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Abstract

We address the problem of unsupervised disentan-
glement of discrete and continuous explanatory
factors of data. We first show a simple proce-
dure for minimizing the total correlation of the
continuous latent variables without having to use
a discriminator network or perform importance
sampling, via cascading the information flow in
the §-vae framework. Furthermore, we propose a
method which avoids offloading the entire burden
of jointly modeling the continuous and discrete
factors to the variational encoder by employing a
separate discrete inference procedure.

This leads to an interesting alternating mini-
mization problem which switches between find-
ing the most likely discrete configuration given
the continuous factors and updating the varia-
tional encoder based on the computed discrete
factors. Experiments show that the proposed
method clearly disentangles discrete factors and
significantly outperforms current disentanglement
methods based on the disentanglement score
and inference network classification score. The
source code is available at https://github.com/snu-
mllab/DisentanglementICML19.

1. Introduction

Learning to disentangle the underlying explanatory factors
of data without supervision is a crucial task for representa-
tion learning in Al-related tasks such as speech, object recog-
nition, natural language processing, and transfer learning
(Bengio et al., 2013). While establishing a clear quantifiable
objective is difficult, in a successfully disentangled repre-
sentation, a single latent unit of the representation should
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correspond to a change in a single generative factor of the
data while being relatively invariant to others.

To this end, a line of research on unsupervised disentangle-
ment has been pursued under the Variational Autoencoder
framework (Higgins et al., 2017; Kim & Mnih, 2018; Chen
et al., 2018; Gao et al., 2018). The common theme among
the recently proposed methods is to penalize the fotal cor-
relation among the latent variables so that the model is
encouraged to learn statistically independent factors of data.

Although penalizing the total correlation is important we
argue that this alone is not sufficient for learning disentan-
gled representations. Most recent methods focus on learning
only the continuous factors of variation and jointly model-
ing both the continuous and discrete factors of variation is
relatively much less studied. When modeling complex and
high-dimensional data such as raw images, it becomes diffi-
cult to disentangle the discrete factors of data (i.e. number
of light sources, categorical shape of present objects) from
continuous factors (i.e. translation, rotation, color) under
these methods. Makhzani et al. (2015) have demonstrated
that providing the true discrete factors of data to the au-
toencoder via supervision drastically improves the quality
of the learned continuous factors compared to the purely
unsupervised case. We hypothesize that lumping both the
continuous and discrete factors into a single latent vector
and optimizing for the joint variational posterior severely de-
teriorates the disentanglement performance as this imposes
too much modeling burden to the posterior.

In this paper, we first propose a simple procedure for penal-
izing the total correlation which does not require any extra
discriminator network or having to run expensive impor-
tance sampling in the 5-VAE framework. Then, we propose
an alternating disentanglement method where it alternates
between finding the most likely configuration of the dis-
crete factors given the continuous factors and updating the
inference parameters given the discrete configuration. The
empirical results show that decoupling the disentanglement
process for continuous and discrete factors via the proposed
alternating method leads to strong disentanglement perfor-
mance both qualitatively and quantitatively.

Our quantitative results on 1) dSprites (Matthey et al., 2017)
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dataset on the disentanglement evaluation metric by (Kim &
Mnih, 2018), and on 2) the inference network classification
score on the learned discrete factors show state of the art
results outperforming recently proposed disentanglement
methods: 5—VAE, AnchorVAE, FactorVAE, and JointVAE
by a large margin.

2. 5-VAE and disentanglement

We first review and analyze how the 3-VAE framework re-
lates to disentanglement from information theoretic perspec-
tive. VAE is a latent variable model that pairs a top-down
decoding generator (¢) and a bottom-up encoding infer-
ence network (¢). Then, a variational lower bound of the
marginal log-likelihood, E,., ;) log p(z), is maximized.
Concretely, the VAE objective is,

[:(0, d)) = Ez~p(z) [Ez~q¢(-|z) logpg (SE | Z) (1)
— BDxw (gs(2 | 2) | p(2)) ],

where p(z) is the fully factorized standard normal prior.
Note, maximizing the objective in Equation (1) can be
viewed as maximizing the lower bound on the mutual infor-
mation between the data z and the latent code z with the
KL term. Concretely,

I(z;2) — BEsp(a) Dxi(ge (2 | @) || p(2)) )
_ H(at)+/q¢(x,z) log g (x | 2)dzdz

= BEznp(a) Dxr(gs (2 | ) || p(2))
> H(z) + Eonp(a) [Eznay (1) log po(z | 2)

— BDxw(4s(2 | 2) || p(2))],

where the data entropy can be ignored as there is no depen-
dence on the parameters. Also, the KL term in Equations (1)
and (2) can be factorized as below (Kim & Mnih, 2018;
Chen et al., 2018),

Eop(x) Dri(q(z]z) ||P( ) = I(x;2) + Dx(q(2)[p(2)) (3)
= I(x;z) + Dxr(q HHq zj) +ZDKL

= Total correlation, T'C'(z)

q(z5) |l p(2;)),

where ¢(z) denotes the marginal posterior computed as
q(2) = Epup@)q(z | ). The second term in the factor-
ization is known as total correlation (TC) and is a popular
measure quantifying the redundancy among a set of m ran-
dom variables (Watanabe, 1960). The significance of TC
is that penalizing TC causes the model to learn statistically
independent factors in the data which is a crucial component
in disentangled representations (Bengio et al., 2013).

3. Total correlation penalization with
information cascading

B-VAE indirectly penalizes T'C(z) by increasing the 3 co-
efficient to a high value in the KL divergence term in Equa-
tion (1) (Higgins et al., 2017). However, this inevitably pe-
nalizes the 7(x; z) term altogether (see Equation (3)) leading

to reduction in the amount of information in z about z. To
address this, FactorVAE decreases 3 and introduces an addi-
tional regularization term between the marginal variational
posterior and factorized marginal Dy (¢(2) || [[;" q(2i))
using the density-ratio trick via a separate discriminator
network (Kim & Mnih, 2018). 3-TCVAE on the otherhand
estimates TC via importance sampling within minibatches
(Chen et al., 2018). We first make the following observa-
tions and show a simple practical procedure for minimizing
TC without having to rely on additional neural networks or
sampling procedures in the 5-VAE framework.

Proposition 1. The mutual information between a single
random variable and the rest can be factorized as

I(z1:-15 2) = TC(21:) — TC(21:-1)

Proof. See supplementary Al. O

Proposition 2. The mutual information between x and par-
titions of z = [z1, 22| can be factorized as,

I(w; (21, 22]) = I(w;21) + I (25 22) — I (21 22)
Proof. See supplementary A2. O

Now, by telescoping sum, we can write,

TC(z) =TC(z1:2 +Z TC(z1:4) — TC(21:i-1)

=3

=I(z1;22) =I(21:i—1:%i)

= EI(leifl;Z’i) 4
1=2

This is because the first term in Equation (4) is equal to
I(z1; z2) by definition of mutual information and the rest of
the terms are equal to I(z1.,_1; ;) by Proposition 1. Now
we aim at penalizing T'C'(z) by sequentially penalizing the
individual summand in Equation (4). From Proposition 2,
we can write
(w5 21.4) = I(%; 21:0-1) + 1(%5 21) — 1(21:-15 21)

This factorization motivates a maximization algorithm se-
quentially updating the left hand side I(z;z;.;) for all
i = 2,...,m which in turn minimizes each summand in
Equatlon (4). Also, from the lower bound of mutual infor-
mation in Equation (2) we have,

(x5 21:) > H(z) + ELE. g, (|2) logpo(T | 21:4)

We maximize I(x;z1.;) by maximizing its lower bound
EyE.,  ~q,(|e)Po(®|21:4). In practice, we observed it
is sufficient to maximize the objective in Equation (1)
while penalizing z;41.,, With a large beta coefficient on
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(a) B-VAE  (b) JointVAE

(c) AAE-S

(d) Ours

Figure 1. Graphical models view of 3-VAE, JointVAE, AAE with
supervised discrete variables, and our method. Solid lines denote
the generative process and the dashed lines denote the inference
process. z, z, d denotes the data, continuous latent code, and the
discrete latent code respectively.

Dx1.(q4(zit1:m | @) || p(zit1:m))". This leads to sequen-
tial updates where each latent dimensions are heavily pe-
nalized with high 3 in the beginning but are sequentially
relieved one at a time with small 3 in a cascading fashion.

Since this procedure implicitly penalizes the individual sum-
mand I(z1.,_1, %) in the factorization of TC, we can in-
terpret that the method separately controls the information
flow one latent variable at a time encouraging the model to
encode one statistically independent factor of information
per each newly opened variable.

To contrast the procedure with related methods, Burgess
et al. (2018) and JointVAE increases the KL capacity term
which is shared across all latent variables. AnchorVAE sets
£ to a small value for a subset of variables and high value
for the rest of the variables but does not dynamically control
the information flow (Gao et al., 2018).

4. Alternating disentanglement of discrete
and continuous factors

Figure 1 illustrates the graphical models view of the gen-
erative and inference processes for 5-VAE (Higgins et al.,
2017), JointVAE (Dupont, 2018), AAE with supervised
discrete factors (Makhzani et al., 2015), and our proposed
model respectively. As illustrated in Figure 1b, JointVAE
can be viewed as augmenting the continuous latent variables
with discrete latent variables (z = [2’;d]) in the 3-VAE
framework. However, simply lumping the latent variables
together offloads the entire burden of jointly modeling both
the continuous and discrete factors to the variational poste-
rior which can be very challenging.

Makhzani et al. (2015) have investigated learning contin-
uous latent representations while providing the discrete
factors through supervision (i.e. providing class labels in
MNIST) and demonstrated that the model can learn drasti-
cally better continuous representations when the burden of
simultaneously modeling the continuous and discrete factors

"Note, under conditional independence, BDx1(qe(zit1:m |
) || p(zivr:m)) = 2270041 BDxL(ga(z5 | ) || p(25))

is relieved. Inspired by these findings, our idea is to alter-
nate between finding the most likely discrete configuration
of the variables given the continuous factors and updating
the parameters (¢, #) given the discrete configurations.

Figure 1c and Figure 1d illustrate that the generative and
inference process between the two methods resemble in the
sense that they only encode the continuous factor z, while
Figure 1b encodes both the continuous and discrete factors
z, d simultaneously. Unlike AAE-S, discrete factors are not
observed in our case.

The joint distributions ¢(z, z, d) of JointVAE and AAE-S
are

4¢(z, 2, d) = p(x)qy (2, d|z)
and
go(x,2) ifd=y
q¢(x, Z, d) = )
0 otherwise

where y is the provided ground truth discrete factors, respec-
tively. We define the joint distribution similar to AAE-S
as

gs(w,z) if d = argmax;pe(z | 2, d)

q¢,9(x7zad) = { )

0 otherwise

where ¢4(x, z) = p(z)g4(z | z). Likewise, the variational
posterior is defined as,

9(z | z)

0 otherwise

if d = argmax ; po(z | z,d)

go,6(2,d | z) = {

Note in our case the inference for the discrete factors in-
volves both the encoder (¢) and the decoder () in contrast
to JointVAE.

Note from the factorization in Equation (3), the KL term in
[-VAE is factorized as the sum of the mutual information
term and the divergence from the marginal posterior to the
prior. Since the mutual information for discrete variables,
I(x,d) is bounded above by H (d), we only need to consider
the prior divergence term. For discrete uniform prior, the
following lemma shows a useful upperbound which is easier
to optimize directly?.

Lemma 1. If p(d;) is the discrete uniform distribution sup-
ported on a finite set of cardinality S;, Dic1,(q(d)||p(d)) <

SEq,q'mq(a)[1(d = d')] — 1 where S =[], S;.
Proof. Denote p(d) =[], p(d;) which is also discrete uni-
form.
q(d) <Q(d) )
D 1 d | —%5—1
x(q(d)||p(d) Zq ng(d %:Q( ) ()

=5Y ¢*(d) — 1= SEqunqa[Ld=d)] -
d

This will be apparent in the following subsection.
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Now our goal is to maximize the following objective

L(0,¢) = 1(z; [z, d]) = PEanpa) Dre(ds(z | 2) [| p(2))
— ADxi(q(d) || p(d))

> H@)+ [ 3 alo, 2 d) ogan (ol d)dzda
d

= BEsnp(e) Dxi(as (2 | 2) || p(2)) — ADxe(q(d) || p(d))
> H(x) + Eznp(a) [Ez,dngy o (-12) [l08 Po (7|2, d)]]

— BEzp(a) DxL(ge (2 | ) || p(2))

= MSEq,dnq(a)[L(d = d')] - 1) ©)

4.1. Alternating minimization scheme

Note the lower bound objective in Equation (5) has an in-
ner maximization step over the discrete factors embedded
in the variational posterior. Suppose the data is sampled
) € X,i=1,..., n, the continuous latent variables are
samples from the decoder g, (- | (")), and the discrete la-
tent variables are represented using one-hot encodings of

each variables d¥) € {ey,...,eg}. After rearranging the
terms, we arrive at the following optimization problem.

maximize uéi)Td(i) N Z dDTgW

maximize
0, (1) (n)
¢ dh),..dlm) = Py

=L p(0,9)

~ 83 Drcs(as(:la)lIp(=)

subjectto [|dV||; =1, d € {0,1}%, Vi, (6)
where u!” denotes the vector of the likelihood
1ogp9(z(i§\z(i),ek) evaluated at each k € [S]. Note,

the inner maximization problem L 5(6, ¢) in Equation (6)
over the discrete variables [d(1), ..., d(™)] subject to the
sparsity equality constraints can be exactly solved in
polynomial time via minimum cost flow without continuous
relaxation as shown in Theorem 1 in (Jeong & Song, 2018).

5. Related works

Unsupervised discovery of disentangled factors dates back
to 90s. Schmidhuber (1992) penalizes the predictability of
a latent dimension given the others but the approach did not
scale very well. More recently, VAE was proposed and the
framework offered scalability and the optimization stability
(Kingma & Welling, 2013). Then Higgins et al. (2017)
showed that tuning the 5 hyperparameter in VAE to 5 > 1
can influence the model to learn statistically independent
and disentangled representations by limiting the capacity of
the latent information channel.

The recent follow up works from Kim & Mnih (2018); Chen
et al. (2018); Gao et al. (2018) then analyzed the KL diver-
gence term under the expectation over the data distribution

could be broken down into the mutual information term
between the data and the latent code, and the KL divergence
term between the latent distribution and the factorial prior
often denoted as total correlation (TC) (Watanabe, 1960).
The idea was that regularizing the KL divergence term with
high £ in the VAE framework not only penalizes for TC but
also inevitably penalizes the mutual information between
the data and the latent variables.

To this end, the recent works proposed decreasing 8 but
more explicitly penalizing for TC. FactorVAE estimates
the total correlation via density ratio trick which utilizes a
discriminator network (Kim & Mnih, 2018). 5-TCVAE em-
ploys mini-batch weighted sampling to estimate TC (Chen
et al., 2018). On the contrary, we observe a factorization
TC(z) = >, I(z1:i-1; %;) and show we can penalize TC
without any explicit computation by incrementally penal-
izing each summand in the factorization by cascading the
information flow.

On the other hand, NVIL (Mnih & Gregor, 2014) and
VIMCO (Mnih & Rezende, 2016) have explored training
VAESs with only discrete latent variables via REINFORCE
(Williams, 1992) with variance reduction techniques. VQ-
VAE (van den Oord et al., 2017) learns discrete latent vari-
ables via vector quantization. However, modeling via binary
latent variables alone can be inappropriate since the under-
lying modalities would be a mix of both continuous and
discrete factors for high dimensional complex data.

Jointly modeling the continuous and discrete generative la-
tent factors has been much less explored. InfoGAN (Chen
et al., 2016) models both the factors and is based on Gener-
ative Adversarial Network (GAN) framework (Goodfellow
et al., 2014). InfoGAN aims at disentangling the factors
by maximizing the mutual information between a subset
of latent dimensions and the generated samples. However,
(Kim & Mnih, 2018) showed the learning process can be
very unstable and significantly reduces the sample diversity
in contrast to the 3-VAE framework (Higgins et al., 2017).
Empirically, InfoGAN tends to mix discrete and continu-
ous factors which results in lower disentanglement score
(Kim & Mnih, 2018) than 3-VAE based methods. JointVAE
proposed jointly modeling both the continuous and discrete
factors by augmenting the continuous and discrete latent
variables. This introduces an additional KL divergence term
for discrete latent variables which is optimized by a continu-
ous reparameterization via Gumbel softmax trick (Gumbel,
1954; Maddison et al., 2016; Jang et al., 2016). Our method,
on the other hand, decouples the task of jointly modeling the
continuous and discrete factors of data via alternating maxi-
mization and shows significant gains in the disentanglement
performance.
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6. Implementation details

Model architecture and training details are provided in sup-
plementary B. As discussed in Section 3, we individually
control the 8 term on each continuous variables. Let 3;
denote the coefficient for a variable j. Each ;’s start at
the high value 3, and gets relieved one at a time to the low
value ;. After each r iterations, we relieve one variable
j by switching the coefficient from S} to ;. The alternat-
ing maximization with discrete variables is enabled after a
warm-up time denoted as t,.

For ablation study, we denote our method without the dis-
crete variables as CascadeVAE-C, our method including the
discrete variables but without the information cascading as
CascadeVAE-D, and the full method as CascadeVAE. Al-
gorithm 1 shows the pseudocode for Cascade VAE. Note, if
tq is greater than MAXITER, then the pseudocode trains
CascadeVAE-C.

Algorithm 1 CascadeVAE

Input : Data {z(®}N, Encoder(gy), Decoder(py),
Bi, Br, T, tq, optimizer g
Initialize parameters ¢, 6.
Set 3; = By, Vjandd® =0, Vi€ [N]
Setj=1.
fort = 1,... MAXITER do
if ¢ is a multiple of r
Switch 8; to fyand j - j +1
Randomly select batch {z()};c5
Sample zg) ~ qs(z|zD) Vi e B
ift>ty
Update u((f) by computing log pg (2|2, e},) Vk
Compute L1, 5(6, ¢) by solving for the optimal
assignment {d} ;< via minimum cost flow
0,0 < g(Vo,eLLp(0,9))
end for

7. Experiments

We perform experiments on dSprites (Matthey et al., 2017),
MNIST, FashionMNIST (Xiao et al., 2017), and Chairs
(Aubry et al., 2014) datasets. For quantitative results,
dSprites dataset comes labeled with the generative factors
which allow quantitative comparisons on the disentangle-
ment metrics. We additionally report unsupervised classi-
fication accuracy using the learned discrete variables from
running inference on dSprites, MNIST, and FashionMnist.

7.1. Experiments on dSprites

DSprites has 737, 280 images of size 64 x 64 with 5 genera-
tive factors: shape (3), scale (6), orientation (40), x-position
(32), and y-position (32). We evaluate the performance with

the disentanglement score metric proposed by Kim & Mnih
(2018). The details on disentanglement score are provided
in Supplementary C. Table 1 compares the disentanglement
scores for various baselines. For AnchorVAE, we experi-
mented anchoring 5 latent dimensions out of total 5 and 20
dimensions. For FactorVAE, we performed hyperparameter
search over both /3 and ~y to reproduce the reported results
from the paper. The dimension of discrete latent represen-
tation .5, is fixed to 3 following the experiment protocol in
JointVAE for a fair comparison.

The results for CascadeVAE-C show that cascading the
information flow alone in the S-VAE framework achieves
competitive disentanglement scores to the current state of
the art FactorVAE method. CascadeVAE-D which does not
penalize for TC via information cascading also performs
well and boosts the performance of 3-VAE by up to 10
points on the disentanglement metric.

Our full method without ablations is denoted as Cascade-
VAE (the last row) in Table 1. The method shows approxi-
mately 10 points boost on top of the current state of the art
FactorVAE method. The experiments suggest that both the
information cascading for implicit TC penalization and the
discrete modeling via alternating disentanglement have com-
plementary benefits leading to a significant improvement
over the baseline methods.

Method m Mean (std) Best
58 VAE
(B =10.0) 5 70.11 (7.54) 84.62
(B =4.0) 10 74.41 (7.68) 88.38
AnchorVAE
(B =10.00 5(5) 76.36(1496) 82.75
(B =7.0) 5(20) 72.44(6.85) 83.25
FactorVAE 5 81.09 (2.63) 85.12
10 82.15(0.88) 88.25
CascadeVAE-C
(B =0.7) 5 81.69 (3.14) 88.38
(B = 1.0) 10 81.74 (2.97) 87.38
JointVAE 6 74.51 (5.17) 91.75
4 73.06 (2.18) 75.38
CascadeVAE-D
(B="17.0) 6 79.67 (5.36)  90.25
(B =1.0) 4 80.70 (4.77)  96.50
CascadeVAE
(B =1.0) 6 90.49 (5.28) 99.50
(B =2.0) 4 91.34 (7.36) 98.62

Table 1. DSprites disentanglement score for various baselines. The
score is obtained from 10 different random seed each with the best
hyperparameters.

Figure 2 shows the scatter plot of T'C'(z) versus the disentan-
glement scores for 10 different random seeds. We chose the
best hyperparameter settings for each method. The results
for CascadeVAE-C show comparable T'C'(z) with -VAE
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Figure 2. TC(z) and disentanglement score on 10 different ran-
dom seed on dSprites dataset

even though the 3 coefficient for our case is much smaller
(B; = 1.0 for CascadeVAE-C and 8 = 4.0 for S-VAE).
This also shows we can effectively penalize TC implicitly
by information cascade without adding extra discriminator
networks for explicit penalization while preserving the dis-
entanglement performance. Notably, CascadeVAE shows
smallest TC while showing the highest disentanglement per-
formance, again confirming our hypothesis that both TC
and joint modeling of discrete and continuous factors are
essential in learning disentangled representations.

In dSprites dataset, the discrete factors encode the cate-
gorical shape information (ellipse, heart, square). Follow-
ing the experiment protocol in JointVAE, we evaluated the
classification accuracy computed from the discrete vari-
ables from inference. Table 2 compares the results of our
method against JointVAE. Note, other baseline methods
do not jointly model the continuous and discrete variables.
The results show about 30% difference in the classification
accuracy. Notably, at the best run, we achieve 99.66% clas-
sification accuracy even though the method is unsupervised.

Method m Mean (std) Best
JointVAE 6  44.79 (3.88) 53.14

4 43.99 (3.94) 54.11

CascadeVAE 6 78.84 (15.65) 99.66
4 76.00 (22.16) 98.72

Table 2. Unsupervised classification results on dSprites, S = 3.
Unsupervised classification accuray for random chance is 33.33.

For qualitative results, Figure 4 first shows the latent traver-
sal results from 3-VAE and FactorVAE. The results show
that the methods are capable of capturing the x, y-positions,

and scale factors but does not disentangle the orientation
and shape factors of variation clearly. Figure 3 compares
the discrete traversal results against JointVAE. Even though
we chose the best runs out of 10 random seeds for both
methods, JointVAE does not clearly disentangle the discrete
shapes. In contrast, Cascade VAE shows almost perfect dis-
entanglement of the discrete shapes where the discrete code
[100], [010], and [001] correspond to the ellipse, heart, and
square categories respectively. Figure 5 (left) shows the it-
eration versus mutual information of each latent dimension
I(x; z;) plot when CascadeVAE is trained with 6 continuous
and 1 discrete variables. Figure 5 (right) shows the traversal
results for each variables.

JointVAE CascadeVAE
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Figure 3. DSprites latent space traversal results. (Left) Best run of
Joint VAE with disentanglement score (91.75). (Right) Best run of
Cascade VAE with disentanglement score (99.50)

5-VAE FactorVAE

Figure 4. DSprites latent space traversal results. (Left) 8-VAE,
(Right) FactorVAE
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Figure 5. (Left) Increase of mutual information between image and
each dimension I(x, z;) or I(x,d) during training on Dsprites
dataset. (Right) Each row respresents latent traversal across each
dimension sorted by I(z, z;). Traversal range is (—1.2,1.2).

I(z, 2)

iteration

7.2. Experiments on MNIST

MNIST has 60, 000 images of size 28 x 28. We split 50, 000
as training images and 10,000 as test images. MNIST
dataset has 10 discrete digit categories. For quantitative
comparison, Table 3 compares the classification accuracy
computed from the discrete variables from inference against
JointVAE. The results show that CascadeVAE outperforms
JointVAE by 15% classification accuracy. We fixed S = 10
following the experiment protocol in JointVAE for a fair
comparison.

For qualitative results, Figure 6 and Figure 7 show the con-
tinuous and discrete latent traversal results, respectively.
The results show smooth transitions in angle, width, stroke,
and thickness respectively for continuous traversal. The
discrete traversal shows that it captures the categorical infor-
mation of MNIST. Figure 9 (left) shows the iteration versus
mutual information of each latent dimension I(z; z;) plot
when CascadeVAE is trained with 10 continuous and 1 dis-
crete variables. Figure 9 (right) shows the traversal results
for each variables.

Method m Mean (std) Best
JointVAE 10 68.57 (9.19) 82.30

4  7833(7.18) 92.81

CascadeVAE 10 81.41(9.54) 97.31
4 84.19 (5.02) 96.39

Table 3. Unsupervised classification results on MNIST, S = 10.
Unsupervised classification accuray for random chance is 10.00.

Method m (conti)  Mean (std) Best
JointVAE 10 50.99 (2.5) 55.64

4 51.51 (4.42) 61.79

CascadeVAE 10 56.01 (3.33) 63.01
4 57.72 (3.29) 63.55

Table 4. Unsupervised classification results on FashionMNIST,
S = 10. Unsupervised classification accuray for random chance
is 10.00.

(d) Thickness

Figure 6. Latent traversals on MNIST. Images in a row has the
same latent variables except the traversed variable.
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Figure 8. Latent traversals of the most informative continuous di-
mension (left) and the discrete dimension (right) on FashionM-
NIST. Traversal range in continuous dimension is (-2.0, 2.0).
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Figure 9. (Left) Increase of mutual information between image
and each continuous I (z, z;) and discrete factors I(z, d) during
training on MNIST dataset. (Right) Each row respresents latent
traversal across each dimension sorted by I(z, z;). Traversal range
is (—2.0,2.0).
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Figure 10. Latent space traversal on chairs dataset. The last row
shows the latent traversal of the discrete factor of dimension 3 with
the period of 3.
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Figure 11. Increase of I(z, z;) during training the chairs dataset

7.3. Experiments on FashionMNIST

FashionMNIST dataset has 60, 000 images of size 28 x 28
with 10 categorial labels like MNIST. Table 4 shows the
unsupervised classification results from inference in com-
parison to JointVAE. The results show CascadeVAE con-
sistently outperforms JointVAE. Figure 8 shows the latent
traversal of the most informative continuous dimension and
discrete dimension.

7.4. Chairs

We preprocessed the chairs dataset (Aubry et al., 2014)
and prepared 86, 366 images of size 64 x 64. Since the
chairs dataset is unlabeled in contrast to MNIST, we can
only evaluate the qualitative performance instead. Figure 10
shows the latent traversal results on chairs. The traversal on
discrete latent variables (the last row in the figure) shows
that it captures to the categorial shape of different chairs.
Figure 11 shows the iteration versus the estimated mutual
information I (z, z;) plot for each variables.

8. Conclusion

We have developed CascadeVAE for jointly learning the dis-
crete and continuous factors of data in a S-VAE framework.
We first propose an efficient procedure for implicitly pe-
nalizing the total correlation by controlling the information
flow on each variable. This allows us to penalize the total
correlation without using extra discriminator networks or
sampling procedures. Then, we show a method for jointly
learning discrete and continuous latent variables in an alter-
nating maximization framework where we alternate between
finding the most likely discrete configurations based on the
continuous latent variables, and updating the inference pa-
rameters based on the discrete variables.

Our ablation study shows that information cascading and al-
ternating maximization of discrete and continuous variables,
provide complementary benefits and leads to the state of the
art performance in 1) disentanglement score, and 2) classifi-
cation accuracy score from the discrete inference network,
compared to a number of recently proposed methods.
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