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Abstract

A central capability of intelligent systems is the
ability to continuously build upon previous expe-
riences to speed up and enhance learning of new
tasks. Two distinct research paradigms have stud-
ied this question. Meta-learning views this prob-
lem as learning a prior over model parameters that
is amenable for fast adaptation on a new task, but
typically assumes the tasks are available together
as a batch. In contrast, online (regret based) learn-
ing considers a setting where tasks are revealed
one after the other, but conventionally trains a sin-
gle model without task-specific adaptation. This
work introduces an online meta-learning setting,
which merges ideas from both paradigms to better
capture the spirit and practice of continual lifelong
learning. We propose the follow the meta leader
(FTML) algorithm which extends the MAML al-
gorithm to this setting. Theoretically, this work
provides an O(log T') regret guarantee with one
additional higher order smoothness assumption
(in comparison to the standard online setting). Our
experimental evaluation on three different large-
scale problems suggest that the proposed algo-
rithm significantly outperforms alternatives based
on traditional online learning approaches.

1. Introduction

Two distinct research paradigms have studied how prior
tasks or experiences can be used by an agent to inform future
learning. Meta-learning (Schmidhuber, 1987; Santoro et al.,
2016; Finn et al., 2017) casts this as the problem of learning
to learn, where past experience is used to acquire a prior
over model parameters or a learning procedure, and typically
studies a setting where meta-training tasks are made avail-
able together upfront. In contrast, online learning (Hannan,
1957; Cesa-Bianchi & Lugosi, 2006) considers a sequential
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setting where tasks are revealed one after another, but aims
to attain zero-shot generalization without any task-specific
adaptation. We argue that neither setting is ideal for studying
continual lifelong learning. Meta-learning deals with learn-
ing to learn, but neglects the sequential and non-stationary
aspects of the problem. Online learning offers an appealing
theoretical framework, but does not generally consider how
past experience can accelerate adaptation to a new task. In
this work, we motivate and present the online meta-learning
problem setting, where the agent simultaneously uses past
experiences in a sequential setting to learn good priors, and
also adapt quickly to the current task at hand.

As an example, Figure 1 shows a family of sinusoids. Imag-
ine that each task is a regression problem from x to y corre-
sponding to one sinusoid. When presented with data from a
large collection of such tasks, a naive approach that does not
consider the task structure would collectively use all the data,
and learn a prior that corresponds to the model y = 0. An
algorithm that understands the underlying structure would
recognize that each curve in the family is a sinusoid, and
would therefore attempt to identify, for a new batch of data,
which sinusoid it corresponds to. As another example where
joint training fails, Figure 1 also shows colored MNIST dig-
its with different backgrounds. Suppose we’ve seen MNIST
digits with various colored backgrounds, and then observe
a “7” on a new color. We might conclude from training
on all of the data seen so far that all digits with that color
must all be “7.” In fact, this is an optimal conclusion from a
purely statistical standpoint. However, if we understand that
the data is divided into different tasks, and take note of the
fact that each task has a different color, a better conclusion
is that the color is irrelevant. Training on all of the data
together, or only on the new data, does not achieve this goal.

Meta-learning offers an appealing solution: by learning how
to learn from past tasks, we can make use of task structure
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Figure 1. (left) sinusoid functions and (right) colored MNIST
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and extract information from the data that both allows us
to succeed on the current task and adapt to new tasks more
quickly. However, typical meta learning approaches assume
that a sufficiently large set of tasks are made available up-
front for meta-training. In the real world, tasks are likely
available only sequentially, as the agent is learning in the
world, and also from a non-stationary distribution. By re-
casting meta-learning in a sequential or online setting, that
does not make strong distributional assumptions, we can
enable faster learning on new tasks as they are presented.

Our contributions: In this work, we formulate the online
meta-learning problem setting and present the follow the
meta-leader (FTML) algorithm. This extends the MAML
algorithm to the online meta-learning setting, and is anal-
ogous to follow the leader in online learning. We analyze
FTML and show that it enjoys a O(log T') regret guarantee
when competing with the best meta-learner in hindsight.
In this endeavor, we also provide the first set of results
(under any assumptions) where MAML-like objective func-
tions can be provably and efficiently optimized. We also
develop a practical form of FTML that can be used effec-
tively with deep neural networks on large scale tasks, and
show that it significantly outperforms prior methods. The
experiments involve vision-based sequential learning tasks
with the MNIST, CIFAR-100, and PASCAL 3D+ datasets.

2. Foundations

Before introducing online meta-learning, we briefly summa-
rize the foundations of meta-learning, the model-agnostic
meta-learning (MAML) algorithm, and online learning. To
illustrate the differences in setting and algorithms, we will
use the running example of few-shot learning, which we
describe below first. We emphasize that online learning,
MAML, and the online meta-learning formulations have a
broader scope than few-shot supervised learning.

2.1. Few-Shot Learning

In few-shot supervised learning (Santoro et al., 2016), we
are interested in a family of tasks, where each task 7 is asso-
ciated with a notional and infinite-size population of input-
output pairs. Our goal is to learn a new task 7; while access-
ing only a small, finite-size labeled dataset D; := {x;,y;}
corresponding 7;. If we have a predictive model, h(-; w),
with parameters w, the population risk of the model is

fi (W) = IE:(x,y)NTi [g(X, Y, W)L
where the expectation is defined over the task population
and ¢ is a loss function, such as the square loss or cross-
entropy between the model prediction and the correct label.
An example of ¢ corresponding to squared error loss is
U, y, w) = [y — (s w2

Let £(D;, w) represent the average loss on the dataset D;.
Effectively minimizing f;(w) is likely hard if we rely only

on D; due to the small size of the dataset. However, meta-
learning algorithms aim to perform better by drawing upon
data from many tasks from the family, as we discuss next.

2.2. Meta-Learning and MAML

Meta-learning, or learning to learn, aims to bootstrap from
a set of tasks to learn faster on a new task. Tasks are as-
sumed to be drawn from a fixed distribution, 7 ~ P(7). At
meta-training time, M tasks {7;}}, are drawn from this
distribution and datasets corresponding to them are made
available to the agent. At deployment time, we are faced
with a new test task 7; ~ P(7"), for which we are again pre-
sented with a small dataset D; := {x;,y; }. Meta-learning
algorithms attempt to find a model using the M training
tasks, such that when D; is revealed from the test task, the
model can be quickly updated to minimize f;(w).

Model-agnostic meta-learning (MAML) (Finn et al., 2017)
does so by learning an initial set of parameters wysa ML,
such that performing a few steps of gradient descent from
wnmamMmr, using D; minimizes f;(-). To get such an initial-
ization, MAML solves the optimization problem:

WMAML = arg min % z; filw—aVf;(w)). (1)
i=

The inner gradient V f;(w) is based on a small mini-batch
from D,. Hence, MAML optimizes for few-shot generaliza-
tion. Finn et al. (2017) show that gradient-based methods
can be used to optimize Eq. 1 with existing automatic dif-
ferentiation libraries. Stochastic gradient methods are used
since the population risk is not known. At meta-test time, the
solution is fine-tuned as: W, <— Wyamr, — anj (WMAML)
with the gradient obtained using D;. MAML and other
meta-learning algorithms (see Section 7) are not directly
applicable to sequential settings, as they assume a fixed
fixed task distribution and have two distinct-phases, meta-
training and meta-testing. We instead would like to develop
algorithms that work in continuous learning settings with
non-stationary task distributions.

2.3. Online Learning

In online learning, an agent faces a sequence of loss func-
tions { f; }$2,, one in each round ¢. These functions need not
be drawn from a fixed distribution, and could even be cho-
sen adversarially over time. The learner must sequentially
decide on model parameters {w; } 32, that perform well on
the loss sequence. In particular, the goal is to minimize
some notion of regret defined as the difference between
the learner’s loss, ZtT:1 f#(w), and the best performance
achievable by some family of methods (comparator class).
The most standard notion of regret is to compare to the
cumulative loss of the best fixed model in hindsight:

T T
Regret; = Z Je(we) — rr;i,n Z fe(w). 2
=1

t=1
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We would like algorithms for which this regret grows with
T as slowly as possible. An algorithm whose regret grows
sub-linearly in 7" is non-trivially learning and adapting. One
of the simplest algorithms in this setting is follow the leader
(FTL) (Hannan, 1957), which computes parameters as:
t
Wiy1 = argmin ; Ji(w).

FTL enjoys strong performance guarantees depending on the
properties of the loss function. For the few-shot supervised
learning example, FTL would consolidate all the data from
the prior stream of tasks into a single large dataset and fit a
single model to this dataset. As alluded to in Section 1, and
as we find in our empirical evaluation in Section 6, such a
“joint training” approach may not learn effective models. To
overcome this issue, we may desire a more adaptive notion
of a comparator class, and algorithms that have low regret
against such a comparator, as we will discuss next.

3. The Online Meta-Learning Problem

We consider a sequential setting where an agent is faced
with tasks one after another. Each task corresponds to a
round, denoted by t. In each round, the goal of the learner
is to determine model parameters w; that perform well for
the corresponding task at that round. This is monitored by
ft :w e W — R, which we would like to be minimized.
Crucially, we consider a setting where the agent can perform
some local task-specific updates to the model before it is
deployed and evaluated in each round. This is realized
through an update procedure, which at round ¢, is a mapping
U; : w e W — w € W. This procedure takes as input w
and returns W that performs better on f;. One example
for U, is a step of gradient descent (Finn et al., 2017):
U,(w) = w — aV f,(w). As specified in Section 2.2, V f,
is potentially an approximate gradient of f;, e.g. obtained
using a mini-batch of data from the task at round ¢. The
overall protocol is as follows:

1. Atround ¢, the agent chooses a model defined by wy.
2. The world simultaneously chooses task defined by f;.

3. The agent obtains access to the update procedure Uy,
and uses it to update parameters as w; = U;(w).

4. The agent incurs loss f;(W;). Advance to round ¢ + 1.

The goal for the agent is to minimize regret over the rounds.
A highly ambitious comparator is the best meta-learned
model in hindsight. Let {w }7_, be the sequence of models
generated by the algorithm. Then, the regret we consider is:

T T
RegretT = ; ft (Ut(Wt)) — m“l]n;ft (Ut(W)) (3)
Notice that we allow the comparator to adapt locally to each
task at hand; thus the comparator has strictly more capabil-

ities than the learning agent, since it is presented with all

the task functions in batch mode. Here, again, achieving
sublinear regret suggests that the agent is improving over
time and is competitive with the best meta-learner in hind-
sight. As discussed earlier, in the batch setting, when faced
with multiple tasks, meta-learning performs significantly
better than training a single model for all the tasks. Thus,
we may hope that learning sequentially, but still being com-
petitive with the best meta-learner in hindsight, provides a
significant leap in continual learning.

4. Algorithm and Analysis

In this section, we outline the follow the meta leader (FTML)
algorithm and provide an analysis of its behavior.

4.1. Follow the Meta Leader

Taking inspiration from the form of the follow the leader
algorithm (Hannan, 1957; Kalai & Vempala, 2005), we
propose the FTML algorithm template which updates model
parameters as:

t
Wiyl = argmin Z fie(Uk(w)). 4)
k=1

This can be interpreted as the agent playing the best meta-
learner in hindsight if the learning process were to stop at
round t. In the remainder of this section, we will show
that under standard assumptions on the losses, and just
one additional assumption on higher order smoothness, this
algorithm has strong regret guarantees. In practice, we
may not have full access to fx(-), such as when it is the
population risk and we only have a finite size dataset. In
such cases, we will draw upon stochastic approximation
algorithms to solve the optimization problem in Eq. (4).

4.2. Assumptions

We make the following assumptions about each loss function
in the learning problem for all ¢. Let 6 and ¢ represent two
arbitrary choices of model parameters.

Assumption 1. (C2%-smoothness)

1. (Lipschitz in function value) f has gradients bounded by
G, ie |[Vf(0)|| < GV 6. This is equivalent to f being
G—Lipschitz.

2. (Lipschitz gradient) f is B—smooth, i.e.

IVf(0) = V(o) < B0 — &l V(0, ®).

3. (Lipschitz Hessian) f has p—Lipschitz Hessians, i.e.

IV2£(8) = V2f(@)l] < pl|6 — ¢ V(6. ¢).

Assumption 2. (Strong convexity) Suppose that f is con-
vex. Furthermore, suppose f is u—strongly convex, i.e.

IVf(0) = V(@) = pll6 — &||.

These assumptions are largely standard in online learn-
ing (Cesa-Bianchi & Lugosi, 2006), except 1.3. Examples
where these assumptions hold include logistic regression
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and L2 regression over a bounded domain. Assumption 1.3
is a statement about the higher order smoothness of func-
tions which is common in non-convex analysis (Nesterov
& Polyak, 2006; Jin et al., 2017). In our setting, it allows
us to characterize the landscape of the MAML function,
which has a gradient step embedded within it. Importantly,
these assumptions do not trivialize the meta-learning setting.
We can observe a clear difference in performance between
meta-learning and joint training even when f; are quadratic
functions, which correspond to the simplest strongly convex
setting. See Appendix A for an example illustration.

4.3. Analysis

We analyze the FTML algorithm when the update procedure
is a single step of gradient descent, as in the formulation
of MAML. Concretely, the update procedure we consider
is U;(w) = w — aV f;(w). For this update rule, we first
state our main theorem below.

Theorem 1. Suppose f and f:RI SR satisfy assump-
tions 1 and 2. Let f be the function evaluated after a one
step gradient update procedure, i.e.

F(w) = f(w — a¥V f(w)).
If the step size is selected as o < {nin{%, SpLG} then f
is convex. Furthermore, it is also 8 = 9/3/8 smooth and
i = p/8 strongly convex.
For the proof, see Appendix B. The following corollary is
now immediate.

Corollary 1. (inherited convexity for the MAML objective)
If {fi, fi Y| satisfy assumptions 1 and 2, then the MAML
optimization problem,

S U s
mlngnlzeﬂiz:;fi(w—ani(w)),

o .
» 5o | is convex. Furthermore, it is 93/8-

smooth and p/8-strongly convex.

with a < min{%

Since the objective function is convex, we may expect first-
order optimization methods to be effective, since gradients
can be efficiently computed with standard automatic differ-
entiation libraries (as discussed in Finn et al. (2017)). In
fact, this work provides the first set of results (under any as-
sumptions) under which MAML.-like objective function can
be provably and efficiently optimized. Another immediate
corollary of our main theorem is that FTML now enjoys the
same regret guarantees (up to constant factors) as FTL does
in the comparable setting (with strongly convex losses).
Corollary 2. (inherited regret bound for FTML) Suppose
that for all t, fy and ft satisfy assumptions 1 and 2. Suppose
that the update procedure in FTML (Eq. 4) is chosen as
U,(w) = w — aV fy(w) with o < min{%, 5ot Then,
FTML enjoys the following regret guarantee

> A(Ui(wy)—min Y fi(Uy(w)) = O(Sza log T)
t=1 w t=1 M

See Appendix C for a proof. More generally, our main
theorem implies that there exists a large family of online
meta-learning algorithms that enjoy sub-linear regret, based
on the inherited smoothness and strong convexity of f ().
See Hazan (2016); Shalev-Shwartz (2012); Shalev-Shwartz
& Kakade (2008) for algorithmic templates to derive sub-
linear regret based algorithms.

5. Practical Online Meta-Learning Algorithm

In the previous section, we derived a theoretically principled
algorithm for convex losses. Many practical problems have
non-convex loss landscales. However, methods developed
for convex losses, such as AdaGrad (Duchi et al., 2011), of-
ten perform well in non-convex settings. Taking inspiration
from these successes, we describe a practical instantiation
of FTML, and evaluate its performance in Section 6.

The main considerations when adapting the FTML algo-
rithm to few-shot supervised learning with high capacity
neural network models are: (a) the optimization problem
in Eq. (4) has no closed form solution, and (b) we do not
have access to the population risk f; but only a subset of
the data. To overcome both these limitations, we can use
iterative stochastic optimization algorithms. Specifically,
by adapting the MAML algorithm (Finn et al., 2017), we
can use stochastic gradient descent with a minibatch D}
as the update rule, and stochastic gradient descent with an
independently-sampled minibatch D} to optimize the pa-
rameters. The gradient computation is described below:

g1(W) = Vo Exopt L(DJ¥, Uy (w)), where

Ui(w) =w —aVw L(D},w) ©)
Here, v!(-) denotes a sampling distribution for the previ-
ously seen tasks 71, ..., T;. In our experiments, we use the
uniform distribution, v* = P(k) = 1/t Vk = {1,2,...t},
but other sampling distributions can be used if required. Re-
call that £(D, w) is the loss function (e.g. cross-entropy)
averaged over the datapoints (x,y) € D for the model with
parameters w. Using independently sampled minibatches
D' and D" minimizes interaction between the inner gradi-
ent update U, and the outer optimization (Eq. 4), which is
performed using the gradient above (g;) in conjunction with
Adam (Kingma & Ba, 2015). While U, in Eq. 5 includes
only one gradient step, we observed that it is beneficial to
take multiple gradient steps in the inner loop (i.e., in Uy),
which is consistent with prior works (Finn et al., 2017; Grant
et al., 2018; Antoniou et al., 2018; Shaban et al., 2018).

Now that we have derived the gradient, the overall algorithm
proceeds as follows. We first initialize a task buffer B = [].
When presented with a new task at round ¢, we add task Ty
to B and initialize a task-specific dataset D; = [ |, which is
appended to as data incrementally arrives for task 7;. As
new data arrives for task 7;, we iteratively compute and
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Algorithm 1 Online Meta-Learning with FTML

Algorithm 2 FTML Subroutines

1: Input: Performance threshold of proficiency, v

2: randomly initialize w1

3: initialize the task buffer as empty, B — []

4: fort=1,... do

5 initialize Dy =

6: AddB<+ B+[T:]

7:  while |D7,| < N do

8 Append batch of n new datapoints {(x,y)} to D
9 w; < Meta-Update(wy, B, t)

10 W¢ < Update—Procedure (wy, D)

11: if £ (D", W) < then

12: Record efficiency for task 7; as |D;| datapoints
13: end if

14 end while

15 Record final performance of W on test set D™ for task ¢.
16 Wil < Wy

17: end for

apply the gradient in Eq. 5, which uses data from all tasks
seen so far. Once all of the data (finite-size) has arrived for
T¢, we move on to task 7;11. This procedure is detailed in
Alg. 1, including the evaluation, which we discuss next.

To evaluate performance of the model at any point within
a particular round ¢, we first update the model as using all
of the data (D;) seen so far within round ¢. This is outlined
in the Update-Procedure subroutine of Algorithm 2.
Note that this is different from the update U, used within the
meta-optimization, which uses a fixed-size minibatch since
many-shot meta-learning is computationally expensive and
memory intensive. In practice, we meta-train with update
minibatches of size at-most 25, whereas evaluation may use
hundreds of datapoints for some tasks. After the model is
updated, we measure the performance using held-out data
Dt from task 7;. This data is not revealed to the online
meta-learner at any time. Further, we also evaluate task
learning efficiency, which corresponds to the size of Dy
required to achieve a specified performance threshold ~,
e.g. v = 90% classification accuracy or v corresponds to
a certain loss value. If less data is sufficient to reach the
threshold, then priors learned from previous tasks are being
useful and we have achieved positive transfer.

6. Experimental Evaluation

Our experimental evaluation studies the practical FTML
algorithm (Section 5) in the context of vision-based online
learning problems. These problems include synthetic modifi-
cations of the MNIST dataset, pose detection with synthetic
images based on PASCAL3D+ models (Xiang et al., 2014),
and online classification with the CIFAR-100 dataset. The
aim of our experimental evaluation is to study the following
questions: (1) can online meta-learning (specifically FTML)
be successfully applied to multiple non-stationary learning
problems? and (2) does online meta-learning (FTML) pro-

1: Input: Hyperparameters parameters o, n
2: function Meta-Update(w, B3, t)

3: fornm =1,..., Nmew steps do

4: Sample task Tx: k ~ v'(-) //(or a minibatch of tasks)
5: Sample minibatches DY, D} uniformly from Dy,

6: Compute gradient g; using DY, D}, and Eq. 5

7: Update parameters w <— w —n g // (or use Adam)
8:  end for

9:  Returnw

10: end function

11: function Update-Procedure(w, D)
12: Initialize W <+ w

13: formng =1,..., Ngud steps do

14: W+ w—aVL(D,w)

15:  end for

16:  Return w

17: end function

vide empirical benefits over prior methods? To this end, we
compare to the following: (a) Train on everything (TOE)
jointly trains a single predictve model on all available data
so far (including D, at round t). (b) Train from scratch ini-
tializes w; randomly and trains using D;. (c) Joint training
with fine-tuning, which at round ¢, trains jointly until round
t — 1, and then finetunes it specifically to round ¢ using
only D,. This corresponds to the standard FTL approach,
followed by task-specific fine-tuning.

We note that TOE is a very strong point of comparison, capa-
ble of reusing representations across tasks, as has been pro-
posed in a number of prior continual learning works (Rusu
et al., 2016; Aljundi et al., 2017; Wang et al., 2017). How-
ever, unlike FTML, TOE does not explicitly learn the struc-
ture across tasks. Thus, it may not be able to fully utilize the
information present in the data, and hence may not be able
to learn new tasks with only a few examples. Further, the
model might incur negative transfer if the new task differs
substantially from previous ones, as has been observed in
prior work (Parisotto et al., 2016). Training on each task
from scratch avoids negative transfer, but also precludes any
reuse between tasks. When the amount of data for a given
task is large, we may expect training from scratch to perform
well since it can avoid negative transfer and can learn specif-
ically for the particular task. Finally, FTL with fine-tuning
represents a natural online learning comparison, which in
principle should combine the best parts of learning from
scratch and TOE, since this approach adapts specifically to
each task and benefits from prior data. However, in contrast
to FTML, this method does not explicitly meta-learn and
hence may not fully utilize any structure in the tasks.

6.1. Rainbow MNIST

In this experiment, we create a sequence of tasks based
on the MNIST dataset. We transform the digits in a num-
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Figure 2. Illustration of three tasks for Rainbow MNIST (top) and pose prediction (bottom). CIFAR images not shown. Rainbow MNIST
includes different rotations, scales, and background colors. For pose prediction, the goal is to predict the global pose of the object on the
table. Cross-task variation includes 50 object models within 9 object classes, varying object scales, and different camera viewpoints.
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Figure 3. Rainbow MNIST results. Left: amount of data needed to learn each new task. Center: task performance after 100 datapoints on
the current task. Right: The task performance after all 900 datapoints for the current task have been received. Lower is better for all plots,
while shaded regions show standard error over three random seeds. FTML can learn new tasks more and more efficiently as each new task

is received, demonstrating effective forward transfer.

ber of ways to create different tasks, including 7 colored
backgrounds, 2 scales (half size and original size), and 4
rotations of 90 degree intervals. As illustrated in Fig. 2, a
task involves correctly classifying digits with a randomly
sampled background, scale, and rotation. This leads to 56
total tasks. We partitioned the MNIST training dataset into
56 batches of examples, each with 900 images and applied
the corresponding task transformation to each batch of im-
ages. The ordering of tasks was selected at random and we
set 90% classification accuracy as the proficiency threshold.

Learning curves in Fig. 3 show that FTML learns tasks
more and more quickly, with each new task added. We
also find that FTML substantially outperforms the alterna-
tive approaches in both efficiency and final performance.
FTL performs better than TOE since it uses task-specific
adaptation, but its performance is still inferior to FTML.
We hypothesize that, while the prior methods improve in
efficiency over the course of learning as they see more tasks,
they struggle to prevent negative transfer on each new task.
Lastly, training from scratch does not learn efficiently com-
pared to models that incorporate data from other tasks; but,
their final performance with 900 datapoints is similar.

6.2. Five-Way CIFAR-100

In this experiment, we create a sequence of 5-way classifica-
tion tasks based on the CIFAR-100 dataset, which contains
more challenging and realistic RGB images than MNIST.
Each classification problem involves a newly-introduced

class from the 100 classes in CIFAR-100. Thus, different
tasks correspond to different labels spaces. The ordering of
tasks is selected at random, and we measure performance
using classification accuracy. Since it is less clear what
the proficiency threshold should be for this task, we eval-
uate the accuracy on each task after varying numbers of
datapoints have been seen. Since these tasks are mutually
exclusive (as label space is changing), it makes sense to
train the TOE model with a different final layer for each
task. An extremely similar approach to this is to use our
meta-learning approach but to only allow the final layer
parameters to be adapted to each task. Further, such a meta-
learning approach is a more direct comparison to our full
FTML method, and the comparison can provide insight into
whether online meta-learning is simply learning features
and performing training on the last layer, or if it is adapting
the features to each task. Thus, we compare to this last layer
online meta-learning approach instead of TOE with multiple
heads. The results (see Figure 4) indicate that FTML learns
more efficiently than independent models and a model with
a shared feature space. The results on the right indicate
that training from scratch achieves good performance with
2000 datapoints, reaching similar performance to FTML.
However, the last layer variant of FTML seems to not have
the capacity to reach good performance on all tasks.
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Figure 4. Online CIFAR-100 results, evaluating task performance after seeing 50, 250, and 2000 datapoints for each task. FTML learns
each task much more efficiently than models trained from scratch, while both achieve similar asymptotic performance after 2000 datapoints.
FTML benefits from adapting all layers rather than learning a shared feature space across tasks while adapting only the last layer.
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Figure 5. Object pose prediction results. Left: we observe that online meta-learning leads to faster learning as more and more tasks are
introduced, learning with only tens of datapoints for many of the tasks. Center & right, we see that meta-learning enables transfer not
just for faster learning but also for more effective performance when 60 and 400 datapoints of each task are available. The task order is
randomized, leading to spikes when more difficult tasks are introduced. Shaded regions show standard error across three random seeds

6.3. Sequential Object Pose Prediction

In our final experiment, we study a 3D pose prediction prob-
lem. Each task involves learning to predict the global posi-
tion and orientation of an object in an image. We construct
a dataset of synthetic images using 50 object models from 9
different object classes in the PASCAL3D+ dataset (Xiang
et al., 2014), rendering the objects on a table using the ren-
derer accompanying the MuJoCo physics engine (Todorov
et al., 2012) (see Figure 2). To place an object on the ta-
ble, we select a random 2D location, as well as a random
azimuthal angle. Each task corresponds to a different ob-
ject with a randomly sampled camera angle. We place a
red dot on one corner of the table to provide a global refer-
ence point for the position. Using this setup, we construct
90 tasks (with an average of about 2 camera viewpoints
per object), with 1000 datapoints per task. All models are
trained to regress to the global 2D position and the sine and
cosine of the azimuthal angle (the angle of rotation along
the z-axis). For the loss functions, we use mean-squared
error, and set the proficiency threshold to an error of 0.05.
We show the results of this experiment in Figure 5. The
results demonstrate that meta-learning can improve both
efficiency and performance of new tasks over the course of
learning, solving many of the tasks with only 10 datapoints.
Unlike the previous settings, TOE substantially outperforms
training from scratch, indicating that it can effectively make

use of the previous data from other tasks, likely due to the
greater structural similarity between the pose detection tasks.
However, the performance of FTML suggests that even bet-
ter transfer can be accomplished by explicitly optimizing
for the ability to quickly and effectively learn new tasks.
Finally, we find that FTL performs comparably or worse
than TOE, indicating that task-specific fine-tuning can lead
to overfitting when the model is not explicitly trained for
the ability to fine-tune effectively.

7. Connections to Related Work

Meta-learning: Our work proposes to use meta-learning or
learning to learn (Thrun & Pratt, 1998; Schmidhuber, 1987;
Naik & Mammone, 1992), in the context of online (regret-
based) learning. Prior works have proposed learning update
rules, selective copying of weights, or optimizers (Hochre-
iter et al., 2001; Bengio et al., 1992; Andrychowicz et al.,
2016; Li & Malik, 2017; Ravi & Larochelle, 2017; Schmid-
huber, 2002), as well as recurrent models that learn by in-
gesting datasets directly (Santoro et al., 2016; Duan et al.,
2016; Wang et al., 2016; Munkhdalai & Yu, 2017; Mishra
et al., 2017). Some meta-learning works have considered
online learning at meta-test time (Santoro et al., 2016; Al-
Shedivat et al., 2017; Nagabandi et al., 2018). However,
with the exception of work on online hyperparameter adap-
tation (Elfwing et al., 2017; Meier et al., 2017; Baydin et al.,
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2017), nearly all prior meta-learning algorithms assume
that the meta-training tasks come from a stationary distri-
bution, and does not consider tasks that are presented as a
continuous stream. In contrast, we consider a more flex-
ible approach that allows for adapting all of the model’s
parameters during online meta-training. Recent work has
also considered meta-training with non-stationary distribu-
tions using Dirichlet process mixture models over parame-
ters (Grant et al., 2019). In contrast, we introduce a simple
extension onto the MAML algorithm without mixtures over
parameters, and provide theoretical guarantees.

Continual learning: Our problem setting is related to con-
tinual, or lifelong learning (Thrun, 1998; Zhao & Schmidhu-
ber, 1996). A number of papers in this area have focused on
avoiding forgetting or negative backward transfer (Goodfel-
low et al., 2013; Kirkpatrick et al., 2017; Zenke et al., 2017;
Rebuffi et al., 2017; Shin et al., 2017; Shmelkov et al., 2017;
Lopez-Paz et al., 2017; Nguyen et al., 2017; Schmidhuber,
2013), and maintaining a small model capacity as new tasks
are added (Lee et al., 2017; Mallya & Lazebnik, 2017). In
this paper, we sidestep the problem of catastrophic forget-
ting by maintaining a buffer of all the observed data (Isele
& Cosgun, 2018), and instead focus on maximizing the
efficiency of learning new tasks within a non-stationary
meta-learning setting. Furthermore, unlike prior works (Ru-
volo & Eaton, 2013; Rusu et al., 2016; Aljundi et al., 2017;
Wang et al., 2017), we focus on the setting where there are
several tens or hundreds of tasks, and therefore more infor-
mation that can be transferred from previous tasks to enable
few-shot acquisition of new concepts.

Online learning: Similar to continual learning, online
learning considers a sequential setting with streaming tasks.
Much of the prior work in this area has focused on com-
putationally cheap algorithms that do not iterate over past
data multiple times (Cesa-Bianchi & Lugosi, 2006; Hazan
et al., 2006; Zinkevich, 2003; Shalev-Shwartz, 2012). Again,
we sidestep computational considerations to first study the
meta-learning analog of FTL. For this, we derived the FTML
algorithm which has low regret when compared to a power-
ful adaptive comparator class, and demonstrated empirical
gains over strong baselines.

Adaptive notions of regret have been considered in prior
work to overcome limitations of a fixed comparator. In the
dynamic regret setting (Herbster & Warmuth, 1995; Yang
et al., 2016; Besbes et al., 2015), the online learner is com-
pared with the sequence of optimal solutions corresponding
to each loss function. Unfortunately, lower bounds (Yang
et al., 2016) suggest that the comparator class is too power-
ful and may not provide for any non-trivial learning in the
general case. To overcome this challenge, prior work has
placed restrictions on how quickly the loss functions or com-
parator model can change (Hazan & Comandur, 2009; Hall

& Willett, 2015; Herbster & Warmuth, 1995). In contrast,
we develop a new notion of adaptive regret where the learner
and comparator both have access to an update procedure.
The update procedures allow the comparator to produce dif-
ferent models for different loss functions, thereby serving
as a powerful comparator class (in comparison to a fixed
model in hindsight). In this setting, we derived sublinear
regret algorithms without placing restrictions on the loss
functions. Concurrent work has also studied algorithms re-
lated to first order variants of MAML using theoretical tools
from online learning (Alquier et al., 2016; Denevi et al.,
2019; Khodak et al., 2019). These works also derive re-
gret and generalization bounds, but the algorithms have not
yet been empirically studied in large scale domains or non-
stationary settings. We believe that our online meta-learning
setting captures the spirit and practice of continual lifelong
learning, and also shows promising empirical results.

8. Discussion and Future Work

We introduced the online meta-learning setting, which pro-
vides a natural perspective on the ideal real-world learning
procedure: an intelligent agent interacting with a constantly
changing environment should utilize streaming experience
to both master the task at hand, and become more proficient
at learning new tasks in the future. We proposed and ana-
lyzed the FTML algorithm to derive regret bounds, and il-
lustrated how FTML can be adapted to a practical algorithm.
Our experiments demonstrate that FTML outperforms prior
methods, learing new tasks more and more efficiently over
time. We next outline avenues for future work.

More powerful update procedures. We analyzed the case
where the update U, is one gradient step. However, in
practice, MAML is often used with multiple gradient steps.
Analyzing this case, and potentially higher order update
rules, will make for exciting future work.

Memory and computational constraints. In this work, we
primarily aimed to discern if it is possible to meta-learn in a
sequential setting. As discussed in Section 7, the cost of FTL
(and FTML) grows over time as new tasks and loss functions
are accumulated. Further, in many practical online learn-
ing problems, it is challenging to store all datapoints from
previous tasks. While we showed that our method can effec-
tively learn nearly 100 tasks in sequence without significant
burdens on compute or memory, scalability remains a con-
cern. Can a more streaming algorithm like mirror descent
that does not store all the past experiences be successful as
well? Our main theoretical results (Section 4.3) suggests
that there exist a large family of online meta-learning algo-
rithms that enjoy sublinear regret. Tapping into the large
body of work in online learning, particularly mirror descent,
to develop computationally cheaper algorithms would make
for exciting future work.
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