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Abstract

Complex simulator-based models usually have
intractable likelihood functions, rendering the
likelihood-based inference methods inappli-
cable. Approximate Bayesian Computation
(ABC) emerges as an alternative framework of
likelihood-free inference methods. It identifies
a quasi-posterior distribution by finding val-
ues of parameter that simulate the synthetic
data resembling the observed data. A major
ingredient of ABC is the discrepancy measure
between the observed and the simulated data,
which conventionally involves a fundamental
difficulty of constructing effective summary
statistics. To bypass this difficulty, we adopt
a Kullback-Leibler divergence estimator to as-
sess the data discrepancy. Our method enjoys
the asymptotic consistency and linearithmic
time complexity as the data size increases. In
experiments on five benchmark models, this
method achieves a comparable or higher quasi-
posterior quality, compared to the existing
methods using other discrepancy measures.

1 Introduction

The likelihood function is of central importance in
statistical inference by characterizing the connection
between the observed data and the value of parameter
in models. Many simulator-based models, which are
stochastic data generating mechanisms taking parame-
ter values as input and returning data as output, have
arisen in evolutionary biology [I} 2], dynamic systems
[3, [4], economics [l [6], epidemiology [7H9], aeronau-
tics [I0] and other disciplines. In these models, the
observed data are seen as outcomes of the data generat-
ing mechanisms given some underlying true parameter.
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The simulator-based models are said to be implicit
[I1] because their likelihood functions involve integrals
over latent variables or solutions to differential equa-
tions and have no explicit form. These models are also
said to be generative [I2] because they specify how to
generate synthetic data sets.

As the unavailability of the likelihood function renders
the conventional likelihood-based inference methods in-
applicable, Approximate Bayesian Computation (ABC)
emerges as an alternative framework of likelihood-free
inference. [I3HI5] provide general overviews of ABC.
Rejection ABC [Tl T6HIS], the first and simplest ABC
algorithm, repeatedly draws values of parameter 6 in-
dependently from some prior m, simulates synthetic
data Y for each value of 6, and rejects the parameter
0 if the discrepancy ©(X,Y) between the observed
data X and the simulated data Y exceeds a tolerance
threshold e. This algorithm obtains an independent
and identically distributed (i.i.d.) random sample of
parameter from a quasi-posterior distribution. Later
[3, T9H23] enhance the efficiency over rejection ABC by
incorporating Markov Chain Monte Carlo and sequen-
tial techniques. On the other aspect, [24] interprets the
acceptance-rejection rule with the tolerance threshold e
in ABC as convoluting the target posterior distribution
with a small e-noise term. This interpretation encom-
passes the spirit of assigning continuous weights to
proposed parameter draws rather than binary weights
(either accepting or rejecting) in many ABC implemen-
tations [25].

A major ingredient of ABC is the data discrepancy mea-
sure D(X,Y), which crucially influences the quality
of the quasi-posterior distribution. An ABC algorithm
typically reduces data X,Y to their summary statis-
tics S(X), S(Y) and measures the distance between
S(X) and S(Y) instead as the data discrepancy. Nat-
urally one would like to use a low-dimensional and
quasi-sufficient summary statistic S(-), which offers
a satisfactory tradeoff between the acceptance rate
of proposed parameters and the quality of the quasi-
posterior [26]. Constructing effective summary statis-
tics presents a fundamental difficulty and is actively
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pursued in the literature (see reviews [26] [27] and refer-
ences therein). Most existing methods can be grouped
into three main categories: best subset selection, regres-
sion and Bayesian indirect inference. The first cate-
gory of methods select the optimal subset from a set of
pre-chosen candidate summary statistics according to
various information criteria (e.g. measure of sufficiency
[28], entropy [29], AIC/BIC [26], impurity in random
forests [30]) and then use the selected subset as the
summary statistics. The candidate summary statistics
are usually provided by experts in the specific scientific
domain. The second category assembles methods that
fit regression on candidate summary statistics [31], 25].
The last category, inspired by indirect inference [32],
dispenses with candidate summary statistics and di-
rectly constructs summary statistics from an auxiliary
model [33], 34} 27].

This paper mainly focuses on the setting in which no in-
formative candidate summary statistic is available but
the observed data contains a moderately large number
n of i.i.d. samples X = {X,}, allowing direct data
discrepancy measures. Most methods for constructing
summary statistic fails in this setting. An exception
is Fearnhead and Prangle’s semi-automatic method
[25], which works well for univariate distributions. It
performs a regression on quantiles (and their 2nd, 3rd
and 4th powers) of the empirical distributions. Still
unclear is how to extend this method to multivariate
distributions. Another exception is the category of
Bayesian indirect inference methods [33] [34], 27]. But
their performance relies on the choice of auxiliary mod-
els.

We propose using a Kullback-Leibler (KL) divergence
estimator [35], which is based on the observed data
X = {X;}, and the simulated data Y = {Y;}/,, as
the data discrepancy for ABC. We denote this estima-
tor or data discrepancy by Ok (X,Y’). As such, we
bypass the construction of summary statistics. The
KL divergence KL(gol|g1), also known as information
divergence or relative entropy, measures the distance be-
tween two distributions go(z) and g1 () [36]. Denote by
{pe : 6 € O} the model under study, and by 6* the true
parameter that generates X. Interpreting KL(py-||pg)
as the expectation of the log-likelihood ratio nicely
connects it to the maximum likelihood estimation. Our
method leverages the KL divergence to Bayesian in-
ference. Using a consistent KL divergence estimator
developed by [35], our method is asymptotically con-
sistent in the sense that the quasi-posterior converges
to m(0|KL(pe-|lps) < €) oc w(0)L(KL(po-||ps) < €) as
the sample sizes n, m increase. Here I(-) denotes the
indicator function. The KL divergence estimator used
in our method might be replaced with other estimator
[37H42).

The KL divergence method achieves a comparable or
higher quality of the quasi-posterior distribution in the
experiments on five benchmark models, compared to
its three cousins: the classification accuracy method
[43], the maximum mean discrepancy method [44] and
the Wasserstein distance method [45]. It also enjoys
a linearithmic time complexity: the cost for a single
call of Dk1,(X,Y), given observed and simulated data
X,Y with n samples each, is O(nlnn). This cost is
smaller than O(n?)-cost of computing the maximum
mean discrepancy in [44] and the Wasserstein distance
in [45]. Computing the classification accuracy in [43]
costs O(n) in general, but it generates much worse
quais-posteriors than other methods in the experiments.

The remaining parts of the paper are structured as
follows: Section 2 describes the ABC algorithm and
five data discrepancy measures including our KL diver-
gence estimator. Section 3 establishes the asymptotic
consistency of our method and compares its limiting
quasi-posterior distribution to those of other methods.
In Section 4, we apply the methodology to five bench-
mark simulator-based models. Section 5 discusses our
method and concludes the paper.

2 ABC and Data Discrepancy

Denote by X C R¢ the data space, and by © the param-
eter space of interest. The model M = {py : § € O}
is a collection of distributions on X. It has no ex-
plicit form of py(x) but can simulate i.i.d. random
samples given a value of parameter. To identify the
true parameter 8* that generates i.i.d. observed data
samples X = {X,}" ,, Approximate Bayesian Compu-
tation (ABC) algorithm finds the values of parameter
that generate the synthetic data Y = {Y;}72, ~ pg
i.i.d. resembling the observed data X. The extent to
which the observed and simulated data are resembling
is quantified by a data discrepancy measure D(X,Y").

Since our goal is to compare difference data discrepancy
measures rather than present a complete methodology
for ABC, we only use rejection ABC, the simplest ABC
algorithm (Algorithm , throughout this paper. For
convenience of notations, we write py(y) = [/~ po(y;)-
Algorithm |1 outputs a random sample {#(V} | of the
quasi-posterior distribution

(01 X:D. ) x / HOLO(X,y) < ) po(w)dy. (1)

Next, we introduce our KL divergence method and
describe other direct data discrepancies. The semi-
automatic method and the Bayesian indirect inference
method are also included as they do not require candi-
date summary statistics. Let us collect more notations.
go and g1 denote densities of two d-dimensional dis-
tributions on the sample space X C R?. For a vector
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Algorithm 1 Rejection ABC Algorithm
Input: - the observation data X = {X;}7 ;;
- a prior 7(@) over the parameter space O;
- a tolerance threshold € > 0;
- a data discrepancy measure ® : X" x XY™ — R¥.
fort=1,...,T do
repeat: propose 6 ~ 7(6) and
draw Y = {Y;}7*, ~ pg i.i.d.

until : D(X,Y) <e
Let 6®) = ¢
end for

Output: M, 93 . 9T

x, ||| denotes its £2 norm, and x(;) denotes its i-th
ordered element. For two scalars a and b, we write
max{a,b} as a Vb. We write ® in short for a data
discrepancy ©(X,Y), if the observed and simulated
data X and Y are clear in the context.

2.1 Kullback-Leibler (KL) Divergence as
Data Discrepancy

The KL divergence between go and g; is defined as

go(x)
g1(z)

which is zero if and only if go(z) = ¢1(z) for almost
everywhere. Given the observed and simulated data X
and Y, we use the following estimator for KL(pg«||pe):

Dkr = — Zl

This estimator is the special case of Equation (14) in
[35] using 1-nearest neighbor density estimate. Theo-
rem 2 in [35] establishes the almost-sure convergence of
. We use as the data discrepancy in Algorithm
As this method involves 2n operations of nearest
neighbor search, we use k-d trees [46, [47] to implement
it. The time cost per call of Dy, is O((nVm) In(nvVm))
on average.

KL(gollg1) = /go(w) In dz >0,

min; ||X; — Y| m
1 (2
minj; [|[ X; — Xj|| i n—1 @)

2.2 Classification Accuracy (CA) as Data
Discrepancy

The classification accuracy method in [43] origi-
nates from the phenomenon that distinguishing Y
from X, when 6 is very different to 6*, is usu-
ally easier than doing so, when 6 is similar to
0*. This method first labels X; as class 0 and
Y, as class 1, yielding an augmented data set
D = {(Xho)v LR (Xna O)a (Ylv 1)7 R (Yma 1)}a and
then trains a prediction rule (classifier) h : z — {0,1}
to distinguish two classes. The authors define discrim-
inability or classifiability between two samples X and
Y as the K-fold cross-validation classification accuracy,

and use it as the data discrepancy for ABC. Formally,
denoting by Dy, the k-fold subset of D, and by |Dy| its
size,

Ko A

Z |7 Z (1 — hi(Xi))

Kz i (X;,0)€Dy

+ by (Y3) (3)
i (Yi1)eDy,

where hy, is the trained prediction rule on the data
set of D\ Dy. Our experiments set K = 5 and h to
be the Linear Discriminant Analysis (LDA) classifier.
We choose LDA because [43] reports that the quasi-
posterior quality seems insensitive to the choice of
classifiers, and LDA is computationally cheaper than
other classifiers. The time cost per call of Dgp is
O(n+m).

2.3 Maximum Mean (MM) Discrepancy

The kernel embedding of a probability distribution
g(x), defined as py = [k(-,z)g(x)dz, is an element
in the RKHS H associated with a positive definite
kernel kernel k : X x X — R [48, 49]. The maximum
mean (MM) discrepancy [50] between gg and g; is the
distance of 14, and pg, in the Hilbert space H, i.e.
MM? (g0, 91) = ||ttgo — t1g: |13, [44] adopts an unbiased
estimator of MM?(py-, pg) as the data discrepancy in
ABC. The square of the estimator is as follows.

_ Z1gi¢jgn k(XhXj) E1gi¢jgm k(YzaYJ)
n(n —1) m(m — 1)
L 23L i k(XL Y))

nm

2
’CDMM

(4)

In the same fashion of [44], we choose a Gaussian
kernel with the bandwidth being the median of {||X; —
Xl 1 <4i# j<n}. The time cost per call of
Dy is O((n + m)?), as it requires computing the
(n+m) x (n+ m) pairwise distance matrix.

2.4 Wasserstein Distance

Let p be a distance on X C R?. The ¢-Wasserstein
distance between gy and g; is defined as

1/q

an(go,gl)=[ inf / p(x,y)tdy(z,y)|
XXX

~v€T'(90,91)

where I'(go, g1) is the set of all joint distribution v(z,y)
on X x X such that v has marginals gy and g;. An
estimator of 20, (pe~, pp) based on the samples X and
Y can serve as the data discrepancy for ABC. In par-
ticular, with ¢ = 2 and p being the Euclidean distance,
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an instance is given by
1/2

Dwa :H}Yin ZZ%J’”Xi_YjHQ (5)

i=1 j=1
st Yl =1, ¥ 1, =1, 0< 5 < 1

where v = {y;; : 1 <i<mn, 1<j<m}isa
n X m matrix, and 1,,,1,, are vectors of n and m ones,
respectively.

For multivariate distributions (d > 1), exactly solving
this optimization problem costs O((n +m)3 In(n +m))
[61] and approximate optimization algorithms [52], 53]
reduce the cost to O((n + m)?). For univariate
distributions (d = 1), if n = m and p(z,y) =
|z — y|, ¢-Wasserstein distance has an explicit form
(230 1 Xa — Y(Z—)|q)1/q. In this special case, the

n
computation cost is O(nlnn).

2.5 Distance between Summary Statistics

An ABC algorithm typically uses the distance between
the data summaries S(X),S(Y') as the discrepancy
measure ©. In particular, if using the Euclidean dis-
tance,

Ds = [5(X) = S(Y)]. (6)
The subscript S specifies the choice of summary statis-
tic S. Most methods for constructing S requires ex-
pertise in the specific scientific domain to provide can-
didate summary statistics. Two exceptions are the
semi-automatic method [25] and the Bayesian indirect
inference method [33], 34] 27].

If no candidate summary statistic is given, the semi-
automatic method can work for univariate distribu-
tions. The method first generates a large artificial data
set of pairs (6,Y) from the prior 7 and the simulated
model. When the distribution is one-dimensional, each
Y in the artificial data set is a vector of length m. The
semi-automatic method performs a linear regression
on the artificial data set with 6 as target and candi-
date summary statistics as regressors. In absence of
candidate summary statistics, Fearnhead and Prangle
[25] suggested using evenly-spaced quantiles (and their
2nd, 3rd and 4th powers) of Y as regressors. Formally,
E[Q]Y] ~ By + Zkl.(;ll Z?=1 Ble(lkm/K). The summary
statistic S(y) is merely the prediction of 6 given y,
which is understood as an approximation of the poste-
rior mean E[0]y]. As the original paper [25] does not
clearly show how to extend this method to multivariate
distributions in which case each simulated data set Y
is an n X d matrix, we simply put quantiles of each
marginal together as a total of 4d(K — 1) regressors.
Our experiments set K = 8.

The Bayesian indirect inference methods con-
struct the summary statistic from an auxiliary model

{pa(z|p) : ¢ € ®}. See a general review of the liter-
ature in [27]. An instance of these methods is given
by [33]. The authors suggest the maximum likelihood
estimate (MLE) of the auxiliary model as the summary
statistic. Formally,

S(y) = d(y) = arg ma HpA(yi\cb)- (7)

In particular, if p4(z|¢) is d-dimensional Gaussian with
parameter ¢ (which aggregates mean and covariance
parameters together), the summary statistics S(y) are
merely the sample mean and covariance of y = {y; }1",.
[34] also describes an approach that uses the auxiliary
likelihood (AL) to set up a data discrepancy

Dar = - pa(YIH¥) — —lnpa(YIHX) (9

3 Asymptotic Analysis

This section analyzes the asymptotic quasi-posterior
distributions as the size n of observation data X goes
to infinity (and the size m of the simulated data Y
increases at the same rate like m/n — a > 0) with
different data discrepancy measures. The tolerance
threshold e assumed to be fixed. This analysis explains
how different data discrepancy measures weight the val-
ues of parameter in their quasi-posterior distributions.
The theoretical results show that the quasi-posterior
distribution obtained by our KL divergence method
identifies 6 with KL(pe-|[ps) < € asymptotically. In
addition, our method is related to the classification
accuracy method by the concept of f-divergence
[54]. The KL divergence method is also asymptotically
equivalent to , a Bayesian indirect inference method,
in case that the auxiliary model is bijective to the true
model. Proof of theorems and corollaries are deferred
to the Appendix.

We start this section from Theorem 1, which is an
application of Lévy’s upward theorem.

Theorem 1 (Asymptotic Quasi-Posterior) If the
data discrepancy measure D(X,Y) in Algom'thm con-
verges to some real number ®(pg+,pg) almost surely as
the data size n — oco,m/n — a > 0 then the quasi-
posterior distribution m(0|X;D,¢€) defined by con-
verges to w(0|D (pg~,pg) < €) for any 0. That is,

lim 7(6|X;9,€) = (0] (po-,po) <€)
oc T(0) (D (pg-, po) < €)

This theorem asserts that the asymptotic quasi-
posterior is a restriction of the prior 7 on the region
{0 € © : D(pg~,pg) < €}. Putting it together with the
established almost sure convergence of D1, in [35], we
have a corollary for Dy, as follows.
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Corollary 1 (Asymptotic Quasi-Posterior of Dky,) literature except that [50] shows that Dy converges

Let n — oo and m/n — a > 0. If Algom'thm uses
Dy defined by (@ as the data discrepancy measure
then the quasi-posterior distribution

lim 7(0|X; Dk, €) = m(0| KL(pp-

n—oo

po) < 6)
o 7(0)I(KL(pog~

po) <€)

It is known that the maximum likelihood estimator
minimizes the KL divergence between the empirical
distribution of pg~ and py. ABC with Dy, shares the
same idea to find # with small KL divergence.

Next, we find Dky, coincides with DAy, in the frame-
work of f-divergence [54]. For a convex function
f@) with f(1) = 0, f-divergence between two dis-
tributions go and g¢; is defined as ®Ds(gollg1) =
J f(go(z)/g1(2)) go(x)dz. The KL divergence belongs
to this class of divergences with f(t) = tlnt. Dca
(induced by the optimal classifier) is also related to
f-divergence.

Corollary 2 (Asymptotic Quasi-Posterior of Dca)

Let n — oo and m/n — o > 0. If the optimal (Bayes)
classifier h(xz) = I(apg(x) > po~(x)) induces Dca
n (@ then Algorithm with Dcy4  yields the
quasi-posterior distribution

lim 7(0|X;Dca,€) = 70|90 f(po-

n—oo

po) + c(@) <€)
o< 7(0)1(D 5 (po-

where the constant c¢(a) = (aV 1)/(1 + «) is the
classification accuracy of the naive prediction rule
I (z) =1I(a < 1) and the f-divergence Dy corresponds
to f(t)=(a/t)V1—aVl.

po) + c(a) <€)

This result suggests that ®ca with a general classifier
is a suboptimal estimator for f-divergence ® f(pg-||ps)
since the classifier in use is an approximation of the
optimal (Bayes) classifier.

Thirdly, our KL divergence method also resembles one
of the Bayesian indirect inference method .

Corollary 3 (Asymptotic Quasi-Posterior of Day,)

Let n — oo and m/n — a > 0. If an auxiliary model
{pa(:|lg) : ¢ € @} is bijective to the model {py : 6 € O}
and induces D 41, n (@) then Algorithm |1| with ® ap,

yields the quasi-posterior distribution
lim 7(0|X;Daz,€) = m(0| KL(po||pe+) < €)
n—oo
o< m(0)L(KL(po|[po+) < ).
It is worth noting that similar results may not hold

for ®yp defined by and Do defined by , as
their convergences have not been established in the

to MM in some special cases. For summary-based data
discrepancy @, in general

(0] X;Ds,€) = w(0]]|s(0%) — s(O)]| <)

if s(0*) and s() are the limits of S(X) and S(Y") as
n, m — oo. The semi-automatic method advocates an
approximation of the posterior mean as the summary
statistics. As S(X) = E[f|X] — 6* and S(Y) =
E[0]Y] — 0, we have 7(0| X;Dg,€e) = w(0]]|0* — 0] <
€). However, this appealing asymptotic quasi-posterior
is a mirage because the semi-automatic construction
provides only a projection of E[f|y] onto the function
class spanned by the regressors. In most cases, finding
the posterior mean E[f|y], the optimal estimator in
the Bayesian sense, is even harder than the task of
constructing summary statistics.

4 Experiments

We run experiments on five benchmark models: a bi-
variate Gaussian mixture model (d = 2), a M/G/1-
queuing model (d = 5), a bivariate beta model (d = 2),
a moving-average model of order 2 and length d = 10,
and a multivariate g-and-k distribution (d = 5). In
each experiment, we set n = m and the tolerance
threshold e adaptively such that 50 of 10° proposed 6
are accepted.

4.1 Toy Example: Gaussian Mixture Model

The univariate Gaussian mixture model services as
a benchmark model in ABC literatures [20, [24].
Here we use a more challenging bivariate Gaus-
sian mixture model Z ~ Bernoulli(p), X|Z =
0 ~ N{(uo,[0.5,-0.3;-0.3,0.5]), X|Z = 1 ~
N (p1,[0.25,0;0,0.25]).  Unknown parameter 6 =
(p, 1o, #1) consists of the mixture ratio p and sub-
population means pg, 1. We perform ABC on n =
500 observed samples which are generated from the
true parameters p* = 0.3, ps = (+0.7,40.7), pui =
(=0.7,—0.7). The prior we used is p ~ Uniform|0, 1],
o, 1 ~ Uniform[—1, 4+1]%.

Figure [1| shows that the KL divergence ®kr, visibly
outperforms other methods. Dwso, Dy and Dg with
the auxiliary MLE as summary roughly figure out the
true parameters but mix up the two subpopulation
means. The other two methods does not find the true
parameters.

For estimating the mixture ratio p, the KL divergence
method achieves a mean square error of 0.001, more
accurate than other methods (Dwa: 0.002, Dwo: 0.015;
Dca: 0.053; Dg with the auxiliary MLE as summary:
0.020; ®g with the semi-automatic construction as
summary: 0.025).
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Figure 1: Quasi-posteriors for the Gaussian mixture model. Black lines cross at p§ and uj.

4.2 M/G/1-queuing Model

Queuing models are usually easy to simulate from but
have no intractable likelihoods. We adopts a specific
M/G/1-queue that has been studied by ABC meth-
ods [55] 25]. In this model, the service times follows
Uniform[fy, 6] and the inter-arrival times are expo-
nentially distributed with rate 6;3. Each datum is a
5-dimensional vector consisting of the first five inter-
departure times x = (1, z2, T3, T4, 5) after the queue
starts from empty. Unknown parameter 6 = (61,62, 03).
We perform ABC on n = 500 observed samples which
are generated from the true parameters 0* = (1,5,0.2).
The prior we used is 6; ~ Uniform[0, 10], 3 — 6; ~
Uniform[0, 10], #3 ~ Uniform]0, 0.5].

Figure [2] shows that ®kr, produces better inference
for 07 and 03 then ®ws and Dyv. It also captures
03, although the marginal quasi-posterior does not
concentrate as much as those of Do and Dyv. The
summary statistics constructed by the semi-automatic
method using marginal octiles identifies 6] and give
meaningless inference about 5 and 65.

4.3 Bivariate Beta Model

Arnold and Ng [56] defines an 8-parameter model as
follows. U; ~ Gamma(#;,1),i=1,...,8. Let

Vi = (U1 + Us +U7)/(U3 + Usg +Ug),
Vo = (UQ+U5+U8)/(U4+U6 +U7)

then 7y = V1 /(14 V1), Zo = V5 /(14 V3)) are marginally
beta distributed, and Z = (Z1, Z2) jointly follows a
bivariate beta distribution. Crackel and Flegal [57]
considers 5-parameter sub-model by restricting 63 =
04 = 05 = 0. Another variant of this model was studied
by [68]. We apply the methodology to Crackel and
Flegal [57]’s sub-model.

We perform ABC on n = 500 observed samples which

are generated from 6* = (1,1,1,1,1). The parame-
ter setting was used in [56]. The prior we used is
(61,062,606, 07,08) ~ Uniform[0, 5]°. Figure [3| shows an
overall satisfactory performance of Dky, among others.

4.4 Moving-average Model of Order 2

Marin et al. [T4] uses the moving-average model of or-
der 2 as a benchmark model in their review. This
model generates Y; = Y; + 01,1 + 6Y, o, j =

., d with Z; being unobserved noise error terms.
Each datum Y is a time series of length d. We
take Z; to follow Student’s ¢ distribution with 5 de-
grees of freedom and set d = 10. With the prior
(01,02) ~ Uniform([—2, +2] x [-1,+1]), ABC was per-
formed on n = 200 observed samples generated from
0* = (06,02) @KL,DWQ,DMM7©S with auxiliary
MLE as summary obtain comparably high quality quasi-
posteriors. See Figure [4]

4.5 Multivariate g-and-k Distribution

The univariate g-and-k distribution is defined by its
inverse distribution function @ It has no analyti-
cal form of the density function, and the numerical
evaluation of the likelihood function is costly [59].

— e 9%z

1—e N
14_6_%6} (I+27)"2 (9)

where z, is the z-th quantile of the standard normal
distribution, and parameters A, B, g, k are related to
location, scale, skewness and kurtosis, respectively, and
¢ = 0.8 is the conventional choice [25]. As the inver-
sion transform method can conveniently sample from
this distribution by drawing Z ~ N(0,1) i.i.d. and
then transforming them to be g-and-k distributed ran-
dom variables. [60, [5, [61, 25] have performed ABC
on it. Multivariate g-and-k distribution has also been
considered [62] [63]. Here we study a 5-dimensional g-
and-k distribution: first draw (Z1,...,Z5)T ~ N(0,%)

Fl(x)—A—i-B[l—i-c
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Figure 2: Quasi-posteriors for M/G/1-queue model. Black lines intercepts x-axis at true parameters.
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Figure 4: Quasi-posteriors for the moving-average model. Black lines cross at true parameters.

with 3 having sparse structures ¥; =1 and ¥;; = p
if |i —j| = 1 or 0 otherwise, and transform them

marginally as the univariate g-and-k distribution does.
Again @k, obtain comparably high quality quasi-
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posteriors. See Figure 5]

5 Discussion

We add the KL divergence estimators to the arsenal
of data discrepancy measures for ABC. This estimator
converges to the exact KL divergence. Thus Dk, as
the data discrepancy for ABC, yields a quasi-posterior
which eventually concentrates on {6 : KL(pg-||pg) < €}
as the sample size increases. Our method and the maxi-
mum likelihood estimation share the same spirit of find-
ing minimizers of the KL divergence. We also connect
the KL divergence method to the classification accuracy
method ®ca and a Bayesian indirect inference method
D L. Both two methods are somehow suboptimal to
DKL, as they are equivalent to Dky, asymptotically
only if their key ingredients (the prediction rule for
Doa or the auxiliary model for D a1,) are “oracle” ones.
We run experiments on five benchmark models and
compare different data discrepancy measures. In terms
of the quasi-posterior quality, Dk, performs compara-
bly good or even better than Dy, ®ws, and much
better than other methods.

Apart from the quasi-posterior quality, another core
consideration of ABC is the computational tractability

of the data discrepancy function. A whole run of ABC
analysis usually calls the data discrepancy function
millions of times. In case of n = m, the O(nlnn) cost
per call of the KL divergence method is thus attractive,
whereas Dy and Do have O(n?) cost per call.

Our theoretical results assume m = an asymptotically,
and our experiments use the typical setting m = n.
In the experiments, our method performs well when
a € [0.5,1.0]. If « is close to 0 then the commonly-seen
imbalance issue in two sample problems arises.

Our theoretical results also assume n goes to infinity.
For finite data samples, we need the convergence rate
or non-asymptotic error bounds of the KL estimator
in use to quantify the quality of the quasi-posterior
distribution. Unfortunately, apart from the almost sure
convergence result for the KL estimator, there are few
results to more precisely justify the KL estimators in
the literature.
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