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Abstract
Value-function approximation methods that oper-
ate in batch mode have foundational importance to
reinforcement learning (RL). Finite sample guar-
antees for these methods often crucially rely on
two types of assumptions: (1) mild distribution
shift, and (2) representation conditions that are
stronger than realizability. However, the necessity
(“why do we need them?”) and the naturalness
(“when do they hold?”) of such assumptions have
largely eluded the literature. In this paper, we
revisit these assumptions and provide theoretical
results towards answering the above questions,
and make steps towards a deeper understanding
of value-function approximation.

1. Introduction and Related Work
We are concerned with value-function approximation in
batch-mode reinforcement learning, which is related to and
sometimes known as Approximate Dynamic Programming
(ADP; Bertsekas & Tsitsiklis, 1996). Such methods take
sample transition data as input1 and approximate the optimal
value-function Q? from a restricted class that encodes one’s
prior knowledge and inductive biases. They provide an
important foundation for RL’s empirical success today, as
many popular deep RL algorithms find their prototypes in
this literature. For example, when DQN (Mnih et al., 2015)
is run on off-policy data, and the target network is updated
slowly, it can be viewed as the stochastic approximation of
its batch analog, Fitted Q-Iteration (Ernst et al., 2005), with
a neural net as the function approximator (Riedmiller, 2005;
Yang et al., 2019).

Given the importance of these methods, the question of
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1In this paper, we restrict ourselves to the so-called one-path
setting and do not allow multiple samples from the same state
(Sutton & Barto, 1998; Maillard et al., 2010), which is only feasible
in certain simulated environments and allows algorithms to succeed
with realizability as the only representation condition.

when they work is central to our understanding of RL. Ex-
isting works that analyze error propagation and finite sam-
ple behavior of ADP methods (Munos, 2003; Szepesvári
& Munos, 2005; Antos et al., 2008; Munos & Szepesvári,
2008; Tosatto et al., 2017) have provided us with a decent
understanding: To guarantee sample-efficient learning of
near-optimal policies, we often need assumptions from the
following two categories.

Mild distribution shift Many ADP methods can run com-
pletely off-policy and they do the best with whatever data
available.2 Therefore, it is necessary that the data have
sufficient coverage over the state (and action) space.

Representation condition Since the ultimate goal is to
find Q?, we would expect that the function class we work
with contains it (or at least a close approximation). While
such realizability-type assumptions are sufficient for super-
vised learning, reinforcement learning faces the additional
difficulties of delayed consequences and the lack of labels,
and existing analyses often make stronger assumptions on
the function class, such as (approximate) closedness under
Bellman update (Szepesvári & Munos, 2005).

While the above assumptions make intuitive sense, and finite
sample bounds have been proved when they hold, their
necessity (“can we prove similar results without making
these assumptions?”) and naturalness (“do they actually
hold in interesting problems?”) have largely eluded the
literature. In this paper, we revisit these assumptions and
provide theoretical results towards answering the above
questions. Below is a highlight of our results:

1. To prepare for later discussions, we provide an analysis
of representative ADP algorithms (FQI and its variant)
under a simplified and minimal setup (Section 3). As a
side-product, our results improve upon prior analyses in
the dependence of error rate on sample size.

2. We formally justify the necessity of mild distribution
shift via an information-theoretic lower bound (Sec-
tion 4.1). Our setup rules out trivial and uninteresting
failure mode due to an adversarial choice of data: Even
2Even when they are on-policy or combined with a standard ex-

ploration module (e.g., ε-greedy), most often they fail in problems
where exploration is difficult (e.g., combination lock; see Kakade,
2003) and rely on the benignness of data to succeed.
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with the most favorable data distribution, polynomial
sample complexity is not achievable if the MDP dynam-
ics are not restricted.

3. We conjecture an information-theoretic lower bound
against realizability alone as the representation condi-
tion (Conjecture 8, Section 5.1). While we are not able
to prove the conjecture, important steps are made, as two
very general proof styles are shown to be destined to fail,
one of which is due to Sutton & Barto (2018) and has
been used to prove a closely related result.

4. As another side-product, we prove that model-based RL
can enjoy polynomial sample complexity with realizabil-
ity alone (Corollary 6). If Conjecture 8 is true, we have a
formal separation showing the gap between batch model-
based vs value-based RL with function approximation
(see the analog in the online exploration setting in Sun
et al. (2019)).

Throughout the paper, we make novel connections to two
subareas of RL: state abstractions (Whitt, 1978; Li et al.,
2006) and PAC exploration under function approximation
(Krishnamurthy et al., 2016; Jiang et al., 2017). In particular,
we are able to utilize some of their results in our proofs
(Sections 4.1 and 5.1), and find examples from these areas
where the assumptions of interest hold (Sections 4.2 and
5.2). This suggests that the results in these other areas may
be beneficial to the research in ADP, and we hope this work
can inspire researchers from different subareas of RL to
exchange ideas more often.

2. Preliminaries
2.1. Markov Decision Processes (MDPs)

Let M = (S,A, P,R, γ, η1) be an MDP, where S is the
finite (but can be arbitrarily large) state space,A is the finite
action space, P : S ×A → ∆(S) is the transition function
(∆(·) is the probability simplex), R : S × A → [0, Rmax]
is the reward function, γ ∈ [0, 1) is the discount factor, and
η1 is the initial distribution over states.

A (stochastic) policy π : S → ∆(A) prescribes a distribu-
tion over actions for each state. Fixing a start state s, the pol-
icy π induces a random trajectory s1, a1, r1, s2, a2, r2, . . .,
where s1 = s, a1 ∼ π(s1), r1 = R(s1, a1), s2 ∼
P (s1, a1), a2 ∼ π(s2), etc. The goal is to find π that max-
imizes the expected return vπ := E[

∑∞
h=1 γ

h−1rh|s1 ∼
η1, π]. It will also be useful to define the value func-
tion V π(s) := E[

∑∞
h=1 γ

h−1rh|s1 = s, π] and Q-value
function Qπ(s, a) := E[

∑∞
h=1 γ

h−1rh|s1 = s, a1 =
a, a2:∞ ∼ π], and these functions take values in [0, Vmax]
with Vmax := Rmax/(1− γ).

There exists a deterministic policy3 π? that maximizes
V π(s) for all s ∈ S simultaneously, and hence also max-
imizes vπ as vπ = Es1∼η1 [V π(s1)]. Let V ? and Q? be
the shorthand for V π

?

and Qπ
?

respectively. It is well
known that π?(s) = πQ?(s) := arg maxa∈AQ

?(s, a),
and Q? satisfies the Bellman equation Q? = T Q?, where
T : RS×A → RS×A is the Bellman update operator:
∀f ∈ RS×A,

(T f)(s, a) := R(s, a) + γEs′∼P (s,a)[Vf (s′)], (1)

where Vf (s′) := maxa′∈A f(s′, a′).

Additional notations Let ηπh be the marginal distribution
of sh under π, that is, ηπh(s) := Pr[sh = s

∣∣ s1 ∼ η1, π].
For g : S × A → R, ν ∈ ∆(S × A), and p ≥ 1, define
the shorthand ‖g‖p,ν := (E(s,a)∼ν [|g(s, a)|p])1/p, which is
a semi-norm. Furthermore, for any object that is a function
of/distribution over S (or S × A), we will treat it as a
vector whenever convenient. We add a subscript to the value
functions or Bellman update operators, e.g., V ?M , when it is
necessary to clarify the MDP in which the object is defined.

2.2. Batch Value-Function Approximation

This paper is concerned with batch-mode RL with value-
function approximation. As a typical setup, the agent does
not have direct access to the MDP and instead is given the
following inputs:

• A batch dataset D consisting of (s, a, r, s′) tuples, where
r = R(s, a) and s′ ∼ P (s, a). For simplicity, we assume
that (s, a) is generated i.i.d. from the data distribution
µ ∈ ∆(S ×A).4

• A class of candidate value-functions, F ⊂ (S × A →
[0, Vmax]), which (approximately) captures Q?; such a
property is often called realizability. We discuss addi-
tional assumptions on F later. As a further simplification,
we focus on finite but exponentially large F and discuss
how to handle infinite classes when appropriate.

The learning goal is to compute a near-optimal policy from
the data, often via finding f ∈ F that approximates Q? and
outputting πf , the greedy policy w.r.t. f . A representative
algorithm for this setting is Fitted Q-Iteration (FQI) (Ernst
et al., 2005; Szepesvári, 2010).5 The algorithm initializes

3A deterministic policy puts all the probability mass on a single
action in each state. With a slight abuse of notation, we sometimes
also treat the type of such policies as π : S → A.

4The agent may or may not have knowledge of µ. Most existing
algorithms are agnostic to such knowledge.

5Batch value-based algorithms can often be categorized into
approximate value iteration (e.g., FQI) and approximate policy
iteration (e.g., LSPI (Lagoudakis & Parr, 2003)). We focus on
the former due to its simplicity and do not discuss the latter as its
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f0 ∈ F arbitrarily, and iteratively computes fk as follows:
in iteration k, the algorithm converts the dataset D into
a regression dataset, with (s, a) being the input and r +
γVfk−1

(s′) as the output. It then minimizes the squared loss
regression objective over F , and the minimizer becomes fk.
More formally, fk := T̂Ffk−1, where

T̂Ff ′ := arg min
f∈F

LD(f ; f ′) (2)

LD(f ; f ′) :=
1

|D|
∑

(s,a,r,s′)∈D

(f(s, a)− r − γVf ′(s′))
2
.

FQI may oscillate and a fixed point solution may not exist
in general (Gordon, 1995). Nevertheless, under conditions
which we will specify later, finite sample guarantees for FQI
can still be obtained even if the process does not converge.

2.3. State Abstractions

A state abstraction φ maps S to a finite and potentially
much smaller abstract state space, Sφ. Naturally, φ is often
a many-to-one mapping, inducing an equivalence notion
over S which encodes one’s prior knowledge of equiva-
lent or similar states. A typical use of abstractions in the
batch learning setting is to construct a tabular (or certainty-
equivalent) model from a dataset {(φ(s), a, r, φ(s′))}, and
compute the optimal policy in the resulting abstract model.
There is a long history of studying abstractions, mostly
focusing on their approximation guarantees (Whitt, 1978).

We note, however, that there is a direct connection between
FQI and certainty-equivalence with abstractions. In particu-
lar, value iteration in the model estimated with abstraction
φ is exactly equivalent to FQI with F being the class of
piece-wise constant functions under φ.6 As such, the char-
acterization of approximation errors in the two bodies of
literature are closely related to each other. We will discuss
further connections in the rest of this paper.

3. Bellman Error Minimization in Batch
Reinforcement Learning

In this section, we give a complete analysis of FQI and a
related algorithm, with the main results being two sample
complexity bounds. Many of the insights and results in this
section have either explicitly appeared in or been implic-
itly hinted by prior work (especially Szepesvári & Munos,
2005; Antos et al., 2008), and we include them because (1)
the discussions in the rest of the paper are largely based on
these results, and (2) our analyses simplify prior results with-

guarantees often rely on similar but more complicated assumptions
(Lazaric et al., 2012). Moreover, our lower bounds are information-
theoretic and algorithm-independent.

6This result is known anecdotally (see e.g., Pires & Szepesvári,
2016) and we include details in Appendix E for completeness.

out trivializing them, making the high-level insights more
accessible. We also improve the results in some aspects.

3.1. Sample-Based Bellman Error Minimization

We start by deriving FQI from a slightly unusual perspective
due to the aforementioned prior work, which motivates
major assumptions in FQI analysis and introduces concepts
that are important for later discussions.

Recall that the goal of value-based RL is to find f ∈ F
such that f ≈ T f , that is, ‖f − T f‖ = 0 where ‖ · ‖ is
some appropriate norm. For example, if µ is a distribution
supported on the entire S×A, then ‖f−T f‖22,µ = 0 would
guarantee that f = Q?. While such an f can be found in
principle by minimizing ‖f −T f‖22,µ over f ∈ F , calculat-
ing ‖f−T f‖ requires knowledge of the transition dynamics
(recall Eq.(1)), which is unknown in the learning setting. In-
stead, we have access to the dataset D = {(s, a, r, s′)}, and
it may be tempting to minimize the following objective that
is purely a function of data: (Recall LD in Eq.(2))

LD(f ; f) :=
1

|D|
∑

(s,a,r,s′)∈D

(f(s, a)− r − γVf (s′))
2
.

Unfortunately, even with the infinite amount of data, the
above objective is still different from the actual Bellman
error ‖f − T f‖22,µ that we wish to minimize. In partic-
ular, define Lµ(·; ·) := E[LD(·; ·)], where the expecta-
tion is w.r.t. the random draw of the dataset D. We have
Lµ(f ; f) =

‖f − T f‖22,µ + γ2E(s,a)∼µ[Vs′∼P (s,a)[Vf (s′)]]. (3)

In words, Lµ(f ; f) adds a conditional variance term to the
desired objective, which incorrectly penalizes functions that
have a large variance w.r.t. random state transitions.

The minimax algorithm 7 One way to fix the issue is to
estimate the conditional variance term in Eq. (3) and sub-
tracting it from LD(f ; f). In fact, it is easy to verify that
γ2E(s,a)∼µ[Vs′∼P (s,a)[Vf (s′)]] is the Bayes optimal error
of the regression problem

(s, a) 7→ r + γVf (s′). (4)

One can estimate it by empirical risk minimization over a
rich function class, and the estimate is consistent as long
as the function class realizes the Bayes optimal regressor
and has bounded statistical complexity. Following this idea,
we assume access to another function class G ⊂ (S ×A →
[0, Vmax]) for solving the regression problem in Eq.(4). The
estimated Bayes optimal error is

inf
g∈G
LD(g; f). (5)

7Also known under the name “modified Bellman Residual
Minimization” (Antos et al., 2008).
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A good approximation to ‖f − T f‖22,µ from data is then
supg∈G LD(f ; f) − LD(g; f). This suggests that we can
simply run the following optimization problem to find f ∈
F that approximates Q?:

inf
f∈F

sup
g∈G
LD(f ; f)− LD(g; f). (6)

Later in this section, we will provide a finite sample analysis
of the above minimax algorithm, but before that, we will
show that FQI can be viewed as its approximation.

FQI as an approximation to Eq.(6) FQI has a close con-
nection to the above program and can be viewed as its
approximation, when G is chosen to be F . Formally,
Proposition 1. Let f̂ , ĝ be the solution to Eq.(6) when
G = F .

• If LD(f̂ ; f̂)− LD(ĝ; f̂) = 0, f̂ is a fixed point for FQI.

• Conversely, if fk = fk−1 holds for some k in FQI, then
f̂ = ĝ = fk is a solution to Eq.(6).

• If LD(f̂ ; f̂)−LD(ĝ; f̂) > 0, FQI oscillates and no fixed
point exists.

The proof is deferred to Appendix A. The proposition states
that the minimax algorithm is more stable than FQI, and
when FQI reaches a fixed point, the solutions of the two
algorithms coincide. In fact, Dai et al. (2018) derives a
closely related algorithm using Fenchel dual and shows that
the algorithm is always convergent.

3.2. Analysis of FQI and Its Minimax Variant

We provide finite sample guarantees to the two algorithms
introduced above; closely related analyses have appeared in
prior works (see Section 1 for references), and our version
provides a cleaner analysis under simplification assump-
tions, improves the error rate as a function of sample size,
and prepares us for later discussions.

To state the guarantees, we need to introduce the two as-
sumptions that are core to this paper. The first assumption
handles distribution shift, and we precede it with the defini-
tion of admissible distributions.
Definition 1 (Admissible distributions). We say a distri-
bution ν ∈ ∆(S × A) is admissible in MDP M =
(S,A, P,R, γ, η1), if there exists h ≥ 0, and a (poten-
tially non-stationary and stochastic) policy π, such that
ν(s, a) = Pr[sh = s, ah = a|s1 ∼ η1, π].

Intuitively, a distribution is admissible if it can be generated
in the MDP by following some policy for a number of
timesteps. The following assumption on concentratability
asserts that all admissible distributions are not “far away”
from the data distribution µ. The original definition is due
to Munos (2003).

Assumption 1 (Concentratability coefficient). We assume
that there exists C <∞ s.t. for any admissible ν,

∀(s, a) ∈ S ×A, ν(s, a)

µ(s, a)
≤ C.

The real (and implicit) assumption here is that C is man-
ageably large, as our sample complexity bounds scale lin-
early with C. Prior works have used more sophisticated
definitions (Farahmand et al., 2010).8 The technicalities
introduced are largely orthogonal to the discussions in this
paper, so we choose to adopt a much simplified version.
Despite the simplification, we will see natural examples that
yield small C under our definition in Section 4. We will
also discuss how to relax it using the structure of F at the
end of the paper.

Next, we introduce the assumption on the representation
power of F and G.

Assumption 2 (Realizability). Q? ∈ F .
(When this holds approximately, we measure violation by
εF := inff∈F ‖f − T f‖22,µ.)

Assumption 3 (Completeness). ∀f ∈ F , T f ∈ G.
(When this holds approximately, we measure violation by
εF,G := supf∈F infg∈G ‖g − T f‖22,µ.)

These assumptions lead to finite sample guarantees for both
the minimax algorithm and FQI. For FQI, since G = F ,
Assumption 3 essentially states that F is closed under oper-
ator T , hence “completeness”.9 The assumption is natural
from how we derive the minimax algorithm in Sec 3.1, as
Eq.(5) is only a consistent estimate of the Bayes optimal
error of Eq.(4) if G realizes the Bayes optimal regressor,
which is T f .

A few remarks in order:

1. When F = G is finite, completeness implies realizabil-
ity.10 However, completeness is stronger and much less
desired than realizability: realizability is monotone in F
(adding functions to F never hurts realizability), while
completeness is not (adding functions to F may break
completeness).

2. While we focus on completeness, it is not the only con-
dition that leads to guarantees for ADP algorithms. We
discuss alternative assumptions in Section 6.

8This often comes at the cost of their bound being not a priori,
i.e., having a dependence on the randomness of data, initialization,
and tie-breaking in optimization.

9In the literature, the violation of completeness when F = G,
εF,F , is called inherent Bellman error.

10This is because T kf never repeats itself, as its `∞ distance to
Q? shrinks exponentially with a rate of γ due to contraction.
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Now we are ready to state the sample complexity results. In
Appendices C and D we provide more general error bounds
(Theorems 11 and 17) that handle the approximate case
where εF and εF,G are not zero and iteration k is finite. To
keep the main text focused and accessible, we only present
their sample complexity corollaries in the exact case.
Theorem 2 (Sample complexity of FQI). Given a dataset
D = {(s, a, r, s′)} with sample size |D| = n and F
that satisfies completeness (Assumption 3 when G = F),
w.p. ≥ 1 − δ, the output policy of FQI after k iterations,
πfk , satisfies v? − vπfk ≤ ε · Vmax when k → ∞ and11

n = O

(
C ln |F|δ
ε2(1− γ)4

)
.

Theorem 3 (Sample complexity of the minimax variant).
Given a dataset D = {(s, a, r, s′)} with sample size |D| =
n and F , G that satisfy realizability (Assumption 2) and
completeness (Assumption 3) respectively, w.p. ≥ 1 − δ,
the output policy of the minimax algorithm (Eq.(6)), πf̂ ,

satisfies v? − vπf̂ ≤ ε · Vmax, if n = O

(
C ln |F||G|δ

ε2(1− γ)4

)
.

Our results show that the suboptimality ε decreases in the
rate of n−1/2 when realizability and completeness hold
exactly, and the more general error bounds (Theorems 11
and 17) degrade gracefully from the exact case as εF,F (or
εF and εF,G) increases. This is obtained via the use of
Bernstein’s inequality to achieve fast rate in least square
regression. While results similar to Theorems 2 and 11 exist
(Farahmand 2011, Chapter 5; see also Lazaric et al. (2012);
Pires & Szepesvári (2012); Farahmand et al. (2016)), accord-
ing to our knowledge, fast rate for the minimax algorithm
has not been established before: for example, Antos et al.
(2008); Munos & Szepesvári (2008) obtain an error rate
of n−1/4 in closely related settings, but their rates do not
improve to n−1/2 in the absence of approximation.12 The
major limitation of our result is the assumption of finite F
and G due to our minimal setup, and we refer readers to
Yang et al. (2019) for a recent analysis that specializes in
ReLU networks.13

We do not discuss the proofs in further details since the
improvement in error rate is a side-product and this section
is mainly meant to simplify prior analyses and provide a
basis for subsequent discussions. Interested readers are
invited to consult Appendices C and D where we provide
sketched outlines as well as detailed proofs.

11Only absolute constants are suppressed in Big-Oh notations.
12Note however that they handle infinite function classes. In fact,

Munos & Szepesvári (2008, pg.831) have discussed the possibility
of an n−1/2 result, which we obtain here. See the beginning of
Appendix C for further discussions.

13Their analysis modifies the FQI algorithm and samples fresh
data in each iteration, dodging some of the technical difficulties
due to reusing the same batch of data, which we handle here.

4. On Concentratability
In this section, we establish the necessity of Assumption 1
and show natural examples where concentratability is low.
While it is easy to construct a counterexample of missing
data14 against removing Assumption 1, such a counterexam-
ple only reflects a trivial failure mode due to an adversarial
choice of data. What we show is a deeper and nontrivial
failure mode: Even with the most favorable data distribu-
tion, polynomial sample complexity is precluded if we put
no restriction on MDP dynamics. This result improves our
understanding on concentratability, and shows that this as-
sumption is not only about the data distribution, but also
(and perhaps more) about the environment and the state
distributions induced therein.

4.1. Lower Bound

To show that low concentratability is necessary, we prove a
hardness result, where both realizability and completeness
hold, and an algorithm has the freedom to choose any data
distribution µ that is favorable, yet no algorithm can achieve
poly(|A|, 1

1−γ , ln |F|, ln |G|,
1
ε ,

1
δ ) sample complexity. Cru-

cially, the concentratability coefficient of any data distribu-
tion on the worst-case MDP is always exponential in hori-
zon, so the lower bound does not conflict with the upper
bounds in Section 3, as the exponential sample complexity
would have been explained away by the dependence on C.

Theorem 4. There exists a family of MDPsM (they share
the same S, A, γ), F that realizes the Q? of every MDP
in the family, and G that realizes TM ′f for any M ′ ∈ M
and any f ∈ F , such that: for any data distribution and
any batch algorithm with (F ,G) as input, an adversary
can choose an MDP from the family, such that the sample
complexity for the algorithm to find an ε-optimal policy
cannot be poly(|A|, 1

1−γ , ln |F|, ln |G|,
1
ε ,

1
δ ).

Proof. We constructM, a family of hard MDPs, and prove
the theorem via the combination of two arguments:

1. All algorithms are subject to an exponential lower bound
(w.r.t. the horizon) even if (a) they have compactF and G
that satisfy realizability and completeness as inputs, and
(b) they can perform exploration during data collection.

2. Since the MDPs in the construction share the same de-
terministic transition dynamics, the combination of any
data distribution and any batch RL algorithm is a special
case of an exploration algorithm.

We first provide argument (1), which reuses the construc-
tion by Krishnamurthy et al. (2016). Let each instance of
M be a complete tree with branching factor |A| and depth

14 That is, µ puts 0 probability on important states and actions.
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H = b1/(1− γ)c. Transitions are deterministic, and only
leaf nodes have non-zero rewards. All leaves give Ber(1/2)
rewards, except for one that gives Ber(1/2 + ε). Changing
the position of this optimal leaf yields a family of |A|H
MDPs, and in order to achieve a suboptimality that is a con-
stant fraction of ε, the algorithm is required to identify this
optimal leaf.15 In fact, the problem is equivalent to the hard
instances of best arm identification with |A|H arms, so even
if an algorithm can perform active exploration, the sample
complexity is still Ω(|A|H ln(1/δ)/ε2) (see Krishnamurthy
et al. (2016) for details, who use standard techniques from
Auer et al. (2002)).

Now we provide F and G that (1) satisfy Assumptions 2 and
3, (2) do not provide any information other than the fact that
the problem is inM, and (3) have “small” logarithmic sizes
so that ln |F| and ln |G| cannot explain away the exponential
sample complexity. Let F = {Q?M ′ : M ′ ∈ M}, where
the subscript specifies the MDP with respect to which we
compute Q?. Let G = {TM ′Q?M ′′ : M ′,M ′′ ∈ M}. Such
F and G satisfy realizability and completeness by defini-
tion, and have statistical complexities ln |F| = H ln |A|
and ln |G| ≤ 2H ln |A|, respectively. With this, we
conclude that any exploration algorithm cannot obtain
poly(|A|, 1

1−γ , ln |F|, ln |G|,
1
ε ) sample complexity.

We complete the proof with the second argument. Note that
all the MDPs inM only differ in leaf rewards and share
the same deterministic transition dynamics. Therefore, a
learner with the ability to actively explore can mimic the
combination of any data distribution µ ∈ ∆(S×A) and any
batch RL algorithm, by (1) collecting data from µ (which is
always doable due to known and deterministic transitions),
and (2) running the batch algorithm after data is collected.
This completes the proof.

4.2. Natural Examples

We have shown that polynomial learning is precluded if
no restriction is put on the MDP dynamics, even if data
is chosen in a favorable manner. The next question is, is
low concentratability common, or at least found in inter-
esting problems? In general, even if the data distribution
µ is uniform over the state-action space, the worst-case C
might still scale with |S × A|, which can be too large in
challenging RL problems for the guarantees to be any mean-
ingful. To this end, Munos (2007) has provided several
carefully constructed tabular examples, demonstrating that
C does not always scale badly. However, are there more
general problem families that capture RL scenarios found
in empirical work, yet always yield a bounded C?

Example in problems with rich observations We find an-

15All leaf rewards are discounted by only a constant when γ →
1, as γ1/(1−γ) → e−1.

swers to the above problem in recent development of PAC
exploration in rich-observation problems (Krishnamurthy
et al., 2016; Jiang et al., 2017; Dann et al., 2018), where a
general low-rank condition (a.k.a. Bellman rank (Jiang et al.,
2017)) has been identified that enables sample-efficient ex-
ploration under function approximation. One of the promi-
nent examples where such a condition holds is inspired by
“visual gridworld” environments in empirical RL research
(see e.g., Johnson et al., 2016): the dynamics are defined
over a small number of hidden states (e.g., grids), and the
agent receives high dimensional observations that are gener-
ated i.i.d. from the hidden states (e.g., raw-pixel images as
observations). Below we show that in these environments,
there always exists a data distribution that yields small C for
batch learning, and such a distribution can be naturally gen-
erated as a mixture of admissible distributions. We include
an informal statement below, deferring the precise version
and the proof to Appendix B.
Proposition 5 (Informal). Let M be a reactive POMDP as
defined in Jiang et al. (2017), where the underlying hidden
state space Z is finite but the (Markov) observation space S
can be arbitrarily large. There always exists a state-action
distribution µ such that C = |Z×A| satisfies Assumption 1.
Furthermore, µ can be obtained by taking a probability
mixture of several admissible distributions.

Similar results can be established for other structures stud-
ied by Jiang et al. (2017) (e.g., large MDPs with low-rank
transitions), which we omit here. These results suggest
that Bellman rank is the counterpart for concentratability
coefficient in the online exploration setting. Further impli-
cations and how to leverage this connection to improve the
definition of concentratability will be discussed in Section 6.

5. On Completeness
5.1. Towards an Information-Theoretic Lower Bound

in the Absence of Completeness

We would also like to establish the necessity of complete-
ness by showing that, there exist hard MDPs that cannot
be efficiently learned with value-function approximation,
even under low concentratability and realizability (Assump-
tions 1 and 2).16 In fact, algorithm-specific hardness results
have been known for a long time (see e.g., Van Roy, 1994;
Gordon, 1995; Tsitsiklis & Van Roy, 1997), where ADP
algorithms are shown to diverge even in MDPs with a small
number of states, when the algorithm is forced to work
with a restricted class of functions.17 Unfortunately, such

16Note that the existence of such a lower bound would not imply
that completeness is indispensable. Rather it simply states that
realizability alone is insufficient, and we need stronger conditions
on F , for which completeness is a candidate.

17Interested readers can consult Agrawal (2018). See also Dann
et al. (2018, Theorem 45) for a more plain example.
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hardness results are insufficient to confirm the fundamen-
tal difficulty of the problem, and it is important to seek
information-theoretic lower bounds.

While we are not able to obtain such a lower bound, what we
find is that the counterexample (if it exists) must be highly
nontrivial and probably need ideas that are not present in
standard statistical learning theory (SLT) and RL literature.
More concretely, we show that two general proof styles
are destined to fail in such a task, as polynomial sample
complexity can be achieved information-theoretically.

Exponential-sized model family will not work Standard
lower bounds in SLT often start with the construction of a
family of problem instances that has an exponential size (Yu,
1997).18 We show that this will simply never work, which
is a direct corollary of Theorem 3:

Corollary 6 (Batch model-based RL only needs realizabil-
ity). Let D = {(s, a, r, s′)} be a dataset with sample size
|D| = n, C as defined in Assumption 1, andM a model
class that realizes the true MDP M , i.e., M ∈ M. There
exists an (information-theoretic) algorithm that takesM as
input and return an (εVmax)-optimal policy w.p. ≥ 1− δ, if

n = O

(
C ln |M|δ
ε2(1− γ)4

)
.

Proof. We use the same idea as the proof of Theorem 4: Let
F = {Q?M ′ : M ′ ∈M}, and G = {TM ′Q?M ′′ : M ′,M ′′ ∈
M}. Note that ln |F| ≤ ln |M|, and ln |G| ≤ 2 ln |M|.
(F ,G) satisfy both realizability and completeness, so we
apply the minimax algorithm (Eq.(6)) and the guarantee in
Theorem 3 immediately holds.

Essentially, this result shows that batch model-based RL
can succeed with realizability as the only representation
condition for the model class, because we can reduce it to
value-based learning and obtain completeness for free. This
illustrates a significant barrier to an algorithm-independent
lower bound, that in an information-theoretic setting, the
learner can always specialize in the family of hard instances
and have the freedom to choose its algorithm style, thus
can be model-based. However, in the context of value-
function approximation, it is obvious that we are assuming
no prior knowledge of the model class and hence cannot
run any model-based algorithm. How can we encode such a
constraint mathematically?

Tabular MDPs with a restricted value-function class
will not work Sutton & Barto (2018, Section 11.6) pro-
poses a clever way to prevent the learner to be model-based
for linear function approximation, and a closely related defi-
nition is recently given by Sun et al. (2019) that applies to

18In fact, our Theorem 4 also follows this style, whose construc-
tion is due to Krishnamurthy et al. (2016); Jiang et al. (2017).

arbitrary function classes.

The idea is the following: Instead of providing the dataset
D = {(s, a, r, s′)} directly, we preprocess the data and
mask the identity of s (and s′). While s is not directly
observable, the learner can query the evaluation of any f ∈
F on s for any a ∈ A. That is, we represent each state s by
its value profile, {f(s, a) : f ∈ F , a ∈ A}. This definition
agrees with intuition and can be used to express a wide
range of popular algorithms, including FQI.

Using this definition, Sutton & Barto (2018) proves a result
closely related to what we aim at here: they show that the
Bellman error ‖f−T f‖ is not learnable. In particular, there
exist two MDPs (with finite and constant-sized state space)
and a value function, such that (1) a value-based learner
(who only has access to the value profiles of states) cannot
distinguish between the data coming from the two MDPs,
and (2) the Bellman error of the value function is different
in the two MDPs.

While encouraging and promising, their constructions have
a crucial caveat for our purpose, that the value function
class is not realizable.19 With further investigation, we
sadly find that such a caveat is fundamental: no information-
theoretic lower bound can be shown if realizability holds
in naı̈ve tabular constructions with a constant-sized state-
action space and uniform data, hence value profile cannot
be the only mechanism to induce hardness. In fact, we can
prove a stronger result than we need here for S and A that
are not necessarily constant-sized:

Proposition 7. Let M be an MDP with a finite state
space and F a realizable function class. Given a
dataset D = {(s, a, r, s′)} where each (s, a) receives
Ω(|D|/|S × A|) samples, there exists an algorithm that
only operates on states via their value profiles yet enjoy
poly(|S|, |A|, 1

1−γ ,
1
ε ,

1
δ ) sample complexity.

Proof Sketch. (See full proof in Appendix F.) If every s ∈ S
has a unique value profile, the state is perfectly decod-
able and thus one can simply compute the optimal pol-
icy of the certainty-equivalent model. If a set of states
share exactly the same value profile—and w.l.o.g. let’s
consider 2 states, s1 and s2—realizability implies that
Q?(s1, a) = Q?(s2, a), ∀a ∈ A. Now consider the al-
gorithm that treat all states with the same value profile
as the same state, which essentially uses a state abstrac-
tion that is Q?-irrelevant (Li et al., 2006). It is known
that certainty-equivalence with Q?-irrelevant abstraction is
consistent and enjoys polynomial sample complexity when
each state-action pair receives enough data (Li, 2009; Hutter,
2014; Jiang et al., 2015; Abel et al., 2016; Jiang, 2018).

19They force two states who have different optimal values to
share the same features for linear function approximation.
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Given that we fail to obtain the lower bound, a conjecture is
made below and we hope to resolve it in future work.

Conjecture 8. There exists a family of MDPsM that share
the same S, A, and γ, such that: any algorithm with
F = {Q?M ′ : M ′ ∈M} as input that can only access states
via value profiles cannot have poly( 1

1−γ , C, ln |F|,
1
ε ,

1
δ )

sample complexity.

5.2. Connection to Bisimulation

As the last piece of technical result of this paper, we show
that when F is a space of piece-wise constant functions
under a partition induced by state abstraction φ, the notion of
completeness (Assumption 3, F = G) is exactly equivalent
to a long-studied type of abstractions, known as bisimulation
(Whitt, 1978; Even-Dar & Mansour, 2003; Ravindran, 2004;
Li et al., 2006).

Definition 2 (Bisimulation). An abstraction φ : S → Sφ
is a bisimulation in an MDP M , if ∀s1, s2 where φ(s1) =
φ(s2) (i.e., they are aggregated), R(s1, a) = R(s2, a) and∑
s∈φ−1(x) P (s|s1, a) =

∑
s∈φ−1(x) P (s|s2, a) for all a ∈

A, x ∈ Sφ.

Definition 3 (Piece-wise constant function class). Given
an abstraction φ, define Fφ ⊂ (S × A → [0, Vmax]) as
the set of all functions f that are piece-wise constant under
φ. That is, ∀s1, s2 ∈ S where φ(s1) = φ(s2), we have
f(s1, a) = f(s2, a), ∀a ∈ A .

Proposition 9. φ is bisimulation⇔Fφ satisfies complete-
ness (Assumption 3 with F = G = Fφ).

The “⇒” part is trivial, but the “⇐” part is less obvious. The
proof shows that if φ is not a bisimulation, we can find f ∈
Fφ either to witness the reward error or the transition error,
and in the latter case, the choice of f achieves the maximum
discrepancy in an integral probability metric (Müller, 1997)
interpretation of the bisimulation condition on transition
dynamics. Details are provided in Appendix E, where we
prove a stronger result that relates the approximation error
of bisimulation to the violation of completeness.

6. Discussions and Related Work
In this paper, we examine the common assumptions that
enable finite sample guarantees for value-function approx-
imation methods. Concretely, we provide an information-
theoretic lower bound in Section 4.1, showing that not con-
straining the concentratability coefficient C immediately
precludes sample-efficient learning even with benign data.
We also introduce a general family of problems of interest in
empirical RL that yield low concentratability (Section 4.2).

In comparison, the necessity of completeness is still a mys-
tery, and our investigation in Section 5.1 mostly shows the
highly nontrivial nature of the lower bound (assuming it ex-

ists) as we eliminate two general proof styles. We hope these
negative results can guide the search for novel constructions
that reflect the fundamental difficulties of reinforcement
learning in the function approximation setting.

We conclude the paper with some discussions.

Alternative assumptions to completeness As we note in
Section 5.1, even if Conjecture 8 is true, it would not imply
that completeness is absolutely necessary, as other assump-
tions may also break the lower bound. Furthermore, addi-
tional assumptions are not necessarily made on the value-
function class (e.g., that T̂F being a contraction (Gordon,
1995; Szepesvári & Smart, 2004; Lizotte, 2011; Pires &
Szepesvári, 2016)), and can instead take the form of re-
quiring another function class to realize other objects of
interest, such as state distributions (Chen et al., 2018; Liu
et al., 2018). Regardless, all of these approaches face the
same fundamental question on the necessity of the addi-
tional/stronger assumptions being made, to which our Con-
jecture 8 is an important piece if not the final answer. We
hope to resolve this important open question in the future.

Related work that has not been covered The conjec-
tured insufficiency of realizability (Conjecture 8) is related
to various undesirable phenomena in learning with boot-
strapped targets, which has been of constant interest to RL
researchers (Sutton, 2015; Van Hasselt et al., 2018; Lu et al.,
2018). As far as we know, all existing efforts that investi-
gate this issue are algorithm-specific (apart from Sutton &
Barto (2018, Section 11.6) and the references therein, which
has been discussed in Section 5.1), and our information-
theoretic perspective is novel.

Relaxation of Assumption 1 using the structure of
F The concentratability coefficient C is defined as a func-
tion of the MDP, even in its most complicated version (Farah-
mand et al., 2010). In Section 4.2 we discover a connection
to Bellman rank (Jiang et al., 2017), which can be viewed as
its counterpart for online exploration. Interestingly, Bellman
rank depends both on the environmental dynamics and the
function class F , and in some cases, the latter dependence is
crucial to obtaining low-rankness (e.g., for Linear Quadratic
Regulators; see their Proposition 5). Similarly, we may im-
prove the definition of concentratability and make it more
widely applicable by incorporating F into the definition. In
Appendix G, we discuss some preliminary ideas based on
the theoretical results in this paper.
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Antos, A., Szepesvári, C., and Munos, R. Learning
near-optimal policies with bellman-residual minimiza-
tion based fitted policy iteration and a single sample path.
Machine Learning, 71(1):89–129, 2008.

Auer, P., Cesa-Bianchi, N., and Fischer, P. Finite-time
analysis of the multiarmed bandit problem. Machine
learning, 47(2-3):235–256, 2002.

Bertsekas, D. P. and Tsitsiklis, J. N. Neuro-Dynamic Pro-
gramming. Athena Scientific, Belmont, MA, 1996.

Chen, Y., Li, L., and Wang, M. Scalable bilinear π
learning using state and action features. arXiv preprint
arXiv:1804.10328, 2018.

Dai, B., Shaw, A., Li, L., Xiao, L., He, N., Liu, Z., Chen, J.,
and Song, L. Sbeed: Convergent reinforcement learning
with nonlinear function approximation. In International
Conference on Machine Learning, pp. 1133–1142, 2018.

Dann, C., Jiang, N., Krishnamurthy, A., Agarwal, A., Lang-
ford, J., and Schapire, R. E. On Oracle-Efficient PAC RL
with Rich Observations. In Advances in Neural Informa-
tion Processing Systems, pp. 1429–1439, 2018.

Ernst, D., Geurts, P., and Wehenkel, L. Tree-based batch
mode reinforcement learning. Journal of Machine Learn-
ing Research, 6:503–556, 2005.

Even-Dar, E. and Mansour, Y. Approximate equivalence
of Markov decision processes. In Learning Theory and
Kernel Machines, pp. 581–594. 2003.

Farahmand, A.-m. Regularization in reinforcement learning.
2011.

Farahmand, A.-m., Szepesvári, C., and Munos, R. Error
Propagation for Approximate Policy and Value Iteration.
In Advances in Neural Information Processing Systems,
pp. 568–576, 2010.

Farahmand, A.-m., Ghavamzadeh, M., Szepesvári, C., and
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Munos, R. and Szepesvári, C. Finite-time bounds for fitted
value iteration. Journal of Machine Learning Research, 9
(May):815–857, 2008.
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