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Abstract
Beam search is the most popular inference al-
gorithm for decoding neural sequence models.
Unlike greedy search, beam search allows for
non-greedy local decisions that can potentially
lead to a sequence with a higher overall probabil-
ity. However, work on a number of applications
has found that the quality of the highest proba-
bility hypothesis found by beam search degrades
with large beam widths. We perform an empirical
study of the behavior of beam search across three
sequence synthesis tasks. We find that increas-
ing the beam width leads to sequences that are
disproportionately based on early, very low prob-
ability tokens that are followed by a sequence of
tokens with higher (conditional) probability. We
show that, empirically, such sequences are more
likely to have a lower evaluation score than lower
probability sequences without this pattern. Using
the notion of search discrepancies from heuristic
search, we hypothesize that large discrepancies
are the cause of the performance degradation. We
show that this hypothesis generalizes the previous
ones in machine translation and image caption-
ing. To validate our hypothesis, we show that
constraining beam search to avoid large discrep-
ancies eliminates the performance degradation.

1. Introduction
Neural sequence models are among the most popular
tools for modeling sequential data and have been applied
to a range of applications including machine translation
(Gehring et al., 2017), summarization (Chopra et al., 2016),
image captioning (Vinyals et al., 2017), and conversation
modeling (Vinyals & Le, 2015). The most commonly used
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inference algorithm for decoding neural sequence models is
beam search, a search algorithm that generates the sequence
tokens one-by-one while keeping a fixed number of active
candidates (beam size) at each step.

Recently, several works have reported the problem of per-
formance degradation in beam search. In machine trans-
lation, Koehn & Knowles (2017) found that beam search
“only improves translation for narrow beams and deterio-
rates when exposed to a larger search space”. While length-
normalization can alleviate the problem somewhat, it does
not eliminate it. Koehn & Knowles chose this problem as
one of six central challenges in machine translation.

Ott et al. (2018) proposed the existence of training pairs in
which the target is a copy of the source as an explanation for
the performance degradation in length-normalized machine
translation models. For larger beams, they found that more
predictions can be classified as “copies”1 and that filtering
these copies reduces the performance degradation.

In image captioning, Vinyals et al. (2017) observed perfor-
mance degradation for wider beams and highlighted the use
of a narrower beam search as one of the most significant
improvements in their model. They hypothesized that the
degradation is either due to overfitting or that the objec-
tive used in training (likelihood) is not aligned with human
judgement. Their analysis found that wider beams exhibited
more predictions that repeat training captions and fewer
novel ones. This observation is used to support the hypothe-
sis that the model is overfitted and therefore they propose the
use of smaller beam width as “another way to regularize”.

In this work, we analyze the performance of beam search
across multiple tasks: machine translation, abstractive sum-
marization, and image captioning. We present an explana-
tory model that is based on the concept of search discrep-
ancies (deviations from greedy choices) and perform an
empirical study of the distribution of such discrepancies.
We make the following contributions:

1. We show that increasing the beam width leads to solu-
tions with more and larger discrepancies early in the
sequence. These sequences often have lower evaluation

1“Copies” are predictions that share at least 50% of their uni-
grams with their source (Ott et al., 2018).
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score, leading to the observed performance degradation.
As we increase the beam width, the differences in the
distribution of discrepancies that are associated with
improved vs. degraded solutions grow substantially.

2. We show that our explanatory model generalizes the
previously observed “copies” and predictions that re-
peat training set targets and accounts for more of the
degraded predictions.

3. We demonstrate that modifying beam search to prevent
it from considering large search discrepancies elimi-
nates the performance degradation.

2. Preliminaries
2.1. Neural Sequence Models

Given a model parameterized by θ and an input x, the prob-
lem of sequence generation consists of finding a sequence ŷ
such that ŷ = argmaxy∈Y Pθ(y|x), where Y is the set of all
sequences. y is a sequence of tokens y = {y0, ...yT−1} from
vocabulary V , where T is the length of the sequence y. The
expression Pθ(y | x) can then be factored as Pθ(y | x) =∏T−1
t=0 Pθ(yt | x; {y0, ..., yt−1}), or for convenience using

log-probability as
∑T−1
t=0 logPθ(yt | x; {y0, ..., yt−1}).

It is common to model logPθ(yt | x; {y0, ..., yt−1}) using
a Recurrent Neural Network (RNN), where the sequence
{y0, ..., yt−1} conditioned on is expressed by a fixed length
hidden state ht. This hidden state is updated using a non-
linear function f : ht+1 = f(ht, yt).

Exhaustive search to find the globally optimal se-
quence is not tractable. A greedy algorithm that
selects the best candidate at each time step yt =
argmaxy∈V logPθ(y|x; {y0, ..., yt−1}) makes a sequence
of locally optimal decisions, but can lead to a globally
sub-optimal sequence. Beam search extends the B most
probable partial solutions at each step, where B is called
beam width. Following Vijayakumar et al. (2018), we de-
note the set of B solutions held by the beam search at
step t − 1 as Y[t−1]={y1,[t−1], ..., yB,[t−1]}. At each step,
beam search selects the top scoring B candidates from
the set of all possible one token extensions of its beams
Yt={y[t] | y[t−1] ∈ Y[t−1] ∧ yt ∈ V}. Formally, the beam
search candidates are updated as follows:

Y[t] = argmax
y[1,t],...,y[B,t]∈Yt

∑
b∈[1..B]

logPθ(y[b,t] | x)

s.t. yi 6= yj ∀i 6= j; i, j ∈ [1..B]

(1)

2.2. Search Discrepancies in Neural Sequence
Generation

In combinatorial search, a search discrepancy is a decision
made by the search algorithm that is not the most highly

<sos> comment

vas: -0.69 [0] est: -0.92 [0.23] venu: -2.99 [2.30] ...

Figure 1. Example: expanding a partial hypothesis in the transla-
tion of ”How are you?” to French. Discrepancy gap in brackets.

rated one according to the heuristic (Harvey & Ginsberg,
1995). In the context of search for neural sequence genera-
tion, we define a search discrepancy as extending a partial
sequence with a token that is not the most probable one.
More formally, a sequence y is considered to have a search
discrepancy at time step t if

logPθ(yt | x;{y0,..., yt−1}) < max
y∈V

logPθ(y | x;{y0,..., yt−1})

We denote the difference in log-probability between the
most likely token and the chosen token as discrepancy gap.
At time step t, the discrepancy gap is defined as

max
y∈V

logPθ(y | x;{y0,..., yt−1})− logPθ(yt | x;{y0,..., yt−1})

To demonstrate how the discrepancy gap is computed, Fig-
ure 1 shows the extension of a partial hypothesis in machine
translation. The candidate with the highest conditional prob-
ability has a discrepancy gap of zero, by definition, while
the gap of the other candidates is the difference in log-
probability.

3. Experimental Setup
We perform an extensive empirical evaluation over multiple
tasks, models, datasets, and evaluation metrics. Following
is a description of the experimental setup for each task.

Machine Translation. We use the convolutional model by
Gehring et al. (2017) implemented in the fairseq-py toolkit.
We present results for two models, trained on WMT’14 En-
Fr and En-De datasets and evaluated on newstest2014 En-Fr
and En-De, respectively, with a vocabulary based on byte
pair encoding (BPE; Sennrich et al., 2016).

Summarization. We use the abstractive summarization
model by Chopra et al. (2016) implemented in the Open-
NMT toolkit (Klein et al., 2017). The model is trained
and evaluated using Rush et al.’s (2015) test split of the
Gigaword corpus (Graff et al., 2003).

Image Captioning. We use the model by Vinyals et al.
(2017), trained on the MSCOCO dataset (Lin et al., 2014).
We present results for a test set of 5000 images based on
Karpathy & Fei-Fei’s (2015) splits.
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Table 1. Baseline results for different beam widths (higher values are better, best results in bold).

Task Dataset Size (Test) Metric B=1 B=3 B=5 B=25 B=100 B=250

Translation En-De 3003 BLEU4 25.27 26.00 26.11 25.11 23.09 21.38
En-Fr 3003 BLEU4 40.15 40.77 40.83 40.52 38.64 35.03

Summarization Gigaword 1751 R-1 F 33.56 34.22 34.16 34.01 33.67 33.23
Captioning MSCOCO 5000 BLEU4 29.66 32.36 31.96 30.04 29.87 29.79

In machine translation and summarization, we apply length
normalization on the hypotheses log-likelihood, as it was
shown to reduce the performance degradation by not priori-
tizing short sentences (Koehn & Knowles, 2017; Gehring
et al., 2017). For image captioning, consistent with previous
works, we do not use length normalization (we also found
that such normalization reduces the overall performance).

3.1. Evaluation Metrics

While beam search finds the (approximately) most proba-
ble sequence, the quality of a sequence is evaluated based
on human references using a task-specific evaluation met-
ric. For machine translation and image captioning we use
BLEU-n (Papineni et al., 2002), a geometric average of
precision over 1- to n-grams multiplied by a brevity penalty
for short sentences. As in recent literature, we present re-
sults for BLEU-4. Corpus-level BLEU is reported without
smoothing, while for sentence-level BLEU we use smoothed
n-gram counts for n > 1 (Lin & Och, 2004). For image
captioning, we also evaluated the performance using CIDEr
(Vedantam et al., 2015) and SPICE (Anderson et al., 2016)
and report these metrics in Appendix E.2

For summarization, we use ROUGE (Lin, 2004), the n-
gram recall between candidate summary and a reference.
We report the F-score of ROUGE-1, however similar trends
were observed for the F-score of ROUGE-L (for longest
common subsequence).

2All the appendices are in the supplementary material.

4. Empirical Analysis of Search Discrepancies
in Beam Search

We analyze and compare the most likely hypotheses found
by a beam search for the following beam widths: {1, 3, 5,
25, 100, 250}. Due to space, we present detailed results for
one of the tasks and summarize the results for the others.
The results for all tasks and metrics are in Appendix A.

4.1. Baseline Results

Table 1 presents the performance of beam search with dif-
ferent beam widths, based on the chosen evaluation met-
rics. The performance degradation for larger beam widths
appears for all tested tasks based on their task-specific eval-
uation metric. These results are consistent with the existing
reports of such performance degradation (Koehn & Knowles,
2017; Ott et al., 2018; Vinyals et al., 2017).

4.2. The Distribution of Search Discrepancies

Figure 2 shows the number of discrepancies per position
(index) for the most likely hypotheses generated by a beam
search on the WMT’14 En-De test set for different beam
widths (all graphs are based on the same number of so-
lutions, however the total number of discrepancies in the
generated solutions is not necessarily the same for different
beam widths). In general, the majority of discrepancies hap-
pen in early positions. More interestingly, for larger beams,
the number of early discrepancies grows significantly while
the number of later discrepancies stays approximately con-
stant. Larger beams allow the search to find solutions with
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Figure 2. WMT’14 En-De: Distribution of discrepancy positions for different beam widths.
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Figure 3. WMT’14 En-De: Mean discrepancy gap per position for different beam widths.

higher overall probability by exploring less probable early
tokens, however they do not seem to lead to more proba-
ble sequences that share a prefix with solutions found for a
smaller beam width. Similar results for the other tasks are
reported in Appendix A. For image captioning (MSCOCO),
we find the majority of early search discrepancies appear
on the second token due to the first token being “a” with
high probability in almost all sentences (in greedy search,
for example, 99% of the generated captions start with “a”).

Next, we analyze the discrepancy gap vs. sequence position.
Figure 3 presents the mean gap per position for WMT’14
En-De for different beam widths. Again, we can see that
the changes are mainly in the early positions: for larger
beams, the search tends to find solutions with larger early
discrepancy gap, i.e., the early tokens are relatively less
likely. The gap of the other tokens remains similar. Similar
results for the other tasks are reported in Appendix A.

The increase in number and size of early discrepancies for
larger beams means that the search manages to find solutions
with higher overall probability when starting from a large
discrepancy. However, these solutions are not necessarily
better according to the evaluation metric. The observed
performance degradation suggests that the more probable
solutions found by larger beams are, in fact, worse. Identify-

ing discrepancies that are likely to lead to a worse solution
is therefore a key task in addressing the degradation.

4.3. Discrepancies in Improved vs. Degraded Solutions

We now compare the solutions generated by a greedy search
with the solutions generated by beam search with different
widths. We then analyze the discrepancies in solutions that
were improved by increasing the beam width (with respect
to the evaluation metric) vs. solutions that were degraded.

Figure 4 shows the number of discrepancies per position for
WMT’14 En-De, comparing solutions that were improved
vs. solutions that were degraded. For B=5 there are 386
solutions in which the first token is not based on a greedy
decision. Of those, 200 have a better evaluation than the
greedy solution and 169 have a worse evaluation. However,
as we increase the beam width, the increase in early discrep-
ancies observed in Figure 2 is associated almost entirely
with degraded solutions. This result explains the observed
performance degradation for larger beam widths. Similar
results for the other tasks are reported in Appendix A.

Next, we compare the discrepancy gaps in degraded vs.
improved solutions. Figure 5 presents the mean discrepancy
gap per position for both the improved and the degraded
solutions. Interestingly, we find that the additional early
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Figure 4. WMT’14 En-De: Distribution of discrepancy positions for improved vs. degraded solutions.
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Figure 5. WMT’14 En-De: Mean discrepancy gap per position for improved vs. degraded solutions.

discrepancies that are associated with degraded solutions
tend to have a much higher discrepancy gap compared to
the ones associated with improved solutions. Similar results
for the other tasks are reported in Appendix A.

4.4. Discrepancies and the Most Likely Hypothesis

In order for a sequence with an early large discrepancy to be
selected by a beam search as (approximately) the most likely
hypothesis, it must be followed by tokens with higher (condi-
tional) probability. Figure 6 shows the average (conditional)
token probability for WMT’14 En-De (we use log-scale on
the x axis to highlight the early positions). For larger beams,
the average probability of early tokens decreases (due to
larger discrepancy gaps) while the average probability of
later tokens increases explaining the overall higher probabil-
ity.3 Figure 6 also shows the same graph for the improved
vs. degraded solutions (compared to greedy search). For
improved solutions, we do not see significant change as we
increase the beam width. For degraded solutions, however,
as we increase the beam width we find more and more early

3When length normalization is not used, we compare the prod-
uct of token probabilities rather than the average token probabil-
ities. See Appendix A.3 for results on the unnormalized image
captioning task.

discrepancies that lead to an overall higher probability but a
worse evaluation metric value. For all tasks, we found that
the changes in the tokens average probability for increased
beam width are larger in the case of degraded solutions than
for improved solutions (see Appendix A).

Ott et al. (2018) observed the same pattern for copies, i.e.,
they have low first token probability and higher probabili-
ties for subsequent tokens. Our analysis accounts for this
behavior and suggests that copies are one instance of a more
general pattern that leads to degraded sequences. In the
next section, we show that our analysis generalizes copies,
as well as training set predictions in image captioning, and
even accounts for additional degraded sequences.

4.5. Generalizing Copies and Training Set Predictions

Table 2 shows the number of copies in machine translation
and training set predictions in summarization and image
captioning. For larger beams, the number of copies and
training set predictions grows. Table 2 also reports the
mean discrepancy gap of the first token (second token for
MSCOCO, see Section 4.2). As our analysis predicts, the
early gap of these predictions also grows significantly.

Note that copies and training set predictions only partially
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Table 2. Number of copies and training set examples and the average first token discrepancy gap.

B=1 B=3 B=5 B=25 B=100 B=250

En-De # Copies 23 40 49 179 385 567
En-De First token gap (copies) 0.0 0.12 0.28 1.79 3.05 3.71
En-De First token gap (all) 0.0 0.05 0.07 0.18 0.46 0.77

En-Fr # Copies 25 28 41 89 227 358
En-Fr First token gap (copies) 0.0 0.12 0.31 1.69 3.68 4.38
En-Fr First token gap (all) 0.0 0.04 0.05 0.10 0.32 0.60

Gigaword # Training set predictions 81 86 86 115 163 224
Gigaword First token gap (train pred.) 0.0 0.07 0.07 0.98 1.84 2.61
Gigaword First token gap (all) 0.0 0.12 0.12 0.29 0.39 0.55

MSCOCO # Training set predictions 163 260 371 588 582 576
MSCOCO Second token gap (train pred.) 0.0 0.39 0.87 1.76 1.82 1.82
MSCOCO Second token gap (all) 0.0 0.20 0.29 0.49 0.51 0.51

account for the performance degradation. In WMT’14 En-
De translation with B=25, we find that copies account for
≈ 40% of degraded solutions with first token gap. In Giga-
word summarization with similar beam width, training set
examples account for≈ 68% of degraded solutions with first
token gap. Furthermore, in MSCOCO, since many of the
improved sequences are training set captions, eliminating
them all together is not desired. Instead, we are interested
in avoiding the training captions in the larger beams that led
to the performance degradation. These, as Table 2 shows,
have a larger difference in the discrepancy gap.

4.6. An Illustrative Example

Consider the following example of training set predictions
in Gigaword. As we increase the beam width, we find more
predictions with the structure: “〈weekday〉’s sports score-
board” (Table 3).4 As expected, these predictions have a
large early discrepancy, followed by highly (conditionally)
probable tokens. For B=100, the average first token dis-
crepancy gap for these summaries is≈3.6 compared to≈0.4
in the full test set. As none of the test references includes
“sports scoreboard”, these summaries have low evaluation.

Table 3. Number of “〈weekday〉’s sports scoreboard” predictions.

B = 3 B = 5 B = 25 B = 100 B = 250

0 1 17 19 19

As a potential explanation for this phenomenon, we find
that all texts that were summarized as “〈weekday〉’s sports
scoreboard” included the corresponding weekday. In the
training set, we found that in 2962 of the 2971 texts that were

4Without length normalization, the numbers are higher as this
sequence is shorter than most summaries.

summarized to “〈weekday〉’s sports scoreboard” included
the corresponding weekday. This can lead to the 〈weekday〉
token suggested as a first token with a low, but sufficiently
high, probability to get into the top B tokens. Followed
by high probability tokens, it can, in some cases, have an
overall probability that is higher than the alternatives.

5. Search Discrepancies and the Performance
Degradation in Beam Search

Our baseline results support the observations that perfor-
mance degradation is a significant problem that occurs
across different neural sequence tasks, using different mod-
els and evaluation metrics. Consistent with previous results
we find this problem even in length-normalized models.5

Based on our empirical analysis, we hypothesize that large
search discrepancies are the cause of the previously reported
performance degradation in beam search. To test this hy-
pothesis, we modify the beam search algorithm to prevent
it from considering large discrepancies, with the prediction
that it will eliminate the observed performance degradation.

6. Discrepancy-Constrained Beam Search
We evaluate two heuristic methods of constraining the beam
search from considering large search discrepancies.

Discrepancy gap: Given a thresholdM, we modify beam
search to only consider candidates with a discrepancy gap
smaller or equal toM. Formally, we modify Eq. 1 to include
the constraint

max
y∈V

logPθ(y|x;{y0, ..., yt−1})−logPθ(yt|x;{y0...yt−1}) ≤M

5We further show that this problem is not due to length bias in
Appendix D.
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Beam candidate rank: Given a threshold N , we mod-
ify Yt to only include the top N one-token extensions in
each beam. Note that the beam search still retains the top
B candidates, however it will not consider more than N
candidates from the each beam.

Using the setup in Section 4.1, we compare these methods
to the baseline. Although the analysis in Section 4 was done
on the test set (to account for the performance degradation
that was previously observed on the test set),M and N are
tuned on a held-out validation set and no information from
the test set was used to tune our methods.

As shown in Table 4, both methods significantly reduce,
and in some cases completely eliminate, the performance
degradation. In machine translation and summarization, we
improve performance compared to the baseline with the best
test beam width. In general, the discrepancy gap constraint
seems to perform better (most notably, for MSCOCO). The
gap constraint allows for a finer-grained control over the
accepted search discrepancies, however the rank constraint
is simpler and easier to tune.

Ott et al. (2018) proposed to add an inference constraint
that prunes copies in the beam search and showed that it sig-
nificantly reduces the performance degradation in machine
translation. However, their empirical analysis still found a
drop of approximately a point in the BLEU evaluation for
B = 200, consistent with our observation that copy predic-
tions do not fully account for the performance degradation
in machine translation (Section 4.5). Our inference con-
straints, more general and not limited to copies, completely
eliminate the performance degradation (and even slightly
improve the evaluation) in machine translation.

We compared the number of copies and training set predic-
tions in the baseline vs. the two discrepancy-constrained

variants of beam search. We find that our methods reduce
the growth in the number of both copies and training set
predictions, supporting the claim that our hypothesis is a
generalization of the previous explanations. The detailed
comparison can be found in Appendix B.

We also repeated the analysis above and found that both
constrained beam search variations substantially reduce the
discrepancy phenomena detailed in Section 4. Complete
results for both constrained methods on WMT’14 En-De
are in Appendix C (other tasks exhibited similar results).

Finally, to show that these results are not limited to text
generated in English or European languages that share some
similarity to English, we performed experiments on the
WMT’17 En-Zh dataset (that involves generating transla-
tions in Chinese). We observe a similar performance degra-
dation, associated with large early discrepancies. Further-
more, the performance degradation on this dataset is not
due to copies, as there are none in the translations. Our con-
strained variants of beam search successfully eliminate the
performance degradation and lead to improved evaluation.
We report the results in Appendix F.

7. Discussion
Our results show that larger beam width leads to increas-
ingly large early discrepancies. These very unlikely early
tokens are later compensated by subsequent tokens with a
much higher (conditional) probability compared to the sub-
sequent tokens of the more probable early tokens. The large
difference in the conditional probability of the subsequent
tokens is at the heart of the observed performance degra-
dation. Previous work has highlighted two potential biases
that can account for this difference. Exposure bias (Ranzato
et al., 2016) occurs since the model is only exposed to the

Table 4. A comparison of the baseline results vs. the constrained beam search methods (higher values are better, best baseline results in
bold).

Dataset Method Threshold B=1 B=3 B=5 B=25 B=100 B=250

En-De
(BLEU-4)

Baseline 25.27 26.00 26.11 25.11 23.09 21.38
Constr. Gap M = 1.5 25.27 26.00 26.18 26.18 26.22 26.29
Constr. Rank N = 2 25.27 26.07 26.01 26.08 26.10 26.10

En-Fr
(BLEU-4)

Baseline 40.15 40.77 40.83 40.52 38.64 35.03
Constr. Gap M = 2.0 40.15 40.78 40.86 40.98 41.05 41.06
Constr. Rank N = 3 40.15 40.77 40.81 40.99 41.05 41.02

Gigaword
(R-1 F)

Baseline 33.56 34.22 34.16 34.01 33.67 33.23
Constr. Gap M = 0.85 33.56 34.27 34.29 34.43 34.33 34.32
Constr. Rank N = 2 33.56 34.48 34.45 34.25 34.23 34.32

MSCOCO
(BLEU-4)

Baseline 29.66 32.36 31.96 30.04 29.87 29.79
Constr. Gap M = 0.45 29.66 32.24 32.33 32.36 32.35 32.35
Constr. Rank N = 2 29.66 32.52 31.97 30.88 30.87 30.87
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training data and can be biased towards the training set dis-
tribution (our illustrative example demonstrates such bias
due to a repetitive pattern in the training data). Label bias
(Wiseman & Rush, 2016) occurs since token probabilities
at each time step are locally normalized and therefore the
successors of incorrect histories receive the same probability
mass as the successors of a correct history.

These biases help explain the observed behavior with large
beam width: a biased (conditional) probability that con-
centrates high probability mass on one token and is locally
normalized to sum to one compensates for earlier low prob-
ability tokens. The negative effects of these biases have
been discussed before (Ranzato et al., 2016; Wiseman &
Rush, 2016), however the connection to the performance
degradation in beam search and the explanatory framework
to allow such analysis is, to our best knowledge, novel.

While beam search is used to perform (approximate) infer-
ence, it is a heuristic search algorithm (Bisiani, 1987). We
therefore believe it is natural to address the performance
degradation from a heuristic search perspective. Our analy-
sis, based on the search discrepancy concept from heuristic
and combinatorial search, views the probabilities predicted
by the neural network as a heuristic value to guide search for
a solution. Early mistakes have been shown to have a large
negative effect on search performance (Gent & Walsh, 1994)
and substantial work has analyzed and proposed techniques
to mitigate the phenomenon (Gomes et al., 2005; Cohen &
Beck, 2018), including limited discrepancy search (Harvey
& Ginsberg, 1995). Further investigation of the connection
between such work and neural sequence decoding may lead
to further insight.

In this work, we study the previously reported beam search
performance degradation in the most commonly used neural
sequence models that are based on an RNN decoder and are
trained to maximize the word-level likelihood, conditioned
on the input sequence and the reference history (Sutskever
et al., 2014; Bahdanau et al., 2014). Recently, there have
been several proposals for alternative models and training
schemes that rely on sequence level losses and that can
potentially mitigate the effects of the biases described above
(Ranzato et al., 2016; Wiseman & Rush, 2016; Edunov et al.,
2018). These works only report the results for small beam
widths, and it is not clear if they reduce, or even eliminate,
the performance degradation in beam search. Analyzing the
performance of these models for larger beam widths, and
the associated distribution of search discrepancies in these
models is a direction for future work. We are also interested
in analyzing the recent Transformer model (Vaswani et al.,
2017).

8. Related Work
Search discrepancies have been the base of many search
techniques in combinatorial search and optimization (e.g.,
Harvey & Ginsberg, 1995; Walsh, 1997; Beck & Perron,
2000). Furcy & Koenig (2005) proposed BULB, a complete
variant of beam search that backtracks based on search
discrepancies, as a memory-efficient alternative to best-first
heuristic search for path-finding problems.

Several works have modified or constrained beam search
for different purposes. Vijayakumar et al. (2018) changed
the search objective to allow diverse decoding. Hokamp &
Liu (2017) proposed grid beam search to support lexical
constraints. Anderson et al. (2017) proposed a constrained
beam search that forces inclusion of selected tokens in the
output. Freitag & Al-Onaizan (2017) analyzed pruning
techniques for a beam search decoder in machine translation.
Their strategy of limiting “maximum candidates per node”
is similar to the rank constraint in our work, however their
analysis is focused on speeding up beam search rather than
addressing the phenomenon of performance degradation.

A recent line of work in machine translation suggested the
performance degradation is due to length bias (Yang et al.,
2018; Murray & Chiang, 2018). For larger beams, an end-
of-sentence token with a lower probability that leads to an
overall more probable hypothesis is more likely to be consid-
ered by the beam search. However, we showed performance
degradation above even when using length normalization
and in tasks where length bias does not appear (see Ap-
pendix D for more details).

9. Conclusion
In this work, we perform an empirical analysis of the per-
formance degradation in beam search across three neural
sequence decoding tasks. We find that the performance
degradation for large beam widths is associated with in-
creasing number of early and large search discrepancies.
We hypothesize that the fact that beam search exhibits large
discrepancies is the cause of the performance degradation
and that avoiding such discrepancies will eliminate the per-
formance degradation. We show that this hypothesis gen-
eralizes previous results including the existence of copy
predictions in machine translation and the training set pre-
dictions in image captioning, and accounts for additional
degraded sequences. To validate this hypothesis, we show
that methods that prevent the search from considering large
search discrepancies eliminate the performance degradation
in beam search.
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