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Abstract

The Wasserstein distance serves as a loss func-
tion for unsupervised learning which depends on
the choice of a ground metric on sample space.
We propose to use a Wasserstein distance as the
ground metric on the sample space of images.
This ground metric is known as an effective dis-
tance for image retrieval, since it correlates with
human perception. We derive the Wasserstein
ground metric on image space and define a Rie-
mannian Wasserstein gradient penalty to be used
in the Wasserstein Generative Adversarial Net-
work (WGAN) framework. The new gradient
penalty is computed efficiently via convolutions
on the L? (Euclidean) gradients with negligible
additional computational cost. The new formu-
lation is more robust to the natural variability of
images and provides for a more continuous dis-
criminator in sample space.

1. Introduction

In recent years, optimal transport has become increasingly
important in the formulation of training objectives for ma-
chine learning applications (Frogner et al., 2015; Montavon
et al., 2016; Arjovsky et al., 2017). In contrast to traditional
information divergences (arising in maximum likelihood
estimation), the Wasserstein distance between probability
distributions incorporates the distance between samples via
a ground metric of choice. In this way, it provides a continu-
ous loss function for learning probability models supported
on possibly disjoint, lower dimensional subsets of the sam-
ple space. These properties are especially useful for training
implicit generative models, with a prominent example being
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Generative Adversarial Networks (GANs). The application
of the Wasserstein metric to define the objective function of
GANSs is known as Wasserstein GANs (WGANs) (Frogner
et al., 2015; Arjovsky et al., 2017; Deshpande et al., 2018).

When training WGANS, one problem that remains is that
of choosing a suitable ground metric for the sample space.
The choice of the ground metric plays a crucial role in the
training quality of WGANSs. Usually the distance between
two sample images is taken to be the mean square differ-
ence over the features, i.e., the L? (Euclidean) norm. This,
however, does not incorporate additional knowledge that we
have about the space of natural images. In order to improve
training and direct focus to selected features, other Sobolev
norms in image space have been studied (Adler & Lunz,
2018). Recent works are also investigating distances based
on higher level representations of the samples, which can be
obtained by means of techniques such as vector embeddings
(Mroueh et al., 2017), auto-encoders, or other unsupervised
and semi-supervised feature learning techniques (Nowak
et al., 2006). Meanwhile, another distance that has been very
successful in comparing images, has remained unnoticed
in the context of WGANS, namely the Wasserstein distance
on images (also named Earth Mover’s distance or Monge-
Kantorvich distance). In particular, the Wasserstein distance
has been successful in image retrieval problems (Rubner
et al., 2000; Zhang et al., 2007). It is known to correlate
well with human perception for natural images, e.g., being
robust to translations and rotations (Engquist & Yang, 2018;
Puthawala et al., 2018). See Figure 1. In addition, this dis-
tance is very natural and does not require computing higher
level representations of the images or any feature selection.

In this paper, we propose to apply the Wasserstein distance
over the sample space of images with a ground metric over
the discrete space of pixels for learning generative models.
We call this ground metric the Wasserstein ground metric,
and call the Wasserstein loss over the Wasserstein ground
metric the Wasserstein of Wasserstein loss. At first sight,
it may appear overly complicated to define a loss function
of this form. Since computing the Wasserstein distance is
already quite involved, a Wasserstein loss based on another
Wasserstein ground metric may seem infeasible. Nonethe-
less, we will show that it is possible to derive an equivalent
expression in the settings of gradient penalty of WGANs
(Petzka et al., 2017). In details, the Wasserstein-2 ground
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Figure 1. Source image and 9 nearest neighbors from the CIFAR-
10 dataset, with respect to the L? (top) and Wasserstein-2 (bottom)
ground metrics. We note that the Wasserstein-2 distance is robust to
translations and rotations, and gives neighbors that are perceptually
similar. In contrast, the Euclidean distance is highly sensitive and
oftentimes the nearest neighbors are predominantly white images.

metric exhibits a metric tensor structure (Otto, 2001; Villani,
2009). This introduces a Lipschitz condition based on the
Wasserstein norm, rather than the L2 norm of the standard
WGAN setting.

In this work we focus on generative models for images
and specifically the WGAN formulation, but the proposed
Wasserstein of Wasserstein loss function can be applied to
learning with other types of models or other types of data for
which a natural distance between features can be introduced.

This paper is organized as follows. In Section 2, we intro-
duce the Wasserstein loss function with Wasserstein ground
metric. Based on duality and the metric tensor of the pro-
posed problem, we derive an equivalent practical formula-
tion. In Section 3 we discuss our application to Wasserstein
of Wasserstein GANs (WWGANSs). Numerical experiments
illustrating the benefits of the new gradient norm penalty
are provided in Section 4. Related works are reviewed in
Section 5.

2. Wasserstein of Wasserstein Loss

In this section, we introduce the Wasserstein ground metric
for the Wasserstein loss function. A motivating example is
presented to demonstrate the utility of the proposed model.

2.1. Wasserstein loss

Consider a metric sample space (X, d v ). The Wasserstein-p
distance is defined as follows. Given a pair Py, P; € P,(X)
of probability densities with finite p-th moment, let

1

Wy.as (Po,P1) = inf { (]E(Xy)NHdX (X, Y)P) v } (1)

where II is a joint distribution of (X,Y") with marginals
X ~ Py, Y ~ P;. We note that W, depends on the choice
of a distance function dy: X x X — R on sample space,
which is usually called the ground metric.

In practice, the sample space X is typically very high di-
mensional, sometimes even being an (infinite dimensional)
Banach space. We focus on the case where X is the space
of images, which can be regarded as a density space over
pixels, i.e., X = P(Q), where Q = [0, M] x [0, M] is a
discrete grid of pixels. With this in mind, we will define the
distance function between pixels do: 2 x Q@ — R,

2.2. Wasserstein loss function with Wasserstein ground
metric

‘We now introduce the Wasserstein of Wasserstein loss. Here,
the first “Wasserstein’ refers to the Wasserstein loss function
over probability distributions on the space of images. The
second ‘Wasserstein’ refers to the ground metric of this loss
function. It is chosen as the Wasserstein distance over the
space of images defined as histograms over pixels, having a
ground metric over pixel locations.

That is, a raster image can be viewed as a 2D histogram with
each pixel representing a bin for each channel. By defining
a ground metric between pixels (e.g., the physical distance
between pixels), we introduce the Wasserstein distance be-
tween images. This serves as the new ground metric for
defining a Wasserstein distance between probability distri-
butions over images. See Figure 2.

As mentioned in the introduction, the Wasserstein distance
is also known as the Earth Mover’s distance and is known as
an effective metric in distinguishing images (Rubner et al.,
2000). Motivated by this fact, we use the Earth Mover’s
distance (of images) as the ground metric,

dx(X,Y) =W,y (X,Y)
=inf { (E(m,y)wdn(fm y)q) ! } ?

where 7 is a joint distribution of (z,y) with marginals x ~
X, y ~ Y both being images viewed as histograms over
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Figure 2. Illustration of Wasserstein-p loss
Wasserstein-g ground metric.

pixels. Here dy = W, 4, (x,y) is named Wasserstein-g
ground metric. It is defined with the pixel ground metric
do: 2 x Q@ — R, assigning distances to pairs of pixels.

In this work, combining the above approaches, we obtain a
Wasserstein-p distance with Wasserstein-q ground metric as
the loss function for training.

Definition 1. Given a probability model {P¢: G € ©} C
Pp(X) and a data distribution P, € P,(X), we propose
the minimization problem

inf W, o (B, 1), ©

where Py,(X) is the set of densities with finite p-th moment,
Wy dx is defined by (1) and W qq, is given by (2).

The next example illustrates the difference between the pro-
posed Wasserstein of Wasserstein loss and the Wasserstein
loss with L? ground metric.

Motivating example. Consider the distribution P, = §x
which assigns probability one to a single image X . Suppose
the generative model attempts to estimate this via a distri-
bution of the form P = dy which assigns probability one
to a fake image Y. Now suppose that X = 6,, Y = J, are
images with intensity 1 on pixel locations z, ¥, respectively,
and intensity zero elsewhere. See Figure 3. In this case we
have

Wp.ix(Pr,Pa) = dx(X,Y).

We check the following choices of the ground metric d y
between images X and Y.

1. Wasserstein-2 ground metric:
dx(X,Y) = Wo,4,(X,Y) = da(z,y);
2. L? (Euclidean) ground metric:

0 ifr=y

dX(X,Y):sz(X,Y):{ oty

constant

We see that the Wasserstein distance with L? ground metric
will assign two distant pixels the same cost as two adjacent
pixels. This results in a highly discontinuous distance that
is sensitive to single pixel translations! To make matters
worse, in the case of continuous domain images, the L2
distance will be infinite for all non-overlapping pixels. On
the other hand, the Wasserstein of Wasserstein loss function
is continuous with respect to continuous change of pixels in
images. For learning image models with low dimensional
support, the Wasserstein of Wasserstein loss function is still
well defined, while the Wasserstein loss with L? ground
metric function is ill-posed.

2.3. Duality formulation and properties

The computation required for the Wasserstein of Wasserstein
loss function as stated in the previous section is unfeasible.
To compute (3) one needs to handle a linear programming
computation at both the level of probability distributions
over images and individual images over pixels.

In this section, we present the Kantorovich duality formula-
tion of Wasserstein of Wasserstein loss function with p = 1
and ¢ = 2. As is done for Wasserstein GANs (Arjovsky
et al., 2017), we consider an equivalent Lipschitz-1 condi-
tion, which can be practically applied in the framework of
GANS.

Theorem 2 (Duality of Wasserstein of Wasserstein loss
function). The Wasserstein-1 loss function over Wasserstein-
2 ground metric has the following equivalent formulation:

Wl,Wg,dﬂ (]P)G7 ]P)’I‘)

= sup {EX~IP>Gf(X) —Ex-p, f(X):

fec(x)

“4)
IV O @, X (@) < 1),
Q

where V. is the gradient operator in pixel space ) and 6 x
is the L? gradient in image space X.

Proof. The result is from the duality of Wasserstein-1 met-
ric, together with the Wasserstein-2 metric induced gradient
operator. First, the Wasserstein-1 metric has a particular
dual formulation, known as the Kantorovich duality:

Wiy (Po,P1) = Sl}p Ex~p, f(X) — Ex~p, f(X),

where the supremum is taken among all f: X — R sat-
isfying a 1-Lipschitz condition with respect to the ground
metric dy, i.e.,

lgrad f(X)[lar <1. ®)

Second, consider the ground metric given by the
Wasserstein-2 metric dy = Ws 4, with ground metric dg
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Figure 3. Depending on how we measure distances between pixel locations, the distance between images will be determined, and this in
turn will determine how distances are measured between probability distributions.

of pixel space. Then the gradient operator in (X, dy) is the
Wasserstein-2 gradient, i.e.,

The 1-Lipschitz condition for (X, dx) in equation 5 gives
| grad f(X)[lws, o, < 1,1,

(grad f(X), grad f(X))wy.dq < 1.

It is rewritten as the following integral of the Lipschitz-1
condition w.r.t. the Wasserstein ground metric:

[ 1928 (0@, X < 1.

Combining the above facts, we derive the formula for
Wasserstein of Wasserstein loss function. O

Remark 3. We note that the Kantorovich duality formula
holds for any ground metric. The Wasserstein ground met-
ric introduces differential structures and can be computed
from the L? gradient. We review the Wasserstein gradient
operators in Appendix A.

The maximizer f in equation 4 corresponds to an Eikonal
equation in image space (X, W 4, ). In other words, the
Lipschitz-1 condition in Wasserstein norm has the form

[ IV ()@, X @) = 1.

We call this equation the Wasserstein Eikonal equation.

Proposition 4 (Wasserstein Eikonal equation). The charac-
teristic of characteristic for the Wasserstein Eikonal equa-
tion is the geodesic in pixel space.

We defer the proof of the above proposition to Appendix A.
Here the characteristic curve of our Eikonal equation is the
geodesic curve in Wasserstein space (X', W 4, ). The char-
acteristic curve of geodesics in Wasserstein space is again a
geodesic in pixel space (€2, dg,). We call this fact the double
characteristic property. This is illustrated in Figure 3. In

contrast, the characteristic of geodesics in L? space does
not depend on pixel space. In the experiments section, we
show that with the double characteristic property, the dis-
criminator is continuous with respect to translations in pixel
space, and is robust with respect to spatially independent
noise added to the samples.

3. Wasserstein of Wasserstein GANSs

In this section we apply the Wasserstein of Wasserstein loss
function to implicit generative models.

3.1. Background

We start by reviewing generative adversarial networks
(GAN). GANSs are a deep learning approach to generative
modelling that has demonstrated significant potential in the
realm of image and text synthesis (Yu et al., 2017; Meng
et al., 2018). The GAN model is composed of two com-
peting agents: A discriminator and a generator. At each
training step the generator produces synthesized images and
the discriminator is given a batch of real and synthesized
images to be classified as real or fake. The generator is
trained to maximize the predictions of the discriminator
while the discriminator is trained to classify generated im-
ages aside from real images. At the end of training the
generator has learned how to trick the discriminator and
ideally also estimate the underlying data distribution.

Mathematically if we define a trainable generative model
P and discriminator D, the GAN objective formulation is
as follows:

r%én max {]E:,;NPT log(D(X)) 4+ Epnpg, log(1 — D(X))}
(6)

Here IP,. is the true, or real, data distribution. The distribu-
tion P is defined in terms of a generator parameterized
by 0 € RY. Let the generator be given by Gp: R™ —
X; Z — X = G(0,Z). This takes a noise sample
Z ~ p(z) € P2(R™) to an output sample with density



Wasserstein ground metric

given by X = G(6,Z) ~ p(6,z) = Pg. Here R? is the
parameter space, R™ is the latent space, and X’ is the sample
space.

The approach described above was found to suffer from dif-
ficulties at training, including lack of convergence and mode
collapse, a phenomenon where the distribution P restricts
to estimate a proper subset of P,.. The above-mentioned
challenges are often the result of the discontinuous nature
of the loss in equation 6, and were also considered by Bern-
ton et al. (2017). To resolve such problems, Arjovsky et al.
(2017) proposed to use the Wasserstein metric with Eu-
clidean ground metric as the objective, formulated as

min W1 L2 (PG7 ]P)T)
]P’G ’

=min sup

D {Exwpcf(X) —Exr, f(X): ()
G feC(Xx)

| grad f(X)|2 < 1}.

The Lipschitz condition in (7) was enforced via weight-
clipping, ensuring || grad f(X)|2 < Cy, where Cj is a
constant. While now providing GAN with a continuous loss,
WGAN with weight-clipping was noted to suffer from cyclic
behavior and instability which was improved by Gulrajani
et al. (2017) by changing the Lipschitz enforcing condition
from hard weight-clipping to a soft gradient penalty term,

min sup {EXN]P’Gf(X) —Ex~p, f(X)
Fo rec(x) (8)

+ )\EXN]Pimcrp(va(X) - 1)2}’

Here Pjyrp is an interpolation between IP,. and Pg, and A
is fixed. The gradient penalty term in equation 8 is not in
full compliance with the Kantorovich duality of the problem
as it also penalizes a discriminator of Lipschitz constants
smaller than 1. To remedy this issue, Petzka et al. (2017)
replace the gradient penalty term by

AEx p,,. (max(Vx f(X) — 1,0))2.

interp (

We now derive our formulation that improves current meth-
ods which are based on the L? ground metric. Following
Theorem 2, the Wasserstein of Wasserstein loss function can
be rewritten to give the optimization problem

I%én WI,WQ’dQ (IP)G) ]:P)’I‘)

=min sup

0 {EXNPG F(X) —Exop, f(X):
G fec(x)

| grad f(X)[lwa, o, < 1}'

The above formulation is suitable for training GANs. Here
we call the dual variable, f, the discriminator, while G is

the generator. In the setting of GANs, neural networks are
used to approximate the discriminator and generator, giving

mjnsup {Bzp)f(9(0, 2)) — Exeup, f5(X):

[ 192 1,00 @, X @y < 1),
Q

Here the generator G is expressed as a neural network with
parameters € ©, and the discriminator is approximated
by a neural network with parameters ¢ € ®. Our approach
implements the 1-Lipschitz condition in terms of the Wasser-
stein gradient operator.

3.2. Discretization

We next present a discrete version of the Wasserstein-2 gra-
dient. In practice, the image space X’ is not infinite dimen-
sional, although in vision problems the dimension may be
vast (X = R28%28 or R32%32%3 for MNIST or CIFAR-10).
To discretize, we first review the L2-Wasserstein metric ten-
sor (matrix) defined on a finite dimensional space. Consider
a pixel space graph G = (V, F,w). Here V = {1,...,n}
is the vertex set (e.g., n = 28 x 28), E is the edge
set, and w is a matrix of weights associated to the edges,
with w;; = wj;, which defines a ground metric of pix-
els. We denote the neighborhood of node i € V by
N(@i) ={j € V: (i,5) € E}, and the degree of node i by
d; = JEN() Wi

Tl 2oi e N (i) Wil
metric W on X’ (details in Appendix B), and further intro-
duce the Wasserstein-2 gradient on discrete image space (cf.

Solomon et al., 2014).

Proposition 5 (Wasserstein gradient on pixel space graph).
Given a pixel space graph G, the gradient of f € C1(X)
w.rt. (X, W) satisfies

grad f(X) = L(X)Vx f(X),

where ¥V x is the Euclidean gradient operator, and L(X) €
R™"™ is the weighted Laplacian matrix defined as

. We can then define a Wasserstein-2

%ZkeN(i)wik(il(: +%) ifi=j;
C X s A
L(X)i = _%Wij()d(; + ,Tji) ifj € N(i);
0 otherwise.
Moreover, the I-Lipschitz condition w.rt. (X, W),

[lgrad f(X)|lw < 1, is equivalent to
Va f(X) LX)V f(X) < 1.

Remark 6. We observe that the I-Lipschitz condition is
exactly the discrete analog of the one in equation (4),

Vx[(X)TL(X)Vx f(X)

= Y wu(Va FX) -V )

(i,5)€EE

<1.
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We note that the Wasserstein gradient written in this form
can be compared with the graph Laplacian on images
(Bertozzi & Flenner, 2012; Zheng et al., 2011).

3.3. Computing the Wasserstein gradient via
convolutions

We utilize the symmetry of the similarity graph of the im-
age space to compute the Wasserstein gradient efficiently
via convolutions as illustrated in Algorithm 2. We note
the use of convolutions for the computation of the Wasser-
stein distance (Solomon et al., 2015; Bonneel et al., 2016)
differs from ours as we merely compute the Wassserstein
gradient. As the optimal transport plan can be defined for
local distances and truncated at a given threshold, this leads
to a sparse w;;, positive only for nearby pixels. We there-
fore can calculate all pairs Vx, f(X) — Vx, f(X) with a
given neighboring pattern by computing a set of kernels
Ko, ...Kop, on the Euclidean gradient Vx f(X). The ker-
nels Ko, ... Kp, are each defined as a convolution with
fixed kernel of zeros with 1 and —1 in the corresponding
neighbor pattern pixels. By creating a convolution filter
for each neighbor pattern (e.g., right or up neighbor) we
reach the desired output channels. In practice the different
kernels Ko, ... Ko, are grouped to form a single 3D ker-
nel. Likewise we apply the same kernel patterns, now with
%,% in the corresponding neighbor pattern pixels to obtain
the terms M for each ¢, 7. This is done analo-
gously, computing each kernel Mo, over the images X/d.
Applying entry-wise multiplication (®) and a summation
collapsing all pixel locations and channels then yields an
efficient and general method of calculating the Wasserstein
gradient || grad f[|w, ,, for general local cost metrics on
highly optimized convolution. The specific choice of the
graph could serve to enhance different effects, which is a
possibility that we leave for future study.

3.4. Wasserstein gradient regularization in GANs

We next adopt the gradient penalty into the loss function (cf.
Petzka et al., 2017; Gulrajani et al., 2017) as

mein Sl;p {]Ezwp(z)f¢(g(0v Z)) - Ezwlﬂf(ﬁ(‘r)

+ AIEXN@(\/fo¢(X)TL(X)fo¢(X) - 1)2}’

where ) is chosen as a large constant and P is the distri-
bution of X taken to be the uniform on “Euclidean” lines
connecting points drawn from Pg and P,. Our WWGAN
training method is summarized in Algorithm 1.

Remark 7. In practice, we may want to use images of
unnormalized intensity, therefore the gradient penalty needs
to account for change of total intensity. As proposed by Li

(2018), we consider
L(X)=a11T + L(X). )

Here 1 = (1,...,1)T € R" is a constant vector. In Ap-
pendix C, we show how this adds one direction to the orig-
inal tensor. Compared to L(X) defined in the probability
simplex, f/(X ) is defined in the positive orthant. In the algo-
rithm, we simply replace L by L for unnormalized intensity.

Algorithm 1 WWGAN Gradient Penalty.

Require: Gradient penalty coefficient A, discriminator it-
erations per generator iteration ng;s.., batch size m,
ADAM hyperparameters «, 31, 2, initial discriminator
and generator parameters ¢g and 6, L matrix-function
from graph structure for image space G = (V, E,w).

1: while 6§ has not converged do

2: fort=1,...,ngisc. do

3: fori:=1,...,mdo

4: Sample real data x ~ P,, latent variable z ~
p(z), a random number € ~ U[0, 1].

5: X+ Go(z)

6: X+ ex+(1—ex

7: M® — Dy(®) — Dyx) +

ANV, @ L@V Dy — 1)?
8: end for
9: ¢+ Adam(Vy L 37" MO ¢, By, Bs)
10:  end for
11:  Sample a batch of latent variables {z'}™; ~ p(z)
12 60« Adam(VQ% 27;1 —D¢(G@(Z),9,Oz,61,ﬂ2))
13: end while

Algorithm 2 Wasserstein gradient norm || grad f(X)||w .

Require: The pixel graph: G = (V| E, ¢); local weights:
(wij;); neighbor relations arranged symmetrically:
01...04

Require: Euclidean gradient Vx f

1: Wasserstein-grad < 0
2: for neighbor relations k = 1,...,d do
3:  Build kernel K¢, to compute Vy, f — VXOW) f

4:  Build corresponding kernel Mo, to compute 2)[(1 +

Xo,

2do,

H « KOk (VX f)

V + Mo, (X)

H +— H®H (entry-wise multiplication)

W« HoV

9:  Wasserstein-grad < Wasserstein-grad + sum(W)
10: end for

11: Return || grad f(X)|lw = /Wasserstein-grad
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4. Experiments

In this section, we present experiments demonstrating the
effects and utility of WWGAN. We use the CIFAR-10 and
64 x 64 cropped-CelebA image datasets. In both experi-
ments the discriminator is a convolutional neural network
with 3 hidden layers and leaky ReLU activations. For the
generator we utilize a network with 3 hidden de-convolution
layers and batch normalization (Ioffe & Szegedy, 2015).
The dimensionality of the latent variable of the generator
is set at 128. Batch normalization is not applied to the dis-
criminator, in order to avoid dependencies when computing
the gradient penalties. The model is then trained with the
ADAM optimizer with fixed parameters (31, 52) = (0.9,0).
More implementation details are provided in Appendix C.

Figure 6 shows that in terms of computation time and quality
of the generated images as measured by the Frechét Incep-
tion Distance (FID), WWGAN is comparable to state of the
art WGAN-GP. Next, we take a look at the properties of
the trained discriminators, which also serves to probe the
shape of the probability densities over images defined by
generators.

4.1. Perturbation stability

In this experiment we investigate how the discriminator
trained with WWGAN on images benefits from the prop-
erties of the Wasserstein ground metric. Specifically, we
test whether the discriminator trained with the new gradient
penalty is more continuous with respect to natural variations
of the images. Natural variabilities are continuous trans-
formations of natural images that result in natural looking
images, such as translations and rotations. If the transfor-
mations are applied gradually, one should expect to observe
only gradual changes in the discriminator. The experiment
is illustrated in Figure 4, where a randomly selected image
from the CIFAR-10 dataset is gradually shifted vertically,
shifting all pixels a single pixel downward at each step. In
the figure, the sequence of shifted images is passed through
the WWGAN and the WGAN-GP discriminators, which
had been trained with their respective loss to reach an FID
value of 40 for the generator. We observe with our WW-
GAN model, the discriminator values change continuously
with the translation of the input image. In contrast, this
type of continuity is not observed in models that are trained
with the Euclidean Lipschitz condition. We note that WW-
GAN assigns a positive value to the image and gradually
decreases to the end limit when the entire image is shifted
away. Unlike WWGAN, WGAN-GP is highly sensitive to
perturbations in image space and oscillates wildly, assign-
ing highly positive (real label) and negative (fake labels) to
images shifted less than 2 pixels away. We observed the
same type of behavior across all images tested, as reported
in Table 1.

Example of a translated image
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Figure 4. Discriminator for CIFAR-10 images translated by a ver-
tical shift from O (no shift) to 32 pixels (complete image). The
WWGAN discriminator is continuous to natural perturbations,
e.g., vertical translation. WGAN-GP discriminator exhibits un-
predictable behavior for small vertical perturbations, oscillating
between real (positive values) and fake (negative values) labels.
Both WWGAN, WGAN-GP discriminators tested were trained
identically to reach an FID value of 40.

Method Total variation (normalized)  zero-crossings
WGAN-GP 5.36 7.07
WWGAN 4.02 0.65

Table 1. For each image of the CIFAR-10 testing set we construct
a vertical translation sequence and evaluate it on the discriminator
of WWGAN and WGAN-GP. Normalized total variation and zero-
crossing are computed for each curve and the average is reported.
It is observed that WGAN-GP is more oscillatory than WWGAN.

4.2. Discriminator robustness to noise

In this experiment, we test the robustness of the discrimi-
nator to RGB salt and pepper noise, i.e., every pixel has a
probability to be changed to either 0 or 1. In the plot 15%
of the pixels are modified. We trained GANs with WGAN-
GP and WWGAN until reaching an FID score of 40. We
then measure the values of the trained discriminators on real
images with RGB salt and pepper noise. In Figure 5, we see
that WGAN-GP has separate clusters for noisy and clean
images, while WWGAN is more robust to the noise and
assigns more consistent values to all images.
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Figure 5. Robustness of the discriminator to noise on real CIFAR-
10 images. The noise is RGB salt and pepper, where 15% of the
pixels are modified. The WGAN-GP discriminator values cluster
according to noise, giving different values to clean and noisy real
images. The WWGAN discriminator is more robust to noise, and
changes relatively little.
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Figure 6. WWGAN gives comparable results with state of the art
WGAN-GP training in terms of the FID of generated images. In
terms of computation time, the overhead of WWGAN is negligi-
ble, with average epoch wall-clock times of 218.1 s and 236.9 s,
respectively, in our experiments.

5. Related works

In this section, we review the connection between the pro-
posed work and literature.

Ground Metric for function space. Banach GAN (Adler
& Lunz, 2018) pointed out the importance of the ground met-
ric in training with the Wasserstein loss. They apply Sobolev
norms and their induced gradient operator. In contrast, we
apply the optimal transport induced operator (Otto, 2001;
Villani, 2009). The gradient operator depends on the new
ground metric structure on sample space. We demonstrate
that the optimal transport gradient provides for a practical
1-Lipschitz condition for training Wasserstein GANs.

Connection with Mean field games. Mean field games
consider the optimal control problem in Wasserstein space
(Cardaliaguet et al., 2015). In potential games, the Hamilton-
Jacobi equation in Wasserstein space plays a vital role
(Gangbo et al., 2008). In this paper, we present a new
Hamilton-Jacobi equation in Wasserstein space. It is the
Ekional equation in Wasserstein space as shown in Propo-
sition 4. The new equation has naturally the double char-
acteristics properties found in Mean field games. Here we

demonstrate experimentally that the double characteristics
property is very suitable for training GANS.

Geometric deep learning and Wasserstein metric on
graphs. In geometric deep learning one considers map-
pings where the input space has a rich geometric struc-
ture (Bronstein et al., 2017). An example is the case where
the input space consists of functions defined on a graph
(e.g., raster images, where the graphs are grids). One can
then define convolutions based on the group structures of
these graphs. Here we propose to use a graph structure in
the weighted Laplacian matrix. This matrix is connected
to the Wasserstein metric tensor on discrete space (Chow
et al., 2012; Maas, 2011; Mielke, 2011; Gu et al., 2015). A
study is provided by Li (2018). The discrete Wasserstein
metric tensor incorporates the graph structure of sample
space into the training loss. The Wasserstein of Wasserstein
loss function is an example in this direction.

Wasserstein natural gradients. Recent work also investi-
gates natural gradients based on the Riemannian structures
derived from optimal transport (Li & Montifar, 2018). In
this case, optimal transport serves to define an optimiza-
tion method, rather than a loss function. This approach has
also been applied to training of GANs, where it leads to an
iterative regularizer for the generator (Lin et al., 2018).

6. Discussion

We proposed a Wasserstein loss function with Wasserstein
ground metric for learning generative models. The Wasser-
stein ground metric introduces a graph / manifold structure
into the sample space of the model and allows us to intro-
duce meaningful priors to the learning model. Experiments
demonstrate that this approach can contribute to making
the generator and discriminator in GANs more stable with
respect to noise and the natural variability of image data.

We consider the Wasserstein of Wasserstein loss an impor-
tant advance at a conceptual level. It has a physical intuition.
Consider a physical motion or translation in pixel space. It
corresponds to a change in image space, and it changes the
distribution over images accordingly. The double character-
istic property of the Wasserstein Eikonal equation reflects
this intuition analytically. We regard it as surprising that this
high level approach can be translated to practical computa-
tional methods. Remarkably, our approach has a very small
additional computational cost over the standard Wasserstein
loss function with L? (Euclidean) ground metric.

In the future, we suggest to explore the consequences of our
approach from the statistical and optimization point of view.
Also, to continue exploring the role of the graph structure
that is chosen to define the Wasserstein ground metric in
relation to specific data types.
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