At training time, we need to specify
the maximum number of segments M that the model is
allowed to use when auto-encoding a particular sequence
of length T . For efficient mini-batch training, we choose
a single, fixed M for all training examples. Providing the
correct number of segments can further be utilized as a form
of weak supervision.

Complexity Evaluating the model components qφb(bi|x),
qφz (zi|x), and pθ(x|zi) is O(T ) for a single i = 1, ...,M .
The overall forward pass of the CompILE model for a single
demonstration trajectory in terms of its length T and the
number of segments M is therefore O(TM).

3. Related work
Our framework is closely related to option discovery
(Niekum et al., 2013; Kroemer et al., 2015; Fox et al., 2017;
Hausman et al., 2017; Krishnan et al., 2017; Fox et al., 2018),
with the main difference being that our inference algorithm
is agnostic to what type of option (sub-task) encoding is
used. Our framework allows for inference of continuous,
discrete or mixed continuous-discrete latent variables. Fox
et al. (2017) introduce an EM-based inference algorithm
for option discovery in settings similar to ours, however
limited to discrete latent variables and to inference networks
that are independent of the position of task boundaries: in
their case without recurrency and only dependent on the cur-
rent state/action pair. Their framework was later applied to
continuous control tasks (Krishnan et al., 2017) and neural
program modeling (Fox et al., 2018).

Option discovery has also been addressed in the context
of inverse reinforcement learning (IRL) using generative
adversarial networks (GANs) (Goodfellow et al., 2014) to
find structured policies that are close to demonstration se-
quences (Hausman et al., 2017; Sharma et al., 2018). This
approach requires being able to interact with the environ-
ment for imitation learning, whereas our model is based on
BC and works on offline demonstration data.

Various solutions for supervised sequence segmentation or
task decomposition exist which require varying degrees of
supervision (Graves, 2012; Escorcia et al., 2016; Krishna
et al., 2017; Shiarlis et al., 2018). In terms of two recent ex-
amples, Krishna et al. (2017) assume fully-annotated event
boundaries and event descriptions at training time whereas
TACO (Shiarlis et al., 2018) only requires task sketches
(i.e., supervision on sub-task encodings but not on task
boundaries) and solves an alignment problem to find a suit-
able segmentation. A related recent approach decomposes
demonstration sequences into underlying programs (Sun
et al., 2018) in a fully-supervised setting, based on a seq2seq
(Sutskever et al., 2014; Vinyals et al., 2015) model without
explicitly modeling segmentation.

Outside of the area of learning from demonstration, hierar-
chical reinforcement learning (Sutton et al., 1999; Kulkarni
et al., 2016; Bacon et al., 2017; Florensa et al., 2017; Vezh-
nevets et al., 2017; Riemer et al., 2018) and the options
framework (Sutton et al., 1999; Kulkarni et al., 2016; Ba-
con et al., 2017; Riemer et al., 2018) similarly deal with
learning segmentations and representations of behavior, but
in a purely generative way. Learning with task sketches
(Andreas et al., 2017) and learning of transition policies
(Lee et al., 2019) has also been addressed in this context.

Unsupervised segmentation and encoding of sequential data
has also received considerable attention in natural language
and speech processing (Blei & Moreno, 2001; Goldwater
et al., 2009; Chan et al., 2017; Wang et al., 2017; Tang
et al., 2018), and in the analysis of sequential activity data
(Johnson et al., 2016; Dai et al., 2017). In concurrent work,
Pertsch et al. (2019) introduced a differentiable model for
keyframe discovery in sequence data, which is related to
our setting. Sequence prediction models with adaptive step
size (Neitz et al., 2018; Jayaraman et al., 2018) can provide
segment boundaries as well, but do not directly learn a
policy or latent encodings.

4. Experiments
The goals of this experimental section are as follows: 1) we
would like to investigate whether our model is effective at
both learning to find task boundaries and task encodings
while being able to reconstruct and imitate unseen behavior,
2) test whether our modular approach to task decomposition
allows our model to generalize to longer sequences with
more sub-tasks at test time, and 3) investigate whether an
agent can learn to control the discovered sub-task policies
to quickly learn new tasks in sparse reward settings.

4.1. Multi-task environments

We evaluate our model in a fully-observable 2D multi-task
grid world, similar to the one introduced in Oh et al. (2017)
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Figure 3: Example instances of multi-task, instruction-
following environments used in our experiments. Left: Grid
world with walls. An agent has to pick up or visit certain
objects. Right: Continuous control reacher task with multi-
ple targets. The tip of the reacher arm has to touch multiple
colored spheres in a pre-specified order.

and a continuous control task, where a reacher arm has to
reach certain target locations. An example instance for each
environment is shown in Figure 3. See supplementary mate-
rial for additional implementation and evaluation details.

Grid world The environment is a 10x10 grid world with
a single agent, impassable walls, and multiple objects scat-
tered throughout the scene. We generate scenes with 6 ob-
jects selected uniformly at random from 10 different object
types (excl. walls and player) jointly with task lists of 3-5
visit and pick up tasks. A single visit task can be solved by
moving the agent to the location of an object of the correct
type. For example, if the instruction is visit tree, the task is
completed if any tree in the scene is visited. Similarly, a pick
up task can be solved by picking up an object of the correct
type (moving to a field adjacent to the object and executing
a directional pick up action, e.g. pick up north). We generate
a demonstration trajectory for each environment instance
and task list by running a shortest path algorithm on the 2D
environment grid (while marking walls as impassable).

Continuous control In this environment, a two-link pla-
nar reacher arm has to be controlled to reach towards pre-
specified target locations. The environment is an adaptation
of the single-target reacher task from the DeepMind Control
Suite (Tassa et al., 2018). We simultaneously place up to 6
targets drawn without replacement from 10 different target
types (spheres of different color) in a single environment
instance, distributed uniformly at random within reach of
the reacher arm. The number of targets in an environment
is drawn uniformly in range [number of tasks, 6]. For each
such instance, we generate a task list by selecting 3-5 of the
target object types in the environment. The current target
is marked as reached and removed from the scene if the
end effector—a small sphere at the tip of the reacher arm—
touches the target sphere. The observations to the agent
are the positions of the all targets, and the position of the
reacher arm. We generate demonstration trajectories using
a hand-coded control policy, which opens or closes the arm
based on the distance of the target to the center, and rotates
the shoulder based on the direction to the target.

4.2. Imitation learning

In this set of experiments, we fit our CompILE model to
demonstration trajectories generated for random instances of
the multi-task environments (incl. randomly generated task
lists). We train our model with discrete latent variables (as
the target types are discrete) on demonstration trajectories
with three consecutive tasks, either 3x visit instructions or
3x pick up instructions in the grid world, and 3x reaching
instructions in the continuous control environment. Training
is carried out on a single GPU with a fixed learning rate of
10−4 using the Adam (Kingma & Ba, 2015) optimizer, with
a batch size of 256 and for a total of 50k training iterations
(500k for reacher task). We further train a causal termination
policy that shares the same architecture as the encoder of
CompILE to mimic the boundary prediction module in an
online setting, i.e., without seeing the future.

We evaluate our model on 1024 newly generated instances
of the environment. We again generate demonstration tra-
jectories with random task lists of either 3 consecutive tasks
(same number as during training) or 5 consecutive tasks,
to test for generalization to longer sequences, and we eval-
uate both boundary prediction performance and accuracy
of action sequence reconstruction from the inferred latent
code. We provide weak supervision by setting the number
of segments to M = 3 and M = 5, respectively. We find
that results slightly degrade with non-optimal choice of M
(see additional experiments in the supplementary material).

Baselines We compare against two baselines that are
based on behavioral cloning (BC): an autoregressive base-
line for evaluating segmentation performance, termed LSTM
surprisal, where we find segment boundaries by threshold-
ing the state-conditional likelihood of an action. In the grid
world domain, we further compare against a VAE-based BC
baseline that corresponds to a variant of our model without
inferred task boundaries, i.e. with only a single segment.
This baseline allows us to evaluate task reconstruction per-
formance from an expert trajectory that is encoded in a
single latent variable. We choose a 32-dim. Gaussian latent
variable z (i.e., with significantly higher capacity) and a
unit-variance, zero-mean Gaussian prior for this baseline.
We further show results for two model variants: z- and
b-CompILE, where we provide supervision on the latent
variables z or b during training. z-CompILE is comparable
to TACO (Shiarlis et al., 2018), where task sketches (z in our
case) are provided both during training and testing (we only
provide z during training), whereas b-CompILE is related
to imitation learning of annotated, individual tasks.

Grid world results Results for the grid world tasks are
summarized in Figure 4. For the pick up task, we see that our
model reliably finds the correct boundary positions, i.e., it
discovers the correct segments of behavior both in the 3-task
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LSTM surprisal

Figure 4: Imitation learning results in grid world domain. We report accuracy of segmentation boundary recovery,
reconstruction accuracy (average over sequence vs. percentage of exact full-sequence matches) and online evaluation:
average reward obtained when deploying the generative model (with termination policy) using the inferred latent code from
the demonstration sequence in the environment, without re-training. See main text for additional details.

setting (same as training) and in the longer 5-task setting.
Reconstructions from the latent code sequence are almost
perfect and only degrade slightly in the generalization set-
ting to longer sequences, whereas the BC baseline without
segmentation mechanism completely fails to generalize to
longer sequences (see exact match score). In the visit task
setting, ground truth boundary positions can be ambiguous
(the agent can walk over an object unintentionally on its
way somewhere else) which is reflected in the sometimes
lower online evaluation score, as the termination policy can
be sensitive to ambiguous termination conditions (e.g., un-
intentionally walked-over objects). Nonetheless, CompILE
is often able to generalize to longer sequences whereas the
baseline model without task segmentation consistently fails.
In both tasks, our model beats a surprisal-driven segmenta-
tion baseline by a large margin.

Continuous control results Results for unsupervised seg-
mentation boundary recovery for the reacher task are sum-
marized in Table 1. We find that CompILE can (almost)
perfectly recover segmentation boundaries when trained
with partial supervision on z (z-CompILE), matching the
performance of b-CompILE that receives supervision on
boundary position. Note that different from TACO (Shiarlis
et al., 2018), no supervision is provided at test time. The
fully unsupervised model (CompILE) outperforms an auto-
regressive baseline (LSTM surprisal) by a large margin, but
often does not recover the exact segmentation that generated
the trajectory. The F1 score with tolerance for misplaced
boundaries by 1 time step (tol=1) shows that in some cases
the error can be explained by a minor prediction offset. We
omit reconstruction performance results in the continuous
domain, as a fair evaluation would require addressing the
covariate shift problem in BC to allow the policy to recover
from small errors, e.g., using a technique such as DART
(Laskey et al., 2017) to inject noise in the training process.
We leave this for future work.

Model Accuracy F1 (tol=0) F1 (tol=1)

3 tasks
LSTM surprisal 24.8± 0.6 39.0± 0.3 47.1± 0.4

CompILE 62.0± 4.5 74.3± 3.3 78.9± 2.5
z-CompILE 99.5± 0.2 99.7± 0.2 99.8± 0.1
b-CompILE 99.8± 0.1 99.9± 0.1 100± 0.0

5 tasks – generalization
LSTM surprisal 21.6± 0.5 44.9± 0.5 54.4± 0.5

CompILE 41.7± 8.0 69.3± 4.7 74.0± 4.6
z-CompILE 98.4± 0.5 99.3± 0.2 99.8± 0.1
b-CompILE 98.8± 0.3 99.5± 0.1 99.8± 0.1

Table 1: Segmentation results in continuous control domain.
We report accuracy (mean and standard deviation over 5
runs) of exact segmentation boundary recovery and two
F1 scores (in %), which measure the harmonic mean be-
tween precision and recall for boundary prediction, with
(tol=1) and without (tol=0) tolerance for boundaries that are
misplaced by 1 time step in either direction.

4.3. Hierarchical reinforcement learning

In this set of experiments, we pre-train a CompILE model
under the same setting as in Section 4.2 in the grid world
environment and only keep the discovered sub-task policies
and the termination policy. We provide these policies to
a hierarchical agent that can either call a low-level action
(such as move or pick up) directly in the environment, or
call a meta action, that executes a particular sub-task policy
incl. termination policy, until a termination criterion is met
(termination probability larger than 0.5 or end of episode).

We generate tasks and environments at random as in the imi-
tation learning setting, but deploy agents in the environment
where they either receive a reward of 1 for every completed
sub-task (dense reward setting) or a single reward of 1 at
the end of the episode if all tasks are completed and no
termination criterion (e.g., wrong object was picked up, or
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Figure 5: Learning curves for agents trained in the multi-task grid world environment for a single representative seed. We
found that the qualitative behavior was consistent across seeds. Original learning curve (reward at every episode) plotted as
shaded line; overlaid with solid line using exponential smoothing for easier visibility. BC denotes a VAE-based behavioral
cloning baseline that was exposed to the same number of task demonstrations as our CompILE model. The low-level
baseline is an agent without internal hierarchy. The CompILE-based hierarchical agent benefits from significantly improved
exploration and is the only agent that succeeds at all sparse reward tasks. Best viewed in color.

reached maximum number of 50 steps) was met (sparse
reward setting). The sparse reward setting poses a very
challenging exploration problem: the agent only receives a
learning signal if it has completed all tasks from the task list
in the correct order, without mistakes (i.e., without picking
up a wrong object which could render the episode unsolv-
able). We compare against a low-level baseline agent that
only has access to low-level actions and a VAE-based, pre-
trained BC baseline that receives the same pre-training as
our CompILE agent, but does not learn a task segmenta-
tion (it also has access to low-level actions). All agents
use the same CNN-based architecture (see supplementary
material for details) and are trained using the distributed
policy-gradient algorithm IMPALA (Espeholt et al., 2018).
Results are summarized in Figure 5.

The hierarchical agent with sub-task policies from the Com-
pILE model achieves consistent results across all settings
and generalizes well to the 5 task setup, even though it has
only seen demonstrations of 3 tasks during pre-training. It
is the only agent that learns to solve the pick up task setting
with sparse reward. The visit task is significantly easier to
solve as the episode does not end if a wrong object is visited.
Nonetheless, the low-level baseline (without pre-training)
fails to learn under the sparse reward setting for all but the
3x visit task. Only if reward for every individual sub-task is
provided, the low-level baseline learns to solve the task in
the fewest number of episodes.

4.4. Limitations and future work

As our training procedure is completely unsupervised, the
model is free to choose any type of semantics for its la-

tent code. For example, in the grid world environment we
found that the model learns a location-specific latent code
(with only a small degree of object specificity), whereas
the ground truth task list is specific to object type. See
supplementary material for an example. It remains to be
seen to what degree the latent code can be grounded in a
particular manner with only weak supervision, e.g. in a semi-
supervised setting or using pairs of demonstrations with the
same underlying task list. Furthermore, we have currently
only explored fully-observable, Markovian settings. An
extension to partially-observable environments will likely
introduce further challenges, as the generative model will
require some form of recurrency or memory, and the model
might learn to ignore the latent code altogether.

5. Conclusions
Here we introduced CompILE, a model for discovering and
imitating sub-components of behavior in sequential demon-
stration data. Our results showed that CompILE can success-
fully discover sub-tasks and their boundaries in an imitation
learning setting, and the latent sub-task encodings can then
be used as sub-policies in a hierarchical RL agent to solve
challenging sparse reward tasks. While here we explored im-
itation learning, where inputs to the model are state-action
sequences, in principle our method can be applied to any se-
quential data, and an interesting future direction is to apply
our differentiable segmentation and auto-encoding mecha-
nism to other data domains. Future work will investigate
extensions for partially-observable environments, its appli-
cability as an episodic memory module, and a hierarchical
extension for abstract, high-level planning.
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