
Theoretical Analysis of Efficiency and Robustness of
Softmax and Gap-Increasing Operators in Reinforcement Learning

Tadashi Kozuno1 Eiji Uchibe2 Kenji Doya1

1 Neural Computation Unit, Okinawa Institute of Science and Technology
2 Department of Brain Robot Interface, ATR Computational Neuroscience Laboratories

Abstract

In this paper, we propose and analyze conser-
vative value iteration, which unifies value it-
eration, soft value iteration, advantage learn-
ing, and dynamic policy programming. Our
analysis shows that algorithms using a com-
bination of gap-increasing and max opera-
tors are resilient to stochastic errors, but not
to non-stochastic errors. In contrast, algo-
rithms using a softmax operator without a
gap-increasing operator are less susceptible
to all types of errors, but may display poor
asymptotic performance. Algorithms using
a combination of gap-increasing and softmax
operators are much more effective and may
asymptotically outperform algorithms with
the max operator. Not only do these theo-
retical results provide a deep understanding
of various reinforcement learning algorithms,
but they also highlight the effectiveness of
gap-increasing operators, as well as the lim-
itations of traditional greedy value updates
by the max operator.

1 INTRODUCTION

The use of neural networks for value function approx-
imation has enabled human-level performance of re-
inforcement learning (RL) in challenging tasks (Mnih
et al. (2015)). This success owes to stable learning
realized by combining experience replay and a target
network that is periodically updated to a main neu-
ral network. This scheme is an approximation of a
dynamic programming (DP) algorithm called value it-
eration (VI) (Bertsekas and Tsitsiklis (1996)).

Proceedings of the 22nd International Conference on Ar-
tificial Intelligence and Statistics (AISTATS) 2019, Naha,
Okinawa, Japan. PMLR: Volume 89. Copyright 2019 by
the author(s).

While VI works well when updates are exact, the-
oretical analysis shows that VI works poorly when
they are inexact (Bertsekas and Tsitsiklis (1996);
Munos (2005); Scherrer and Lesner (2012)). To im-
prove VI, various DP algorithms have been proposed.
For instance, soft value iteration (SVI) uses a Boltz-
mann policy and a softmax operator with inverse tem-
perature β for value updates in place of the tradi-
tional “hard” max operator in VI (Fox et al. (2016);
Haarnoja et al. (2017)). In contrast, advantage learn-
ing (AL) uses a hard gap-increasing operator, the
hyper-parameter α of which controls the degree of its
gap-increasing-ness (Baird III (1999); Bellemare et al.
(2016)). Dynamic policy programming (DPP) uses a
Boltzmann policy together with a soft gap-increasing
operator with α = 1 (Azar et al. (2012); Rawlik
(2013)). These algorithms demonstrated experimen-
tal performance superior to that of VI.

However, (i) there is currently almost no theoretical
explanation for why they perform better than VI. For
example, there is no performance bound for SVI and
AL, and while there is a performance bound for DPP,
it contradicts experimental results that a finite β is op-
timal (Azar et al. (2012)). Due to the lack of theories,
(ii) roles of their hyper-parameters are unknown too.

In order to address these questions, we propose and
analyze conservative value iteration (CVI), which uni-
fies the previous algorithms as summarized in Figure 1.
By the analysis of CVI, we show the following:

1. (Theorem 1) Novel performance bounds for the
previous algorithms.

2. (Theorem 1) Algorithms with a gap-increasing op-
erator are noise-tolerant. α controls the trade-off
between noise-tolerance and convergence rate.

3. (Theorem 2) Algorithms with a hard gap-
increasing operator have almost the same error
dependency as does VI.

4. (Theorem 4) Algorithms with a softmax operator
are error-tolerant, but asymptotic performance

Theoretical Analysis of Efficiency and Robustness of Softmax and Gap-Increasing Operators in RL

may be poor. β controls the quality of asymp-
totic performance.

5. (Theorem 4) Algorithms with a soft gap-
increasing operator enjoy both noise-tolerance
and error-tolerance, while avoiding poor asymp-
totic performance.

(Error-tolerance refers to the tolerance of algorithms
to errors such as function approximation error, while
noise-tolerance refers to the tolerance of algorithms
to stochastic errors that may cancel if averaged.) To
better understand why DP algorithms with a softmax
operator have greater error-tolerance, we note CVI’s
connection to natural actor-critic (NAC), which im-
plies that β corresponds to a learning rate of a policy
in NAC. Thus, greater error-tolerance is naturally un-
derstood as a consequence of stable learning by a low
learning rate and inhibited policy oscillation. These
theoretical results not only provide a deep understand-
ing of various RL algorithms, but also highlight the ef-
fectiveness of gap-increasing operators, as well as the
limitations of traditional greedy value updates by the
max operator.

CVI

α10

∞

β VI
AL

≈

D
PP SV

I

Figure 1: A summary of related DP algorithms. VI,
SVI, AL and DPP correspond to the top left corner,
left edge, top edge, and right edge, respectively. CVI
unifies these algorithms.

2 REINFORCEMENT LEARNING

We consider infinite-horizon discounted Markov De-
cision Processes (MDPs) (Bertsekas and Tsitsiklis
(1996)). An MDP is a tuple of (S,A, P, r, γ), where
S is the finite state space, A is the finite action space,
P : S×A×S → [0, 1] is the state transition probability,
r : S ×A → [−rmax, rmax] is the reward function, and
γ ∈ [0, 1) is the discount factor.1 We use s and a to
denote a state and action, respectively. In particular,

1Although the state space is assumed to be finite, we
emphasize that our theoretical results can be extended to
MDPs with a continuous state space.

st and at (or St and At if they are random variables)
are a state and action at time step t, respectively.

A policy is a probability distribution over actions con-
ditioned by a state. We denote the Q-value function
for a policy π by Qπ(s, a) := Eπ[

∑∞
t=0 γ

tr(St, At)|S0 =
s,A0 = a], where the superscript π indicates that
actions are selected according to π. The objective
in RL is to find an optimal policy π∗ that satisfies
Q∗(s, a) := Qπ∗(s, a) = supπ Q

π(s, a) for any state-
action pair (s, a) ∈ S×A. ThisQ∗ is called the optimal
Q-value function. It is convenient to define the value
and advantage function by V π(s) := Eπ[Qπ(s,A)] and
Aπ(s, a) := Qπ(s, a) − V π(s), respectively. The value
and advantage function for an optimal policy are sim-
ilarly denoted as V ∗(s) := V π

∗
(s) and A∗(s, a) :=

Aπ
∗
(s, a). Note that Qπ and V π are bounded by

Vmax := rmax/(1− γ).

We let Q and V denote sets of bounded functions over
S × A and S, respectively. Because both S and A
are finite, they can be regarded as vector spaces over
a field R. A sum of Q ∈ Q and V ∈ V is defined by
(Q+ V)(s, a) = Q(s, a) + V (s).

Expectation is a left-multiplication of a matrix with
a vector. For example, an expected subsequent value
of V ∈ V after taking an action a at state s is given
by (PV) (s, a) :=

∑
s′∈S P (s′|s, a)V (s′), where P is a

|S||A| × S matrix. Another example is (πQ) (s) :=∑
a∈A π(a|s)Q(s, a), where we call π as a policy oper-

ator. When two operators, say O1 and O2, are applied
to a function f consecutively, we omit parenthesis and
write O1O2f instead of O1 (O2f) for brevity.

We frequently use the following operators (7→ means
“maps to”): max operator m : Q ∈ Q 7→ mQ ∈ V
such that (mQ) (s) := maxa∈AQ(s, a); the Bellman
optimality operator T : Q ∈ Q 7→ r + γPmQ ∈ Q;
the softmax operator also known as the mellowmax
operator mβ : Q ∈ Q 7→mβQ ∈ V such that

(mβQ) (s) :=
1

β
log

(
1

|A|
∑
a∈A

exp (βQ(s, a))

)
,

where β ∈ (0,∞) is the inverse temperature and |A|
is the number of actions (Asadi and Littman (2017));
a softened version of the Bellman optimality operator
Tβ : Q ∈ Q 7→ r + γPmβQ ∈ Q.

2.1 Dynamic Programming

One of the simplest DP algorithms for solving RL
problems is value iteration (VI), which computes Q∗

recursively by the following update rule (Bertsekas and
Tsitsiklis (1996)): Qk+1 := TQk, where the update
is point-wise. As mentioned in Section 1, theoretical
analysis implies that VI works poorly when updates

Kozuno, Uchibe and Doya

are approximated. (See also Section 2.2.) There are
several alternatives with empirically demonstrated su-
periority to VI under inexact update settings.

A softened version of VI called soft value iteration
(SVI) is proposed in Fox et al. (2016) and Haarnoja
et al. (2017). Its update rule is the following: Qk+1 :=
TβQk. Note that mβ is used in place of m.

Advantage learning (AL) is proposed by Baird III
(1999) and modified by Bellemare et al. (2016) for dis-
crete time MDPs. Its update rule is the following:

Qk+1 := TAL,αQk := TQk + α(Qk −mQk),

where α ∈ [0, 1]. AL is VI with an additional ad-
vantage term Qk −mQk that tries enhancing Q-value
differences. We call TAL as a hard gap-increasing op-
erator.

Dynamic policy programming (DPP also known as Ψ-
learning) is concurrently proposed in Azar et al. (2012)
and Rawlik (2013). Its update rule is the following:2

Ψk+1 := TDPP,βΨk := TβΨk + Ψk −mβΨk,

where Ψk −mβΨk is analogous to Qk −mQk except
that it uses the softmax operator. We call this type of
operator, in which the max operator of TAL is replaced
with the softmax operator, as soft gap-increasing op-
erators. TDPP,β is an instance with α = 1. When
we do not distinguish the hardness, we just call them
gap-increasing operators.

2.2 Approximate Dynamic Programming

VI is a simple and efficient algorithm when S × A is
small so that Qk can be expressed by a table, and
the true model of an environment (r and P) is given.
However, those assumptions are rarely satisfied at the
same time. Thus, the update is typically approximated
as follows: suppose there are N tuples (si, ai, ri, s

′
i) of

samples, where ri and s′i are samples of immediate
reward and a subsequent state after taking an action
ai at state si. The approximated parameter update is
given by θk+1 = arg minθ Lp(θ|θk), where θk+1 stands
for parameters of a function approximator after k + 1
iterations, and Lp(θ|θk) is a loss function defined by

N∑
i=1

∣∣∣∣ri + γ max
a′∈A

Q(s′i, a
′; θk)−Q(si, ai; θ)

∣∣∣∣p .
Typically p = 1 or 2 is used although any p ∈ [1,∞)
is a reasonable choice. In deep RL, Q(·, ·; θk) is called
a target neural network.

2Precisely speaking, DPP by Azar et al. (2012) uses the
Boltzmann-softmax explained in Appendix B, whereas Ψ-
learning by Rawlik (2013) uses the mellowmax. Theorem 1
shows that any policy operator greedier than the mellow-
max works.

Approximated updates inevitably involve errors. To
analyze how they affect learning, error functions that
abstractly express errors are frequently used (Munos
(2005, 2007); Farahmand (2011); Scherrer et al. (2012);
Scherrer and Lesner (2012)). Let us take VI as an ex-
ample. Under a non-exact setting, VI’s update rule is
abstractly written as Qk+1 := TQk+εk, where εk ∈ Q
is the error function at the k-th iteration. It includes,
but is not limited to sample estimation error of TQk
and function approximation error.

A typical way to analyze DP algorithms is showing an
upper bound (expressed with εk, k = 0, 1, . . . ,K) of

‖Q∗ −QgK‖ρ,p := (Eρ |Q∗(S,A)−QgK (S,A)|p)1/p
,

where gK is a greedy policy with respect to QK ,
p ∈ [1,∞) ∪ {∞} (when p = ∞, l∞-norm ‖Q‖∞ :=
maxs,a |Q(s, a)| is used), and (S,A) ∈ S × A is sam-
pled from ρ that specifies the importance of states and
actions. One of the natural choices for ρ is an initial
state-action probability distribution. We call such an
upper bound as lp-norm performance bound.

For VI, the following simple performance bound is
known (Scherrer and Lesner (2012)):

‖Q∗ −QgK‖∞ ≤ 2γK+1Vmax +
2γ

1− γ
EK , (1)

where EK :=
∑K−1
k=0 γk ‖εK−k−1‖∞. It shows two rea-

sons why VI is prone to update errors. First, a sum of
error terms EK is divided by 1− γ, which is typically
close to 0. As a result, VI shows a high error depen-
dency. Second, because EK is a sum of ‖εk‖∞, it may
be large even if εl(s, a), l = 1, 2, . . . are random vari-
ables such that

∑
l εl(s, a) = 0. Scherrer and Lesner

(2012) proved that the error term of the performance
bound is not improvable.

3 CONSERVATIVE VI

DP algorithms explained in Section 2.1 perform bet-
ter than VI under a non-exact update setting. How-
ever, their superiority is shown mostly by experiments
rather than theoretical analysis. Although a perfor-
mance bound for DPP is given in Azar et al. (2012),
it implies that β = ∞ is optimal. Nonetheless, Azar
et al. (2012) noted that the best experimental results
are obtained with a finite β. Thus, we currently lack
a theoretical explanation of why those algorithms per-
form better than VI and on the roles of α and β. In this
section, we propose CVI, which unifies the previous al-
gorithms. We also provide its connection to other al-
gorithms, including natural actor-critic to gain insight
for theoretical analysis of CVI in Section 4, through
which we will address those questions.

Theoretical Analysis of Efficiency and Robustness of Softmax and Gap-Increasing Operators in RL

3.1 Derivation of CVI

We first derive CVI, whose update rule is the following:

Ψk+1 = TβΨk + α (Ψk −mβΨk) , (2)

πk+1(a|s) =
exp (βΨk+1(s, a))∑
b∈A exp (βΨk+1(s, b))

, (3)

where α ∈ [0, 1] and β ∈ (0,∞)∪{∞}. (When β =∞,
the mellowmax operator becomes the max operator
Asadi and Littman (2017). Moreover, the Boltzmann
policy reduces to a greedy policy.)

In policy search algorithms, Kullback–Leibler (KL) di-
vergence and entropy are frequently used as policy up-
date constraints (Williams and Peng (1991); Kakade
and Langford (2002); Peters et al. (2010); Mnih et al.
(2016)). A simple implementation of such algorithms
could update a current policy πk to a new policy πk+1

that maximizes for each state∑
a

πk+1(a|s)[r(s, a) + γ(PWπk+1
πk

)(s, a) + iπk+1
πk

(s)],

whereWπ
π̃ (s) :=

∑∞
t=0 γ

tEπ̃ [r(St, At) + iππ̃(St)|S0 = s],

iππ̃(s) :=
∑
a∈A

π(a|s)
[
−σ log π(a|s)− τ log

π(a|s)
π̃(a|s)

]
,

τ ∈ [0,∞) and σ ∈ [0,∞). ThisWπ
π̃ can be understood

as the state value function of π augmented with an
entropy bonus and a KL divergence penalty. Note that
when a policy is optimal, the update stops, i.e., KL
penalty is 0. Thus, an optimal policy maximizes

∞∑
t=0

γtEπ [r(St, At)− σ log π(St, At)|S0 = s] ,

which is the maximum entropy RL objective. (For
more references and details, see Haarnoja et al. (2017,
2018) and their section on related work). Therefore, an
optimal policy is a policy that collects many rewards
while keeping its entropy not too low.

It is a conservative analogue to policy iteration, while
an analogue to VI is repeatedly updating a value func-
tion Wk+1 to

Wk+1 := πk+1 (r + γPWk) + iπk+1
πk

, (4)

where a policy πk+1 is a solution of the following op-
timization problem:

maximize
π

Eπ
[
r(s,A) + γ (PWk) (s,A) + iππk

(s)
]

subject to
∑
a πk+1(a|s) = 1 and 1 ≥ πk+1(a|s) ≥ 0,

where variables are {π(a|s)|(s, a) ∈ S ×A}.

πk+1 can be analytically obtained as in Azar et al.
(2012). Indeed, the objective function is differentiable

and concave. Furthermore, both equality and inequal-
ity constraints are linear. Thus, the following solution
is reached by solving simultaneous equations obtained
from the Karush-Kuhn-Tucker condition:

πk+1(a|s) =
πk(a|s)α exp (β (r + γPWk) (s, a))

Z(s)
, (5)

where α := τ/(τ + σ), β := 1/(τ + σ), and Z(s) :=∑
a∈A πk(a|s)α exp (β (r + γPWk) (s, a)) is a partition

function. Using this expression, we obtain

Wk+1(s) =
1

β
logZ(s). (6)

Accordingly, the analogue to VI can be implemented
with update rules (5) and (6). This naive implementa-
tion requires memory-size of |S||A|+ |S|. However, it
is possible to retrieve both πk+1 and Wk+1 by storing

Ψk+1(s, a) := (r + γPWk) (s, a) +
α

β
log πk(a|s) (7)

because we have πk+1(a|s) ∝ exp (βΨk+1(s, a)) and
Wk+1(s) = β−1 log

∑
a∈A exp (βΨk+1(s, a)). Plugging

back these expressions in (7), we obtain an update
rule Ψk+1 = TβΨk+α (Ψk −mβΨk), where we added
a constant to the update rule to use the mellowmax
operator. (The addition has no effect on the policies.)
Therefore, the analogue can be implemented with up-
date rules (2) and (3) efficiently.

According to the definition, α ∈ [0, 1] and β ∈ (0,∞),
respectively. However, we allow β =∞ in CVI.

3.2 Connection to Other Algorithms

CVI is equivalent to the previous algorithms explained
in Section 2.1 for specific choices of α and β (also see
Figure 1 for a pictorial summary):

• When τ = 0 (no KL penalty), α = 0 and β = σ.
CVI becomes SVI.

• When σ = 0 (no entropy bonus), α = 1 and β = τ .
CVI becomes DPP.

• When τ+σ → 0 while keeping τ/(τ+σ) constant,
α = τ/(τ + σ) and β → ∞. A limit case of CVI
becomes AL.

Moreover, CVI can be understood as a variant of the
natural actor-critic (NAC) algorithm. Although we
later provide a performance bound, which shows that
a small β may be preferable, this understanding gives
an intuitive explanation of why it is so.

To begin, we explain NAC. Suppose a policy π param-
eterized by θ and normalized state visitation frequency

Kozuno, Uchibe and Doya

dπ(s) = (1−γ)
∑∞
t=0 γ

t Pr(St = s|π) under the policy.
An objective function is given by J(θ) := Eπ [r(S,A)],
where the expectation is over actions A ∼ π(·|S; θ) and
states S ∼ dπ. Natural gradient of J(θ) with respect
to θ is given by

G(θ)
∑

s,a∈S×A
dπ(s) (Qπ(s, a)− b(s))∇θπ(a|s; θ), (8)

where G(θ) is the inverse Fisher information matrix
and b is a baseline. The natural policy gradient algo-
rithm updates a policy by using the natural gradient
computed with an estimate of Qπ (Kakade (2001)).

When the natural policy gradient is combined with
actor-critic, a critic may introduce bias in gradient
estimates. The compatibility condition (Konda and
Tsitsiklis (1999); Sutton et al. (2000)) states that
a critic A(s, a;w) ≈ Qπ(s, a) − b(s) introduces no
bias when ∇wA(s, a;w) = ∇θ log π(a|s; θ) is satis-
fied. When a linear function apporximator wTφ(s, a)
is employed for the critic, it can be rephrased as
φ(s, a) = ∇θ log π(a|s; θ). Peters and Schaal (2008)
showed that for a linear critic satisfying the compati-
bility condition, the natural gradient (8) is just w.

Now, let us derive a variant of NAC that corresponds
to CVI. Suppose an actor π and critic given by

π(a|s; θ) ∝ exp
(
θTφ(s, a)

)
(9)

and A(s, a;w) := wTφ(s, a)−
∑
b∈A π(b|s; θ)wTφ(s, b),

respectively. Note that the compatibility condition is
met. Its k + 1-th policy parameter update with for-
getting is given by θk+1 := θk + ηwk − ξθk, where η
is a learning rate and ξ is a forgetting rate. To see
the correspondence, let us associate these parameters
with quantities in CVI’s update. From (3) and (9), it
is natural to associate θTk φ with βΨk and wTk φ with
TβΨk − βη−1(1 − ξ)mβΨk. (We explain its meaning
later.) Then, the update of θ is equivalent to function
updates βΨk+1 := βΨk + ηTβΨk − β(1 − ξ)mβΨk −
ξβΨk, i.e.,

Ψk+1 =
η

β
TβΨk + (1− ξ) (Ψk −mβΨk) .

Clearly, it coincides with CVI’s value update (2) when
1 − α = ξ and β = η. Therefore, CVI corresponds
to this variant of NAC with a learning rate β and a
forgetting rate 1−α. This result suggests that a small
β leads to stable learning due to a small learning rate.

Finally, let us consider the meaning of the associa-
tion of wTk φ(s, a) to TβΨk − βη−1(1 − ξ)mβΨk. In
the derivation of CVI, we have seen that (ignoring a
constant) TβΨk = r + γPWk, where Wk is a crude
estimate of the state value function augmented with
an entropy bonus and a KL divergence penalty. Thus,

wTk φ(s, a) is a crude estimate of the Q-value function
with the augmentation. (Augmenting the current re-
ward and βη−1(1−ξ)mβΨk are negligible because they
will cancel out in A(s, a;w).)

4 THEORETICAL ANALYSIS

Questions about CVI understandably center on its
performance guarantee and roles of hyper-parameters.
Here, we provide CVI’s performance bounds, which
also serve as the performance bounds for the algo-
rithms in Section 2.1 unified by CVI. All proofs are
deferred to the Appendix due to page limitations.

We use error functions explained in Section 2.2. Con-
cretely, (approximate) CVI’s update is given by

Ψk+1 := TβΨk + α (Ψk −mβΨk) + εk, (10)

where εk is an error function at iteration k. A policy
is given in the same way as (3), that is,

πk+1(a|s) ∝ exp (βΨk+1(s, a)) . (11)

Just for simplicity, we assume that Ψ0(s, a) = 0
throughout this section. However, it is not essential.

We will show lp-norm performance bounds for CVI.
They involve concentrability coefficients we now define
(Munos (2005, 2007); Farahmand (2011)). Suppose a
sequence of policies π0, . . . , πt and probability distri-
butions ρ, ν over S × A. Let ρPπ0 be a probability
distribution

ρPπ0(s1, a1) := E(S0,A0)∼ρ [π0(a1|s1)P (s1|S0, A0)] .

In other words, ρPπ0(s1, a1) is an expected probability
of a state-action pair (s1, a1) at time step 1. We recur-
sively define a probability distribution ρPπ0 · · ·Pπt :=
(ρPπ0Pπ1 · · ·Pπt−1)Pπt . A concentrability coefficient
is defined as

c(ρ, ν;π0, . . . , πt) :=

∥∥∥∥ρPπ0 · · ·Pπt

ν

∥∥∥∥
ν,2

,

where ρPπ0 · · ·Pπt/ν is a function of importance sam-
pling ratio ρPπ0 · · ·Pπt(s, a)/ν(s, a). When ν(s, a) =
0 while ρPπ0 · · ·Pπt(s, a) 6= 0 for some state-action
pair, c(ρ, ν;π0, . . . , πt) is defined to be ∞.

4.1 α Controls a Trade-Off between
Noise-Tolerance and Convergence Rate

We derive a performance bound for CVI that explains
the role of α. It can be derived for an algorithm more
general than CVI. To succinctly present the theorem,
we need some notations. A policy π is said to be greed-
ier than a policy π′ (or an operator π′) with respect to

Theoretical Analysis of Efficiency and Robustness of Softmax and Gap-Increasing Operators in RL

a function Q ∈ Q if (πQ) (s) ≥ (π′Q) (s) for each state
s. If so, we write π ≥Q π′. The general algorithm has
the following update:

Ψk+1 := T νkΨk + α (Ψk − νkΨk) + εk, (12)

where νk is a policy satisfying νk ≥Ψk
mβ . Let ρk be

a policy such that ρk ≥Ψk
νk. We define short-hand

notations for the following concentrability coefficients:

c∗k := c(ρ, ν;

k︷ ︸︸ ︷
π∗, . . . , π∗),

cl,k := c(ρ, ν;

l︷ ︸︸ ︷
ρK , . . . , ρK , ρK , ρK−1, . . . , ρk).

We have the following theorem.

Theorem 1. The general algorithm (12) has the fol-
lowing lp-norm performance bound (p ∈ [1,∞)):

‖Q∗ −QρK‖ρ,p ≤ 2γVmaxΓK +BK + 2γωEp,K , (13)

where AK+1 :=

K∑
k=0

αk, Ek :=

k∑
l=0

αlεk−l, ω :=
1

1− γ

ΓK :=
1

AK+1

K∑
k=0

γkαK−k,

BK :=
γ(1− γK)ω2

βAK+1
log |A|,

Ck :=

((
c∗k+1

)1/p
+
∑∞
l=0 γ

l
(
c
1/p
l,k+1 + γc

1/p
l,k

))
2ω

,

Ep,K := sup
πK ,...,π0

K−1∑
k=0

γkCk

∥∥∥∥EK−k−1

AK+1

∥∥∥∥
ν,2p

.

Under the same assumptions and notations,

‖Q∗ −QρK‖∞ ≤ 2γVmaxΓK +BK + 2γωE∞,K . (14)

where E∞,K :=

K−1∑
k=0

γk
∥∥∥∥EK−k−1

AK+1

∥∥∥∥
∞

.

Remark 1. Setting α = 1, νk to the mellowmax op-
erator and ρk to the Boltzmann policy, yields a perfor-
mance bound for DPP. In this case, Γk = 2γVmax(1−
γK+1)(1 − γ)−1K−1 is 1 − γ times smaller than the
corresponding term in the previous performance bound
(Theorem 5 in Azar et al. (2012)) thanks to a new
proof technique. (Their bound contains a mistake:
‖Ej‖∞ in their bound must be multiplied by two.)

ΓK in Theorem 1 corresponds to γK in (1). Because
ΓK is the order of O(max{α, γ}K), the convergence
rate is approximately the same as that of VI as long
as α ≤ γ. However, when α = 1 (i.e., DPP is used), ΓK

is the order of O(K−1). Accordingly, its convergence
is much slower.

BK is an inevitable loss due to the use of softmax. It
converges to γ(1 − α)ω2β−1 log |A|. Therefore, unless
α = 1 or β = ∞, BK is not negligible. However, in
Section 4.2, we show that a small β may be preferable
despite this inevitable loss.

Theorem 1 shows that a higher α leads to a greater
noise-tolerance. It states that ‖A−1

K+1

∑k
l=0 α

lεk−l‖∞
essentially determines the loss ‖Q∗ −QρK‖∞. Now,
suppose that εl(s, a) is sampled independently from a
distribution with a mean of 0 and a standard devi-
ation of 1 for any l, state s and action a. Then, a
standard deviation of A−1

K+1

∑k
l=0 α

lεk−l is given by

A−1
K+1

√
1 + α2 + · · ·+ α2k. When α = 0.9, it con-

verges to approximately 0.23, which is four times
smaller than 1. Therefore, an algorithm becomes tol-
erant to noise. Although εk(s, a) is unlikely to satisfy
the assumptions in reality, a similar result is expected
in a model-free setting where errors contain noise stem-
ming from the stochasticity of MDPs.

The greatest robustness can be attained when α = 1,
where the weighted average becomes a simple aver-
age. However, as argued above, the convergence is
much slower in this case. Moreover, the effect of non-
stochastic errors in the beginning of iterations may
be sustained because of the form of EK−k−1. For ex-
ample, let us assume that εk are non-stochastic, and
averaging is completely worthless. Then, when α = 1,

E∞,K ≤
1

1− γ

K−1∑
k=0

‖εk‖
K

.

Thus, the effect of errors in the beginning, e.g., ‖ε0‖
lingers. In contrast, when α = 0, the effect of ‖ε0‖
decays with the rate γK .

The performance bounds are not meaningful if they
are loose. The following theorem states that (14) is
essentially not improvable when β =∞.

Theorem 2. When β =∞, there exists an MDP and
a sequence of εk satisfying the following: for any real
value δ ∈ (0,∞), there is a positive integer L such that

2γVmaxΓK + 2γωE∞,K ≤ ‖Q∗ −QρK‖∞ + δ (15)

holds for any K ≥ L.

Suppose that there is a performance bound bK that is
smaller than 2γVmaxΓK+2γωE∞,K . Then, (15) states
that bK < 2γVmaxΓK + 2γωE∞,K ≤ bK + δ for a large
enough K. In other words, the difference between bK
and our performance bound (14) is within (0, δ], and
our bound is arbitrarily close to bK .

Kozuno, Uchibe and Doya

From (15), when β =∞, there exists an MDP in which
the following holds:

lim sup
K→∞

‖Q∗ −QρK‖∞ =
2γ

1− γ
ε̄, (16)

where ε̄ := lim supK→∞ E∞,K . Note that it generalizes
a simple performance bound (1) for VI in a sense that
εK−k−1 is replaced with a moving average of errors
EK−k−1/AK+1. The important implication is that
the error dependency of algorithms with a hard gap-
increasing operator is almost the same as that of VI.

4.2 β controls the asymptotic performance

Theorem 1 states that β = ∞, i.e., algorithms with a
hard gap-increasing operator are the optimal choice.
However, there is experimental evidence that a finite
β leads to better results (Azar et al. (2012); Fox et al.
(2016); Haarnoja et al. (2017)). Furthermore, the con-
nection of CVI and NAC implies that a small β leads
to a stable learning while β =∞ causes instability. In
this section, we provide performance bounds for CVI
that show benefits of setting β to a finite value. In par-
ticular, the performance bounds show that algorithms
with the softmax operator may overcome the limita-
tion of the hard gap-increasing operator (or greedy
value updates) explained in the end of Section 4.1.

The following proposition provides a bound of KL di-
vergence between πk and πk−1. It is utilized in a novel
form of performance bounds following the proposition.

Proposition 3. If ‖εk‖ ≤ ε holds for any integer
k ∈ {1, 2, . . .}, a sequence of CVI’s policies π0, . . . , πK
in (11) satisfies maxsDKL(πK(·|s)|πK−1(·|s)) ≤ δK ,
where δK is

δK := 4β

(
1− γK

1− γ
ε+ rmax

K−1∑
k=0

αkγK−k−1

)
.

To succinctly state the theorem, we need the following
short-hand notation for concentrability coefficients:

dl,k := c(ρ, ν;

l︷ ︸︸ ︷
πK , . . . , πK , πK , πK−1, . . . , πk)

With this notation, we have the following theorem.

Theorem 4. If ‖εk‖ ≤ ε holds for any integer k ∈
{1, 2, . . .}, CVI’s policy πK in (11) has the following
lp-norm performance bound (p ∈ [1,∞)):

‖Q∗ −QπK‖ρ,p ≤ 2γVmaxΓK + (1− γ)BK (17)

+ 2γE ′p,K +

√
2γ2Vmax
1− γ

K−1∑
k=0

γkδ
1/2
K−k,

where

Dk :=

(
c∗k+1

)1/p
+ d

1/p
0,k

2
,

E ′p,K := sup
πK ,...,π0

K−1∑
k=0

γkDk

∥∥∥∥EK−k−1

AK+1

∥∥∥∥
ν,2p

.

Under the same assumptions and notations,

‖Q∗ −QπK‖∞ ≤ 2γVmaxΓK + (1− γ)BK (18)

+ 2γE∞,K +

√
2γ2Vmax
1− γ

K−1∑
k=0

γkδ
1/2
K−k.

Remark 2. By taking the minimum of the bounds
(13) and (17), we obtain a bound that is clearly no
worse than both bounds.

To understand Theorem 4, let us compare (14) with
(18). Their major differences are the following: (i)
E∞,K is multiplied by 2γ in (18), whereas it is multi-
plied by 2γω in (14). (ii) There is an additional term

const.
∑K−1
k=0 γkδ

1/2
K−k in (18). (iii) BK in (18) is mul-

tiplied by 1− γ.

The first difference indicates that algorithms using the
softmax operator are error-tolerant. In Section 4.1,
we explained that gap-increasing operators make algo-
rithms noise-tolerant. However, if errors are not noise,
the argument is nullified. In contrast, algorithms us-
ing the softmax operator have great tolerance to any
type of error. The price to pay for this tolerance is
the second difference, which decreases monotonically
in β. Thus, a small β leads to better performance.
Note that a small β results in the increase of BK . To
compensate for it, α must be large enough. Therefore,
the use of the softmax operator alone is not sufficient.

To further understand Theorem 4, let us consider a
simple case where α = 1. Then, (18) yields

lim sup
K→∞

‖Q∗ −QπK‖∞ ≤ 2γε̄+ const.β1/2, (19)

where ε̄ := lim supK→∞ E∞,K . On the other hand,
(14) yields the same bound as (16). Note that ε̄ is
multiplied by 2γω in (16), while it is multiplied by
2γ in (19). Typically, 1 − γ is close to 0; hence, (19)
shows that DPP actually has much less error depen-
dency when β is finite. β controls how closely the
asymptotic performance approaches the optimal one.

This result can be understood from two perspectives.
First, as explained in Section 3, τ = α/β is the co-
efficient of the KL divergence constraint. Therefore,
as β decreases, τ increases, which results in a smaller
KL divergence, as shown in Proposition 3. A small β
results in an increase of σ = (1 − α)/β. Therefore,

Theoretical Analysis of Efficiency and Robustness of Softmax and Gap-Increasing Operators in RL

the entropy of a policy obtained with CVI increases,
leading to a loss of performance expressed by BK .

Second, a small learning rate in NAC results in robust
learning. As we explained, CVI can be understood as
a variant of NAC in which β is a learning rate and 1−α
is a forgetting rate. Therefore, a small β is expected to
lead to a better asymptotic performance. On the other
hand, a small α results in a reduced performance.

In addition, Theorem 4 shows another benefit of a fi-
nite β: concentrability coefficients Dk is better than
Ck (when πk is used in (14)). To see this, note that

Ck contains
∑∞
l=0 γ

lc
1/p
l,k =

∑∞
l=0 γ

ld
1/p
l,k , which clearly

satisfies
∞∑
l=0

γld
1
p

l,k ≥ d
1
p

0,k

As a consequence, Dk =∞ implies Ck =∞. Further-
more, it is possible to construct an example in which
Dk is finite, but Ck is infinite. In this sense, Dk in
(17) is better than Ck.

Finally, we note that α ∈ [0, 1) together with a finite
β forces a policy πk to be stochastic. As a result,
concentrability coefficients of CVI with such α and β
before taking supπK ,...,π0

are expected to be smaller
compared to algorithms with either α = 1 or β = ∞.
However, our analysis fails in capturing it.

5 Related research

A special case of CVI with α = 0 is SVI (Fox et al.
(2016); Haarnoja et al. (2017)). It is argued that an
appropriately set β avoids overestimation of Q-values.
It explains why a finite β works well from the perspec-
tive of sample estimation error. Our theoretical results
add another explanation for why a finite β works well
from the perspective of RL.

A special case of CVI with β = ∞ is AL (Baird III
(1999); Bellemare et al. (2016)). AL lacks a theoreti-
cal guarantee under inexact update settings. We have
provided performance bounds and explained how α af-
fects the noise-tolerance of AL.

A special case of CVI with α = 1 is DPP (Azar et al.
(2012); Rawlik (2013)). A performance bound for DPP
was provided by Azar et al. (2012). However, it states
that β =∞ is optimal despite experimental evidences
that a finite β is optimal. Our work is the first paper
that explains why DPP with a finite β is optimal.

CVI can be derived as a variant of NAC (Bhatnagar
et al. (2009); Peters and Schaal (2008)). For policy
iteration, a similar connection is shown in Wagner
(2014), while for AL and DPP, this discussion seems
to be the first.

6 Conclusion

SVI, AL, and DPP, all of which employ value-iteration-
like, single-stage lookahead updates using the soft-
max operator and/or gap-increasing operator, demon-
strated their superiority to VI (Baird III (1999); Azar
et al. (2012); Rawlik (2013); Bellemare et al. (2016);
Fox et al. (2016); Haarnoja et al. (2017)). However,
they are not theoretically well understood. In this pa-
per, we proposed and analyzed CVI that unifies them
to explain their theoretical properties, such as per-
formance guarantees under non-exact update settings
and roles of their hyper-parameters.

Our analysis not only revealed the connection of those
algorithms to NAC, but also provided two types of
performance bounds: one without KL divergence and
one with it.

The performance bounds without KL divergence im-
prove the existing performance bound for DPP and
comprise the first performance bound for SVI and AL.
They also clarify the role of a hyper-parameter α in
gap-increasing operators: α controls the trade-off be-
tween tolerance to stochastic error and convergence
rate.

We also found that performance bounds without KL
divergence are essentially tight as long as greedy value
updates and a greedy policy are used. Furthermore,
they imply that as long as greedy value updates and
a greedy policy are used, tolerance of algorithms to
non-stochastic errors are almost the same as that of
VI.

Performance bounds with KL divergence show that
the limitation by greedy value updates and a greedy
policy can be overcome when the softmax operator is
used. However, the softmax operator alone may lead
to poor asymptotic performance, which is controlled
by β. Algorithms with a soft gap-increasing operator
enjoy both noise-tolerance and error-tolerance, while
avoiding poor asymptotic performance.

The present paper is an important step toward un-
derstanding algorithms using the softmax operator
and/or a gap-increasing operator.

Acknowledgement

This work was supported by JSPS KAKENHI Grant
Numbers 16H06563 and 17H06042. We thank Dr.
Steven D. Aird at Okinawa Institute of Science and
Technology for editing and proofreading the paper.
We are also grateful to reviewers for valuable com-
ments and suggestions.

Kozuno, Uchibe and Doya

References

Asadi, K. and Littman, M. L. (2017). An alterna-
tive softmax operator for reinforcement learning. In
Proceedings of the Thirty-Fourth International Con-
ference on Machine Learning, pages 243–252.

Azar, M. G., Gómez, V., and Kappen, H. J. (2012).
Dynamic policy programming. Journal of Machine
Learning Research, 13(1):3207–3245.

Baird III, L. C. (1999). Reinforcement Learning
Through Gradient Descent. PhD thesis, Carnegie
Mellon University, Pittsburgh, PA, US.

Bellemare, M. G., Ostrovski, G., Guez, A., Thomas,
P. S., and Munos, R. (2016). Increasing the action
gap: New operators for reinforcement learning. In
Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence.

Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-
Dynamic Programming. Athena Scientific, Nashua,
NH, USA, 1st edition.

Bhatnagar, S., Sutton, R. S., Ghavamzadeh, M., and
Lee, M. (2009). Natural actorcritic algorithms. Au-
tomatica, 45(11):2471 – 2482.

Farahmand, A.-m. (2011). Regularization in reinforce-
ment learning. PhD thesis, University of Alberta,
Edmonton, AB, Canada.

Fox, R., Pakman, A., and Tishby, N. (2016). Tam-
ing the noise in reinforcement learning via soft up-
dates. In Proceedings of the Thirty-Second Confer-
ence on Uncertainty in Artificial Intelligence, pages
202–211.

Haarnoja, T., Tang, H., Abbeel, P., and Levine, S.
(2017). Reinforcement learning with deep energy-
based policies. In Proceedings of the Thirty-
Fourth International Conference on Machine Learn-
ing, pages 1352–1361.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S.
(2018). Soft actor-critic: Off-policy maximum en-
tropy deep reinforcement learning with a stochas-
tic actor. In Proceedings of the Thirty-Fourth In-
ternational Conference on Machine Learning, pages
1856–1865.

Kakade, S. (2001). A natural policy gradient. In Four-
teenth Advances in Neural Information Processing
Systems, pages 1531–1538. MIT Press.

Kakade, S. and Langford, J. (2002). Approximately
optimal approximate reinforcement learning. In
Proceedings of the Nineteenth AAAI Conference on
Artificial Intelligence, pages 267–274.

Konda, V. R. and Tsitsiklis, J. N. (1999). Actor-critic
algorithms. In Advances in Neural Information Pro-
cessing Systems 12, pages 1008–1014.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lill-
icrap, T., Harley, T., Silver, D., and Kavukcuoglu,
K. (2016). Asynchronous methods for deep rein-
forcement learning. In Proceedings of The Thirty-
Third International Conference on Machine Learn-
ing, pages 1928–1937.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A.,
Veness, J., Bellemare, M. G., Graves, A., Riedmiller,
M., Fidjeland, A. K., Ostrovski, G., Petersen, S.,
Beattie, C., Sadik, A., Antonoglou, I., King, H., Ku-
maran, D., Wierstra, D., Legg, S., and Hassabis, D.
(2015). Human-level control through deep reinforce-
ment learning. Nature, 518(7540):529–533.

Munos, R. (2005). Error bounds for approximate
value iteration. In Proceedings of the Twenty-Second
AAAI Conference on Artificial Intelligence, pages
1006–1011.

Munos, R. (2007). Performance Bounds in Lp norm
for Approximate Value Iteration. SIAM Journal on
Control and Optimization.

Peters, J., Mulling, K., and Altun, Y. (2010). Relative
entropy policy search. In Proceedings of the Twenty-
Fourth AAAI Conference on Artificial Intelligence.

Peters, J. and Schaal, S. (2008). Natural actor-critic.
Neurocomput., 71(7-9):1180–1190.

Rawlik, K. C. (2013). On probabilistic inference ap-
proaches to stochastic optimal control. PhD thesis,
The University of Edinburgh, Edinburgh, Scotland.

Scherrer, B., Ghavamzadeh, M., Gabillon, V., and
Geist, M. (2012). Approximate modified policy it-
eration. In Proceedings of the Twenty-Ninth Inter-
national Conference on Machine Learning.

Scherrer, B. and Lesner, B. (2012). On the use
of non-stationary policies for stationary infinite-
horizon markov decision processes. In Advances in
Neural Information Processing Systems 25, pages
1826–1834.

Sutton, R. S., McAllester, D. A., Singh, S. P., and
Mansour, Y. (2000). Policy gradient methods for re-
inforcement learning with function approximation.
In Advances in Neural Information Processing Sys-
tems 12, pages 1057–1063.

Wagner, P. (2014). Policy oscillation is overshooting.
Neural Networks, 52:43–61.

Williams, R. J. and Peng, J. (1991). Function opti-
mization using connectionist reinforcement learning
algorithms. Connection Science, 3(3):241–268.

