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Abstract

Comparing probability distributions is a fun-
damental problem in data sciences. Simple
norms and divergences such as the total vari-
ation and the relative entropy only compare
densities in a point-wise manner and fail to
capture the geometric nature of the problem.
In sharp contrast, Maximum Mean Discrep-
ancies (MMD) and Optimal Transport dis-
tances (OT) are two classes of distances be-
tween measures that take into account the ge-
ometry of the underlying space and metrize
the convergence in law.

This paper studies the Sinkhorn divergences,
a family of geometric divergences that inter-
polates between MMD and OT. Relying on a
new notion of geometric entropy, we provide
theoretical guarantees for these divergences:
positivity, convexity and metrization of the
convergence in law. On the practical side, we
detail a numerical scheme that enables the
large scale application of these divergences
for machine learning: on the GPU, gradi-
ents of the Sinkhorn loss can be computed
for batches of a million samples.

1 Introduction

Countless methods in machine learning and imaging
sciences rely on comparisons between probability dis-
tributions. With applications ranging from shape
matching (Vaillant and Glaunès, 2005; Kaltenmark
et al., 2017) to classification (Frogner et al., 2015) and
generative model training (Goodfellow et al., 2014),
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a common setting is that of measure fitting : given a
unit-mass, positive empirical distribution β ∈M+

1 (X )
on a feature space X , a loss function L : M+

1 (X ) ×
M+

1 (X ) → R and a model distribution αθ ∈ M+
1 (X )

parameterized by a vector θ, we strive to minimize
θ 7→ L(αθ, β) through gradient descent. Numerous
papers focus on the construction of suitable models
θ 7→ αθ. But which loss function L should we use? If
X is endowed with a ground distance d : X ×X → R+,
taking it into account can make sense and help descent
algorithm to overcome spurious local minima.

Geometric divergences for Machine Learning.
Unfortunately, simple dissimilarities such as the To-
tal Variation norm or the Kullback-Leibler relative en-
tropy do not take into account the distance d on the
feature space X . As a result, they do not metrize
the convergence in law (aka. the weak∗ topology of
measures) and are unstable with respect to deforma-
tions of the distributions’ supports. We recall that if
X is compact, αn converges weak∗ towards α (denoted
αn ⇀ α) if for all continuous test functions f ∈ C(X ),
〈αn, f〉 → 〈α, f〉 where 〈α, f〉

def.
=
∫
X fdα = E[f(X)]

for any random vector X with law α.

The two main classes of losses L(α, β) which avoid
these shortcomings are Optimal Transport distances
and Maximum Mean Discrepancies: they are continu-
ous with respect to the convergence in law and metrize
its topology when the feature space X is compact.
That is, αn ⇀ α ⇔ L(αn, α) → 0. The main purpose
of this paper is to study the theoretical properties of a
new class of geometric divergences which interpolates
between these two families and thus offers an extra
degree of freedom through a parameter ε that can be
cross-validated in typical learning scenarios.

1.1 Previous works

OT distances and entropic regularization. A
first class of geometric distances between measures
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is that of Optimal Transportation (OT) costs, which
are computed as solutions of a linear program (Kan-
torovich, 1942) (see (1) below in the special case
ε = 0). Enjoying many theoretical properties, these
costs allow us to lift a “ground metric” on the fea-
ture space X towards a metric on the space M1

+(X )
of probability distributions (Santambrogio, 2015). OT
distances (sometimes referred to as Earth Mover’s Dis-
tances (Rubner et al., 2000)) are progressively being
adopted as an effective tool in a wide range of situa-
tions, from computer graphics (Bonneel et al., 2016)
to supervised learning (Frogner et al., 2015), unsuper-
vised density fitting (Bassetti et al., 2006) and genera-
tive model learning (Montavon et al., 2016; Arjovsky
et al., 2017; Salimans et al., 2018; Genevay et al., 2018;
Sanjabi et al., 2018). However, in practice, solving the
linear problem required to compute these OT distances
is a challenging issue; many algorithms that leverage
the properties of the underlying feature space (X ,d)
have thus been designed to accelerate the computa-
tions, see (Peyré and Cuturi, 2017) for an overview.

Out of this collection of methods, entropic regulariza-
tion has recently emerged as a computationally effi-
cient way of approximating OT costs. For ε > 0, we
define

OTε(α, β)
def.
= min
π1=α,π2=β

∫
X 2

C dπ + εKL(π|α⊗ β) (1)

where KL(π|α⊗ β)
def.
=

∫
X 2

log

(
dπ

dαdβ

)
dπ,

where C(x, y) is some symmetric positive cost func-
tion (we assume here that C(x, x) = 0) and where
the minimization is performed over coupling measures
π ∈ M+

1 (X 2) as (π1, π2) denotes the two marginals
of π. Typically, C(x, y) = ‖x − y‖p on X ⊂ RD and
setting ε = 0 in (1) allows us to retrieve the Earth
Mover (p = 1) or the quadratic Wasserstein-2 (p = 2)
distances.

The idea of adding an entropic barrier KL( · |α⊗β) to
the original linear OT program can be traced back to
Schrödinger’s problem (Léonard, 2013) and has been
used for instance in social sciences (Kosowsky and
Yuille, 1994; Galichon and Salanié, 2010) and com-
puter vision (Chui and Rangarajan, 2000). Crucially,
as highlighted in (Cuturi, 2013), the smooth prob-
lem (1) can be solved efficiently on the GPU as soon as
ε > 0 : the celebrated Sinkhorn algorithm (detailed in
Section 3) allows us to compute efficiently a smooth,
geometric loss OTε between sampled measures.

MMD norms. Still, to define geometry-aware dis-
tances between measures, a simpler approach is to in-
tegrate a positive definite kernel k(x, y) on the feature
space X . On a Euclidean feature space X ⊂ RD, we

typically use RBF kernels such as the Gaussian kernel
k(x, y) = exp(−‖x− y‖2 /2σ2) or the energy distance
(conditionally positive) kernel k(x, y) = −‖x− y‖.
The kernel loss is then defined, for ξ = α− β, as

Lk(α, β)
def.
= 1

2 ‖ξ‖
2
k

def.
= 1

2

∫
X 2

k(x, y) dξ(x)dξ(y). (2)

If k is universal (Micchelli et al., 2006) (i.e. if the
linear space spanned by functions k(x, ·) is dense in
C(X )) or characteristic (Sriperumbudur et al., 2010),
we know that ‖·‖k metrizes the convergence in law.
Such Euclidean norms, introduced for shape matching
in (Glaunes et al., 2004), are often referred to as “Max-
imum Mean Discrepancies” (MMD) (Gretton et al.,
2007). They have been used extensively for generative
model (GANs) fitting in machine learning (Li et al.,
2015; Dziugaite et al., 2015). MMD norms are cheaper
to compute than OT and have a smaller sample com-
plexity – i.e. approximation error when sampling a
distribution.

1.2 Interpolating between OT and MMD
using Sinkhorn divergences

Unfortunately though, the “flat” geometry that MMDs
induce on the space of probability measures M+

1 (X )
does not faithfully lift the ground distance on X .
For instance, on X = RD, let us denote by ατ
the translation of α by τ ∈ RD, defined through
〈ατ , f〉 = 〈α, f(· + τ)〉 for continuous functions f ∈
C(RD). Wasserstein distance discrepancies defined for
C(x, y) = ‖x− y‖p are such that OT0(α, ατ )

1
p = ‖τ‖.

In sharp contrast, MMD norms rely on convolutions
with a (Green) kernel and mimic electrostatic po-
tentials (Schmaltz et al., 2010). In practice, as evi-
denced in Figure 5, we thus observe vanishing gradi-
ents next to the extreme points of the measures’ sup-
ports: source particles shield each other, and we do
not recover clean translations.

Sinkhorn divergences. On the one hand, OT losses
have appealing geometric properties; on the other
hand, cheap MMD norms scale up to large batches
with a low sample complexity. Why not interpolate
between them to get the best of both worlds?

Following (Genevay et al., 2018) (see also (Ramdas
et al., 2017; Salimans et al., 2018; Sanjabi et al., 2018))
we consider a new cost built from OTε that we call a
Sinkhorn divergence:

Sε(α, β)
def.
= OTε(α, β)− 1

2OTε(α, α)− 1
2OTε(β, β). (3)

Such a formula satisfies Sε(β, β) = 0 and interpolates
between OT and MMD (Ramdas et al., 2017):

OT0(α, β)
0←ε←− Sε(α, β)

ε→+∞−→ 1
2 ‖α− β‖

2
−C . (4)
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The entropic bias. Why bother with the auto-
correlation terms OTε(α, α) and OTε(β, β)? For pos-
itive values of ε, in general, OTε(β, β) 6= 0 so that
minimizing OTε(α, β) with respect to α results in a
biased solution: as evidenced by Figure 1, the gra-
dient of OTε drives α towards a shrunk measure
whose support is smaller than that of the target mea-
sure β. This is most evident as ε tends to infinity:
OTε(α, β) →

∫∫
C(x, y) dα(x) dβ(y), a quantity that

is minimized if α is a Dirac distribution located at the
median (resp. the mean) value of β if C(x, y) = ‖x−y‖
(resp. ‖x− y‖2).

In the general case, as showcased in (Chui and Ran-
garajan (2000), Figure 3), the blurry transport plan πε
solution of the OTε problem (1) links source points to
fuzzy sets of target points whose diameters are propor-
tional to ε (resp.

√
ε). As we minimize the associated

transport cost, we thus see the samples of α converge
towards the median (resp. mean) of their ε-neighbors,
inside the convex hull of β’s support.

In the literature, the formula (3) has been introduced
more or less empirically to fix the entropic bias present
in the OTε cost: with a structure that mimics that of a
squared kernel norm (2), it was assumed or conjectured
that Sε would define a positive definite loss function,
suitable for applications in ML. This paper is all about
proving that this is indeed what happens.

1.3 Contributions

The purpose of this paper is to show that the Sinkhorn
divergences are convex, smooth, positive definite loss
functions that metrize the convergence in law. Our
main result is the theorem below, that ensures that
one can indeed use Sε as a reliable loss function for
ML applications – whichever value of ε we pick.

Theorem 1. Let X be a compact metric space
with a Lipschitz cost function C(x, y) that induces,
for ε > 0, a positive universal kernel kε(x, y)

def.
=

exp(−C(x, y)/ε). Then, Sε defines a symmetric pos-
itive definite, smooth loss function that is convex in
each of its input variables. It also metrizes the con-
vergence in law: for all probability Radon measures α
and β ∈M+

1 (X ),

0 = Sε(β, β) 6 Sε(α, β), (5)
α = β ⇐⇒ Sε(α, β) = 0, (6)

αn ⇀ α ⇐⇒ Sε(αn, α)→ 0. (7)

Notably, these results also hold for measures with
bounded support on a Euclidean space X = RD en-
dowed with ground cost functions C(x, y) = ‖x − y‖
or C(x, y) = ‖x− y‖2 – which induce Laplacian and
Gaussian kernels respectively.

This theorem legitimizes the use of the unbiased
Sinkhorn divergences Sε instead of OTε in model-
fitting applications. Indeed, computing Sε is roughly
as expensive as OTε (the computation of the correc-
tive factors being cheap, as detailed in Section 3) and
the “debiasing” formula (3) allows us to guarantee that
the unique minimizer of α 7→ Sε(α, β) is the target
distribution β (see Figure 1). Section 3 details how
to implement these divergences efficiently: our algo-
rithms scale up to millions of samples thanks to freely
available GPU routines. To conclude, we showcase in
Section 4 the typical behavior of Sε compared with
OTε and standard MMD losses.

2 Proof of Theorem 1

We now give the proof of Theorem 1. Our argument
relies on a new Bregman divergence derived from a
weak∗ continuous entropy that we call the Sinkhorn
entropy (see Section 2.2). We believe this (convex)
entropy function to be of independent interest. Note
that all this section is written under the assumptions
of Theorem 1; the proof of some intermediate results
can be found in the appendix.

2.1 Properties of the OTε loss

First, let us recall some standard results of regularized
OT theory (Peyré and Cuturi, 2017). Thanks to the
Fenchel-Rockafellar theorem, we can rewrite Cuturi’s
loss (1) as

OTε(α, β)
def.
= max

(f,g)∈C(X )2
〈α, f〉+ 〈β, g〉 (8)

−ε〈α⊗ β, exp
(
1
ε (f ⊕ g − C)

)
− 1〉,

where f ⊕ g is the tensor sum (x, y) ∈ X 2 7→ f(x) +
g(y). The primal-dual relationship linking an optimal
transport plan π solving (1) to an optimal dual pair

(a) L = OTε (b) L = Sε

Figure 1 – Removing the entropic bias. Solution
α (in red) of the fitting problem minα L(α, β) for some
β shown in blue. Here, C(x, y) = ‖x− y‖ on the unit
square X in R2 and ε = .1. The positions of the red
dots were optimized by gradient descent, starting from
a normal Gaussian sample.
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(f, g) that solves (8) is

π = exp
(
1
ε (f ⊕ g − C)

)
· (α⊗ β). (9)

Crucially, the first order optimality conditions for the
dual variables are equivalent to the primal’s marginal
constraints (π1 = α, π2 = β) on (9). They read

f = T(β, g) α-a.e. and g = T(α, f) β-a.e., (10)

where the “Sinkhorn mapping” T :M+
1 (X )× C(X )→

C(X ) is defined through

T : (α, f) 7→
(
y ∈ X 7→ minε

x∼α

[
C(x, y)−f(x)

])
, (11)

with a SoftMin operator of strength ε defined through

minε
x∼α

ϕ(x)
def.
= −ε log

∫
X

exp
(
− 1

εϕ(x)
)

dα(x). (12)

Dual potentials. The following proposition recalls
some important properties of OTε and the associated
dual potentials. Its proof can be found in Section B.1.

Proposition 1 (Properties of OTε). The optimal po-
tentials (f, g) exist and are unique (α, β)-a.e. up to an
additive constant, i.e. ∀K ∈ R, (f +K, g −K) is also
optimal. At optimality, we get

OTε(α, β) = 〈α, f〉+ 〈β, g〉. (13)

We recall that a function F : M+
1 (X ) → R is said

to be differentiable if there exists ∇F(α) ∈ C(X ) such
that for any displacement ξ = β − β′ with (β, β′) ∈
M+

1 (X )2, we have

F(α+ tξ) = F(α) + t〈 ξ, ∇F(α)〉+ o(t). (14)

The following proposition, whose proof is detailed in
Section B.2, shows that the dual potentials are the
gradients of OTε.

Proposition 2. OTε is weak* continuous and differ-
entiable. Its gradient reads

∇OTε(α, β) = (f, g) (15)

where (f, g) satisfies f = T(β, g) and g = T(α, f)
on the whole domain X and T is the Sinkhorn map-
ping (11).

Let us stress that even though the solutions of the dual
problem (8) are defined (α, β)-a.e., the gradient (15)
is defined on the whole domain X . Fortunately, an
optimal dual pair (f0, g0) defined (α, β)-a.e. satisfies
the optimality condition (10) and can be extended in a
canonical way: to compute the “gradient” pair (f, g) ∈
C(X )2 associated to a pair of measures (α, β), using
f = T(β, g0) and g = T(α, f0) is enough.

2.2 Sinkhorn and Haussdorf divergences

Having recalled some standard properties of OTε, let
us now state a few original facts about the corrective,
symmetric term − 1

2OTε(α, α) used in (3). We still
suppose that (X ,d) is a compact set endowed with a
symmetric, Lipschitz cost function C(x, y). For ε > 0,
the associated Gibbs kernel is defined through

kε : (x, y) ∈ X × X 7→ exp
(
− C(x, y)/ε

)
. (16)

Crucially, we now assume that kε is a positive universal
kernel on the space of signed Radon measures.
Definition 1 (Sinkhorn negentropy). Under the as-
sumptions above, we define the Sinkhorn negentropy
of a probability Radon measure α ∈M+

1 (X ) through

Fε(α)
def.
= − 1

2OTε(α, α). (17)

The following proposition is the cornerstone of our ap-
proach to prove the positivity of Sε, providing an al-
ternative expression of Fε. Its proof relies on a change
of variables µ = exp(f/ε)α in (8) that is detailed in
the Section B.3 of the appendix.
Proposition 3. Let (X ,d) be a compact set endowed
with a symmetric, Lipschitz cost function C(x, y) that
induces a positive kernel kε. Then, for ε > 0 and
α ∈M+

1 (X ), one has

1
εFε(α) + 1

2 = min
µ∈M+(X )

〈α, log dα
dµ 〉+ 1

2‖µ‖
2
kε . (18)

The following proposition, whose proof can be found
in the Section B.4 of the appendix, leverages the alter-
native expression (18) to ensure the convexity of Fε.
Proposition 4. Under the same hypotheses as Propo-
sition 3, Fε is a strictly convex functional onM+

1 (X ).

We now define an auxiliary “Hausdorff” divergence
that can be interpreted as an OTε loss with decoupled
dual potentials.
Definition 2 (Hausdorff divergence). Thanks to
Proposition 2, the Sinkhorn negentropy Fε is differ-
entiable in the sense of (14). For any probability mea-
sures α, β ∈M+

1 (X ) and regularization strength ε > 0,
we can thus define

Hε(α, β)
def.
= 1

2 〈α− β,∇Fε(α)−∇Fε(β)〉 > 0.

It is the symmetric Bregman divergence induced by the
strictly convex functional Fε (Bregman, 1967) and is
therefore a positive definite quantity.

2.3 Proof of the Theorem

We are now ready to conclude. First, remark that the
dual expression (8) of OTε(α, β) as a maximization
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of linear forms ensures that OTε(α, β) is convex with
respect to α and with respect to β (but not jointly
convex if ε > 0). Sε is thus convex with respect to
both inputs α and β as a sum of the functions OTε
and Fε – see Proposition 4.

Convexity also implies that,

OTε(α, α) + 〈β − α, ∇2OTε(α, α)〉 6 OTε(α, β),

OTε(β, β) + 〈α− β, ∇1OTε(β, β)〉 6 OTε(α, β).

Using (15) to get ∇2OTε(α, α) = −∇Fε(α),
∇1OTε(β, β) = −∇Fε(β) and summing the above in-
equalities, we show that Hε 6 Sε, which implies (5).

To prove (6), note that Sε(α, β) = 0 ⇒ Hε(α, β) = 0,
which implies that α = β since Fε is a strictly convex
functional.

Finally, we show that Sε metrizes the convergence in
law (7) in the Section B.5 of the appendix.

3 Computational scheme

We have shown that Sinkhorn divergences (3) are pos-
itive definite, convex loss functions on the space of
probability measures. Let us now detail their imple-
mentation on modern hardware.

Encoding measures. For the sake of simplicity, we
focus on discrete, sampled measures on a Euclidean
feature space X ⊂ RD. Our input measures α and
β ∈M+

1 (X ) are represented as sums of weighted Dirac
atoms

α =

N∑
i=1

αi δxi , β =

M∑
j=1

βj δyj (19)

and encoded as two pairs (α,x) and (β,y) of float
arrays. Here, α ∈ RN

+ and β ∈ RM
+ are non-negative

vectors of shapes [N] and [M] that sum up to 1, whereas
x ∈ (RD)N and y ∈ (RD)M are real-valued tensors of
shapes [N,D] and [M,D].

3.1 The Sinkhorn algorithm(s)

Working with dual vectors. Proposition 1 is key
to the modern theory of regularized Optimal Trans-
port: it allows us to compute the OTε cost – and thus
the Sinkhorn divergence Sε, thanks to (3) – using dual
variables that have the same memory footprint as the
input measures: solving (8) in our discrete setting, we
only need to store the sampled values of the dual po-
tentials f and g on the measures’ supports.

We can thus work with dual vectors f ∈ RN and g ∈
RM, defined through fi = f(xi) and gj = g(yj), which

encode an implicit transport plan π from α to β (9).
Crucially, the optimality condition (10) now reads:

∀ i ∈ [1,N], ∀ j ∈ [1,M],

fi = −εLSEM
k=1

(
log(βk) + 1

εgk −
1
εC(xi,yk)

)
(20)

gj = −εLSEN
k=1

(
log(αk) + 1

εfk −
1
εC(xk,yj)

)
(21)

where LSEN
k=1(Vk) = log

N∑
k=1

exp(Vk) (22)

denotes a (stabilized) log-sum-exp reduction.

If (f , g) is an optimal pair of dual vectors that satisfies
Equations (20-21), we deduce from (13) that

OTε(αi,xi,βj ,yj) =

N∑
i=1

αifi +

M∑
j=1

βjgj . (23)

But how can we solve this coupled system of equations
given α, x, β and y as input data?

The Sinkhorn algorithm. One simple answer: by
enforcing (20) and (21) alternatively, updating the vec-
tors f and g until convergence (Kosowsky and Yuille,
1994; Cuturi, 2013). Starting from null potentials
fi = 0 = gj , this numerical scheme is nothing but a
block-coordinate ascent on the dual problem (8). One
step after another, we are enforcing null derivatives on
the dual cost with respect to the fi’s and the gj ’s.

Convergence. The “Sinkhorn loop” converges
quickly towards its unique optimal value: it enjoys a
linear convergence rate (Peyré and Cuturi, 2017) that
can be improved with an ε-scaling heuristic (Kosowsky
and Yuille, 1994; Schmitzer, 2016). When computed
through the dual expression (23), OTε and its gradi-
ents (26-27) are robust to small perturbations of the
values of f and g: monitoring convergence through
the L1 norm of the updates on f and breaking the
loop as we reach a set tolerance level is thus a sensible
stopping criterion.

Symmetric OTε problems. All in all, the baseline
Sinkhorn loop provides an efficient way of solving the
discrete problem OTε(α, β) for generic input measures.
But in the specific case of the (symmetric) corrective
terms OTε(α, α) and OTε(β, β) introduced in (3), we
can do better.

The key here is to remark that if α = β, the dual
problem (8) becomes a concave maximization problem
that is symmetric with respect to its two variables f
and g. Hence, there exists a (unique) optimal dual pair
(f, g = f) on the diagonal which is characterized in the
discrete setting by the symmetric optimality condition:
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∀i ∈ [1,N],

fi = −εLSEN
k=1

[
log(αk) + 1

εfk −
1
εC(xi,xk)

]
. (24)

Fortunately, given α and x, the optimal vector f
that solves this equation can be computed by iterating
a well-conditioned fixed-point update which typically
converges to satisfying precision in three iterations:

fi ← 1
2

(
fi − εLSEN

k=1

[
log(αk) + 1

εfk −
1
εC(xi,xk)

] )
.

(25)

3.2 Computing the Sinkhorn divergence and
its gradients

Given two pairs (α,x) and (β,y) of float arrays that
encode the probability measures α and β (19), we can
now implement the Sinkhorn divergence Sε(α, β):
The cross-correlation dual vectors f ∈ RN and g ∈ RM

associated to the discrete problem OTε(α, β) can be
computed using the Sinkhorn iterations (20-21).
The autocorrelation dual vectors p ∈ RN and q ∈
RM, respectively associated to the symmetric problems
OTε(α, α) and OTε(β, β), can be computed using the
symmetric Sinkhorn update (25).
The Sinkhorn loss can be computed using (3) and (23):

Sε(αi,xi,βj ,yj) =

N∑
i=1

αi(fi − pi) +

M∑
j=1

βj(gj − qj).

What about the gradients? In the past few years,
authors have proposed to rely on the automatic differ-
entiation engines provided by modern libraries, which
let us differentiate the result of twenty or so Sinkhorn
iterations as a mere composition of elementary oper-
ations (Genevay et al., 2018). But beware: this loop
has a lot more structure than a generic feed forward
network. Taking advantage of it is key to a x2-x3 gain
in performances, as we now describe.

Crucially, we must remember that the Sinkhorn loop
is a fixed point iterative solver: at convergence, its so-
lution satisfies an equation given by the implicit func-
tion theorem. Thanks to (15), using the very definition
of gradients in the space of probability measures (14)
and the intermediate variables in the computation of
Sε(α, β), we get that

∂αiSε(αi,xi,βj ,yj) = fi − pi (26)

and 1
αi
∂xiSε(αi,xi,βj ,yj) = ∇ϕ(xi), (27)

where ϕ : X → R is equal to fi−pi on the xi’s and is
defined through

ϕ(x) = − ε log

M∑
j=1

exp
[

log(βj) + 1
εgj −

1
εC(x,yj)

]
+ ε log

N∑
i=1

exp
[

log(αi) + 1
εpi −

1
εC(x,xi)

]
.

Graph surgery with PyTorch. Assuming conver-
gence in the Sinkhorn loops, it is thus possible to com-
pute the gradients of Sε without having to backprop
through the twenty or so iterations of the Sinkhorn al-
gorithm: we only have to differentiate the expression
above with respect to x. But does it mean that we
should differentiate C or the log-sum-exp operation by
hand? Fortunately, no!

Modern libraries such as PyTorch (Paszke et al., 2017)
are flexible enough to let us “hack” the naive autograd
algorithm, and act as though the optimal dual vectors
fi, pi, gj and qj did not depend on the input variables
of Sε. As documented in our reference code,

github.com/jeanfeydy/global-divergences,

an appropriate use of the .detach() method in Py-
Torch is enough to get the best of both worlds: an au-
tomatic differentiation engine that computes our gra-
dients using the formula at convergence instead of the
baseline backpropagation algorithm. All in all, as ev-
idenced in Figure 3, this trick allows us to divide by
a factor 2-3 the time needed to compute a Sinkhorn
divergence and its gradient with respect to the xi’s.

3.3 Scaling up to large datasets

The Sinkhorn iterations rely on a single non-trivial
operation: the log-sum-exp reduction (22). In the ML
literature, this SoftMax operator is often understood
as a row- or column-wise reduction that acts on [N,M]
matrices. But as we strive to implement the update
rules (20-21) and (25) on the GPU, we can go further.

Batch computation. First, if the number of sam-
ples N and M in both measures is small enough, we
can optimize the GPU usage by computing Sinkhorn
divergences by batches of size B. In practice, this can
be achieved by encoding the cost function C as a 3D
tensor of size [B,N,M] made up of stacked matrices
(C(xi,yj))i,j , while f and g become [B,N] and [B,M]
tensors, respectively. Thanks to the broadcasting syn-
tax supported by modern libraries, we can then com-
pute, in parallel, loss values Sε(αk, βk) for k in [1,B].

Avoiding memory overflows. Unfortunately
though, tensor-centric methods such as the one
presented above cannot scale to measures sampled
with large numbers N and M of Dirac atoms: as these
numbers exceed 10,000, huge [N,M] matrices stop
fitting into GPU memories. To alleviate this problem,
we leverage the KeOps library (Charlier et al., 2018)
that provides online map-reduce routines on the GPU
with full PyTorch integration. Performing online
log-sum-exp reductions with a running maximum,
the KeOps primitives allow us to compute Sinkhorn



Feydy, Séjourné, Vialard, Amari, Trouvé, Peyré

102 103 104 105 106
10−4

10−3

10−2

10−1

100

101

102 out of mem

out of mem

Number of points N

T
im

e
(s
ec
)

Computing an Energy Distance + gradient between samples of size N = M

PyTorch on CPU
PyTorch on GPU
PyTorch + KeOps

102 103 104 105 106
10−4

10−3

10−2

10−1

100

101

102
out of mem

out of mem

Number of points N

T
im

e
(s
ec
)

Computing log
∑
j exp ‖xi − yj‖ with samples of size N = M

PyTorch on CPU
PyTorch on GPU
PyTorch + KeOps

Figure 2 – The KeOps library allows us to break the memory bottleneck. Using CUDA routines that
sum kernel values without storing them in memory, we can outperform baseline, tensorized, implementations of
the energy distance. Experiments performed on X = R3 with a cheap laptop’s GPU (GTX 960M).
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Figure 3 – Sinkhorn divergences scale up to finely sampled distributions. As a rule of thumb, Sinkhorn
divergences take 20-50 times as long to compute as a baseline MMD – even though the explicit gradient formula
(26-27) lets us win a factor 2-3 compared with a naive autograd implementation. For the sake of this benchmark,
we ran the Sinkhorn and symmetric Sinkhorn loops with fixed numbers of iterations: 20 and 3 respectively, which
is more than enough for measures on the unit (hyper)cube if ε > .05 – here, we work in R3.

divergences with a linear memory footprint. As evi-
denced by the benchmarks of Figures 2-3, computing
the gradient of a Sinkhorn loss with 100,000 samples
per measure is then a matter of seconds.

4 Numerical illustration

In the previous sections, we have provided theoretical
guarantees on top of a comprehensive implementation
guide for the family of Sinkhorn divergences Sε. Let
us now describe the geometry induced by these new
loss functions on the space of probability measures.

Gradient flows. To compare MMD losses Lk with
Cuturi’s original cost OTε and the de-biased Sinkhorn
divergence Sε, a simple yet relevant experiment is to
let a model distribution α(t) flow with time t along
the “Wasserstein-2” gradient flow of a loss functional
α 7→ L(α, β) that drives it towards a target distribu-
tion β (Santambrogio, 2015). This corresponds to the
“non-parametric” version of the data fitting problem
evoked in Section 1, where the parameter θ is nothing
but the vector of positions x that encodes the sup-
port of a measure α = 1

N
∑N
i=1 δxi . Understood as

a “model free” idealization of fitting problems in ma-
chine learning, this experiment allows us to grasp the
typical behavior of the loss function as we discover the
deformations of the support that it favors.
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Figure 4 – Gradient flows for 1-D measures sampled
with N = M = 5000 points – we display α(t) (in red)
and β (in blue) through kernel density estimations on
the segment [0, 1]. The legend on the left indicates the
function that is minimized with respect to α. Here
k(x, y) = −‖x− y‖, C(x, y) = ‖x− y‖ and ε = .10
on the second and fourth lines, ε = .01 on the third.
In 1D, the optimal transport problem can be solved
using a sort algorithm: for the sake of comparison,
we can thus display the “true” dynamics of the Earth
Mover’s Distance in the fifth line.
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Figure 5 – Gradient flows for 2-D measures. The setting is the same as in Figure 4, but the measures α(t)
(in red) and β (in blue) are now directly displayed as point clouds of N = M = 500 points. The evolution of the
support of α(t) is thus made apparent, and we display as a green vector field the descent direction −∇xiL(α, β).

In Figures 4 and 5, β = 1
M
∑M
j=1 δyj is a fixed target

measure while α = 1
N
∑N
i=1 δxi(t) is parameterized by

a time-varying point cloud x(t) = (xi(t))
N
i=1 ∈ (RD)N

in dimension D = 1 or 2. Starting from a set initial
condition at time t = 0, we simply integrate the ODE

ẋ(t) = −N∇x
[
L
(
1
N

∑N
i=1δx, β

) ]
(xi(t))

with a Euler scheme and display the evolution of α(t)
up to time t = 5.

Interpretation. In both figures, the fourth line
highlights the entropic bias that is present in the OTε
loss: α(t) is driven towards a minimizer that is a
“shrunk” version of β. As showed in Theorem 1, the
de-biased loss Sε does not suffer from this issue: just
like MMD norms, it can be used as a reliable, positive-
definite divergence.

Going further, the dynamics induced by the Sinkhorn
divergence interpolates between that of an MMD (ε =
+∞) and Optimal Transport (ε = 0), as shown in (4).
Here, C(x, y) = ‖x − y‖ and we can indeed remark
that the second and third lines bridge the gap between
the flow of the energy distance L−‖·‖ (in the first line)
and that of the Earth Mover’s cost OT0 which moves

particles according to an optimal transport plan.

Please note that in both experiments, the gradient of
the energy distance with respect to the xi’s vanishes at
the extreme points of α’s support. Crucially, for small
enough values of ε, Sε recovers the translation-aware
geometry of OT and we observe a clean convergence
of α(t) to β as no sample lags behind.

5 Conclusion

Recently introduced in the ML literature, the Sinkhorn
divergences were designed to interpolate between
MMD and OT. We have now shown that they also
come with many desirable properties: positivity, con-
vexity, metrization of the convergence in law and scal-
ability to large datasets.

To the best of our knowledge, it is the first time that
a loss derived from the theory of entropic Optimal
Transport is shown to stand on such a firm ground.
As the foundations of this theory are progressively be-
ing settled, we now hope that researchers will be free
to focus on one of the major open problems in the
field: the interaction of geometric loss functions with
concrete machine learning models.
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