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Abstract

It is important to transfer the knowledge from
label-rich source domain to unlabeled target do-
main due to the expensive cost of manual la-
beling efforts. Prior domain adaptation methods
address this problem through aligning the glob-
al distribution statistics between source domain
and target domain, but a drawback of prior meth-
ods is that they ignore the semantic information
contained in samples, e.g., features of backpack-
s in target domain might be mapped near fea-
tures of cars in source domain. In this paper, we
present moving semantic transfer network, which
learn semantic representations for unlabeled tar-
get samples by aligning labeled source centroid
and pseudo-labeled target centroid. Features in
same class but different domains are expected to
be mapped nearby, resulting in an improved tar-
get classification accuracy. Moving average cen-
troid alignment is cautiously designed to com-
pensate the insufficient categorical information
within each mini batch. Experiments testify that
our model yields state of the art results on stan-
dard datasets.

1. Introduction

Deep learning approaches have gained prominence in vari-
ous machine learning problems and applications. However,
the recent success of deep learning depends on massive la-
beled data. Manual large scale labeled data on the target
domain are too expensive or impossible to collect in prac-
tice. Therefore, there is a strong motivation to build an
effective classification model using available labeled data
from other domains. But, this learning paradigms suffers
from the domain shift problem, which is an huge obstacle
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for adapting predictive models to the target domain (Pan &
Yang, 2010).

Learning a discriminative predictor in the presence of the
shift between source domain and target domain is known
as domain adaptation (Pan & Yang, 2010). In recent years,
deep learning has shown its potential to produce transfer-
able features for domain adaptation. Fruitful line of works
have been done in deep domain adaptation (Motiian et al.,
2017b; Tzeng et al., 2014; Long et al., 2015). These meth-
ods aim at matching the marginal distributions across do-
mains while (Zhang et al., 2013; Gong et al., 2016) con-
siders the conditional distribution shift problem. Recently
adversarial adaptation methods (Ganin & Lempitsky, 2015;
Tzeng et al., 2017; Motiian et al., 2017a; Bousmalis et al.,
2016) have shown promising results in domain adaptation.
Adversarial adaptation methods is analogous to genera-
tive adversarial networks (GAN) (Goodfellow et al., 2014).
A domain classifier is trained to tell whether the sample
comes from source domain or target domain. The feature
extractor is trained to minimize the classification loss and
maximize the domain confusion loss. Domain-invariant yet
discriminative features are seemingly obtainable through
the principled lens of adversarial training.

Prior adversarial adaptation methods suffer a main limita-
tion: as the discriminator only enforces the alignment of
global domain statistics, crucial semantic information for
each category might be lost. Even with perfect confusion
alignment, there is no guarantee that samples from differ-
ent domains but with the same class label will map nearby
in the feature space, e.g, features of backpacks in the target
domain may be mapped near features of cars in the source
domain. This lack of semantic alignment is an importan-
t source of performance reduction (Motiian et al., 2017a;
Hoffman et al., 2017; Luo et al., 2017). Recently, seman-
tic transfer for supervised domain adaptation has received
wide attention (Motiian et al., 2017a; Luo et al., 2017). To
date, semantic alignment has not been addressed in unsu-
pervised domain adaptation due to the lack of target label
information.

In this paper, we propose a novel moving semantic trans-
fer network (MSTN) for unsupervised domain adaptation,
where our feature extractor learns to align the distributions
semantically without any labeled target samples. We large-
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ly extend the ability of prior adversarial adaptation methods
by our proposed semantic representation learning module.
We firstly assign pseudo labels to target samples to fix the
problem of lacking target label information. Since there
are obviously false labels in pseudo labels, we wish to use
correctly-pseudo-labeled samples to reduce the bias caused
by falsely-pseudo-labeled samples. So we propose to align
the centroid for each class in source and target domains
instead of treating the pseudo-labeled samples as true di-
rectly. In particular, as we use mini batch SGD in prac-
tice, categorical information is usually insufficient and even
one false label could lead to extremely biased estimation of
the true centroid, moving average centroid is designed for
safer semantic representation learning. Experiments have
proven that MSTN yields state of the art results on standard
datasets. Furthermore, we also find that MSTN stabilizes
the adversarial learning for unsupervised domain adapta-
tion.

2. Related Work

Recently, adversarial learning has been widely adopted in
domain adaptation (Ganin & Lempitsky, 2015; Tzeng et al.,
2015; Hoffman et al., 2017; Motiian et al., 2017a; Tzeng
et al., 2017; Saito et al., 2017b; Long et al., 2017a; Luo
et al., 2017; Sankaranarayanan et al.). Most of adversarial
adaptation methods are based on generative adversarial net-
works (GAN) (Goodfellow et al., 2014). A discriminator is
trained to tell whether the sampled feature comes from the
source domain or target domain while the feature extractor
is trained to fool the discriminator. However, prior unsuper-
vised adversarial domain adaptation methods only enforce
embedding alignment in domain-level instead of class-level
transfer. Lacking the semantic alignment hurts the perfor-
mance of domain adaptation significantly (Motiian et al.,
2017a;b).

Semantic transfer is much easier in supervised domain
adaptation as labeled target samples are available. In recen-
t years, few-shot adversarial learning (Tzeng et al., 2015;
Motiian et al., 2017a; Luo et al., 2017) have been explored
in domain adaptation. Few-shot domain adaptation consid-
ers the task where very few labeled target data are available
in training. (Tzeng et al., 2015) computes the average out-
put probability with source training samples for each cate-
gory, then for each labeled target sample, they optimize the
model to match the distributions over classes to the average
probability. FADA (Motiian et al., 2017a) pairs the labeled
target sample and labeled source sample and the discrim-
inator is trained to tell whether the pair comes from same
domain and same class. (Luo et al., 2017) proposes cross
category similarity for semantic transfer.

In this paper, we consider a more challenging task: unsu-
pervised semantic transfer where there is no labeled target

samples. (Ghifary et al., 2016) proposes to add a decoder
after the feature extractor to enforce the feature extractor
preserving semantic information. (Bousmalis et al., 2016)
propose to decouple the representation into the shared rep-
resentation and private representation. It encourages the
shared and private representation to be orthogonal while
both the representations should be able to be decoded back
to images. (Hoffman et al., 2017) adapts representations at
both the pixel-level and feature-level. It encourages the fea-
ture extractor to preserve semantic information by using the
cycle consistency constraints. (Saito et al., 2017b) uses the
dropout to obtain two different views of input and if the pre-
diction results are different, these target samples are regard-
ed as near decision boundary. They use the boundary infor-
mation to achieve low-density separation of aligned points.
(Saito et al., 2017c) proposes to use two classifiers as dis-
criminators to detect target samples that are far from the
support of the source. These two classifiers are trained ad-
versarial to view input differently. (Pinheiro, 2017) classi-
fies the input samples by computing the distances between
prototype representations of each category.

Previous unsupervised adaptation methods do not necessar-
ily align distributions semantically across domains as they
can not ensure features in same class but different domain-
s are mapped nearby owing to the huge gap for semantic
alignment: no labeled information for target samples. It
means that explicit matching the distributions for each cat-
egory is impossible. To fill this gap, we assign pseudo la-
bels to target samples. Contrary to prior domain adaptation
methods that assign pseudo labels (Chen et al., 2011; Saito
et al., 2017a), we doubt the pseudo labels and propose to
align the centroid to reduce the shift brought by false la-
bels instead of direct matching distributions using pseudo
labels.

3. Method

In this section, we provide details of the proposed model
for domain adaptation. In unsupervised domain adaptation,
we are given by n, labeled samples {(ch), y(SZ))} " from
i=1
the source domain Dg, where xg) € Xg and yg) € Vs.
Additionally, we are also given with n; unlabeled target
samples {(a:éf))} " from the target domain D, where
i=1

xg) € Xr. Xg and Xr are assumed to be different but
related (referred as covariate shift in literature (Shimodaira,
2000)). Target task is assumed to be same with source task.
Our ultimate goal is to develop a deep neural network f :
Xrp — Yr thatis able to predict labels for the samples from
target domain.
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Figure 1. Besides the standard source classification loss, we al-
so employ the domain adversarial loss to align distributions for
two domains. In particular, to learn semantic representations,
we maintain global centroids C% and C% for each class k in t-
wo domains at feature level, i.e., G(X). In each step, source
centroids will be updated with the labeled features (G(Xs), Ys)
while target centroids will be updated with pseudo-labeled fea-
tures (G(Xt), FoG(Xt)). Our model learns to semantically align
the embedding by explicitly restricting the distance between cen-
troids in same class but different domains.

3.1. The model

For unsupervised domain adaptation, in the presence of co-
variate shift, a visual classifier f = F o G is trained by
minimizing the source classification error and the discrep-
ancy between source domain and target domain:

L= E(mvy)NDS [J(f(.’l,‘), y)] +>‘ d(XSa XT) (1)
——

Lpc(Xs,XT)

Lco(Xs,Vs)

where J(.,.) is typically the cross entropy loss, A is the bal-
ance parameter, d(.,.) represents the divergence between
two domains. Typically maximum mean discrepancy (M-
MD) (Long et al., 2015; Tzeng et al., 2014) or domain
adversarial similarity loss (Bousmalis et al., 2016; Ganin
& Lempitsky, 2015) are used to measure the divergence.
We opt to use the domain adversarial similarity loss in our
model. In other words, we employ an additional domain
classifier D to tell whether the features from feature extrac-
tor G arise from source or target domain while G is trained
to fool D. This two-player game is expected to reach an
equilibrium where features from G are domain-invariant.
Formally,

d(Xs, Xr) =E,pg[log(l — D o G(x))]

Beon losDo Gl
However, domain-invariance does not mean discriminabil-
ity. Features of target backpacks can be mapped near
features of source cars while satisfying the condition of
domain-invariant. Separately, it has been shown that super-
vised domain adaptation (SDA) method improves upon un-

supervised domain adaptation (UDA) by making the align-
ment semantic since SDA can ensure features of same class
in different domains are mapped nearby (Motiian et al.,
2017b). Motivated by this key observation, we endeavor
to learn semantic representations for UDA.

Before we go further, we will stop to see how SDA achieves
semantic transfer. For SDA, one could easily align the em-
beddings semantically by adding following objective,

K
LgﬁIA(‘XSVXTvySﬂyT) :Zd(?{;,kgf), 3)
k=1

where K is the number of classes. It means that one can
match the distributions for each class directly in SDA.

Unfortunately, for UDA, we do not have label information
from target domain. To circumvent the impossibility of dis-
tribution matching at class-level, we resort to pseudo labels
(Lee, 2013). We firstly assign pseudo labels to target sam-
ples with the training classifier f and we obtain a pseudo-
labeled target domain. But obviously there must be some
false labels and they may harm the performance of adap-
tation heavily. A natural question then arises as how to
suppress the noisy signals conveyed in those false pseudo-
labeled samples?

We approach the question by centroid alignment. Cen-
troid has long been favored for its simplicity and effective-
ness to represent a set of samples (Luo et al., 2017; Snell
et al., 2017). When computing the centroid for each class,
pseudo-labeled ( correct or wrong ) samples are being used
together and the detrimental influences brought by false
pseudo labels are expected be neutralized by correct pseu-
do labels. Inspired by this, we propose following semantic
transfer objective for unsupervised domain adaptation:

K
LENA (Xs, Vs, Xr) =Y ®(CE,CF), 4
k=1

Lsm (Xs,Vs,XT)

where C¥ and C% are centroid for each class in feature
space, ®(.,.) is any appropriate distance measure func-
tion. We use the squared Euclidean distance ®(x,2’) =
||z — 2'||? in our experiments. In total, we obtain 2K cen-
troids. Through explicitly restricting the distance between
centroids with same class label but different domains, we
can ensure that features in the same class will be mapped
nearby. More importantly, false signals in pseudo-labeled
target domain are suppressed through centroid alignment.

More formally, our totally objective can be written as fol-
lows:

L(Xs, Vs, Xr) =Lc(Xs,Vs) + ALpc(Xs, Xr)

5
+vLsn(Xs, Vs, Xr), ©)
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where A and y are parameters that balance the classification
loss, domain confusion loss and semantic loss. As we can
see, our model is simple and the semantic transfer objective
can be computed in linear time.

3.2. Moving Semantic Transfer Network

Algorithm 1 Moving semantic transfer loss computation in
iteration ¢ in our model. K is the number of classes.
Input: Labeled set S, Unlabeled set T, IV is the batch size,
Training classifier f, Global centroids for two domains:
{Ch)y and (G},
: St = RANDOMSAMPLE(S, N)
T; = RANDOMSAMPLE(T, N)
T; =Labeling(G, f,T})
for k =1to K do

Cgm — ﬁ > G(w;) (From Scratch)

" (@iyi)eSk

>  G(z; (From Scratch)
(2i.:) ETE
8 CE+«+6CE+(1-— 0)C§(t) (Moving Average)
9. CE <+ 0Ck+(1- B)Céi(t) (Moving Average)
10: Loy < Lsy + (I)(CISY, Céi)
11: end for
12: return Lgp

SANNANE S

1
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The proposed model achieves semantic transfer in very
simple form but it suffers two limitations in practice: (1)
As we always uses mini batch SGD for optimization in
practice, categorical information in each batch is usually
insufficient. For instance, it is possible that some class-
es are missing in the current batch of target data since the
batch is randomly selected. (2) If the batch size is small,
even one false pseudo label will lead to the huge deviation
between the pseudo-labeled centroid and true centroid. For
example, when there is one pseudo-labeled car sample in
a target batch but the true label is backpack. Then it will
wrongly guide the alignment between source car features
and target backpack features.

Instead of aligning those newly obtained centroids in each
iteration directly, we propose to align exponential moving
average centroids to address the two aforementioned prob-
lems. As shown in algorithm 1, we maintain global cen-
troids for each class. In each iteration, source centroids are
updated by the labeled source samples while target cen-
troids are updated by pseudo-labeled target samples. Then
we can align those moving average centroids following e-
quation (4).

Moving average centroid alignment works in an intuitive
way: When backpack are missing in current source batch,
we can align the target backpack centroid with the global

source backpack centroid updated in last iteration. Under
the reasonable assumption that centroids change by a lim-
ited step in each iteration, we can still ensure features of
backpacks in two domains are mapped nearby. Meanwhile,
when there is one pseudo-labeled car sample in a target
mini batch but the true label is backpack, moving average
centroids can avoid the aforementioned misalignment as it
also considers the pseudo-labeled backpacks in the past mi-
ni batches.

Our method attempts to align the centroids in same class
but different domains to achieve semantic transfer for un-
supervised domain adaptation. We use pseudo labels from
F to guide the semantic alignment for G. As the learning
proceeds, G will learn semantic representations for target
samples, resulting in an improved accuracy of F. This cy-
cle will gradually enhance the accuracy for target domain.
In addition, we suppress the noisy semantic information by
assigning a small weight to  in early training phase .

3.3. Analysis

In this section, we show the relationship between our
method and the theory of domain adaptation (Ben-David
et al., 2010). The theory bounds the expected error on the
target samples £7(h) by three terms as follows.

Theorem 1. (Ben-David et al., 2010) Let H be the hypoth-
esis class. Given two domains S and 7, we have

1
Vh € H,er(h) <es(h) + §dHAH(87T) +C, (6

where £s(h) is the expected error on the source samples
which can be minimized easily with source label informa-
tion, dya3,(S,T) defines a discrepancy distance between
two distributions S and 7~ w.r.t. a hypothesis set . C is the
shared expected loss and is expected to be negligibly smal-
1, thus usually disregarded by previous methods (Ganin &
Lempitsky, 2015; Long et al., 2015). But it is very impor-
tant and we cannot expect to learn a good target classifier
by minimizing the source error if C is large (Ben-David
et al., 2010).

It is defined as C' = ﬁnlﬁ es(h, fs) + er(h, fr) where fs
€

and f7 are labeling functions for source and target domain
respectively. We show that our method is trying to optimize
the upper bound for C. Recall the triangle inequality for
classification error (Ben-David et al., 2010; Crammer et al.,
2008), which implies that for any labeling functions fi, f2

and f3, we have e(f1, f2) < e(f1, f3) +(f2, f3). Then

C = hmeigss(h, fs) +er(h, fr)
< mines(h, fs) +er(h, fs) +er(fs, fr)

< mines(h, fs) +er(h, fs) +er(fs, f7) +er(fT. f7)
@)
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The first and second term denotes the disagreement be-
tween h and the source labeling function fs. These two
terms should be small as we can easily find such a h in
our hypothesis space to approximate the fs since we have
source labels. Therefore, we seek to minimize the last two
terms. Obviously the last term denotes the false pseudo rate
in our method which would be minimized as learning pro-
ceeds. Now our focus should be the third term e (fs, f7).
This term denotes the disagreement between the source
labeling function and pseudo target labeling function on

target samples. e7(fs, f7) = Eanrll(fs(2), f7(2))];
where [(., .) is typically the O-1 loss function.

Our method aligns the centroid for class k in source domain

S* and pseudo-labeled target domain 717? We can decom-
pose the hypothesis h into the feature extractor G and clas-

sifier . Then we have E, s:G(z) = E__ = G(z). For
e7(fs, f7), it could be rewritten as
Er[l(Fs o G(z), Fz 0 G(x))] (8)

Now the relationship is clear: for source samples in class
k, the source labeling function should return k. We wish to
have target features in class k to be similar with source fea-
tures in class k, so the source labeling function would also
predict those target samples as k, which is consistent with
the prediction results made by pseudo target labeling func-
tion. Consequently, e7(fs, fz) is expected to be small.

In summary, the premise for the success of domain adapta-
tion methods is that the shared expected loss C should be
small. Our method attempts to minimize this item through
aligning the centroid between source domain and pseudo-
labeled target domain.

4. Experiments
4.1. Setup

We evaluate the semantic transfer network with s-
tate of art transfer learning methods. Codes are
available at https://github.com/Mid-Push/
Moving-Semantic-Transfer—Network.

Office-31 (Saenko et al., 2010) is a standard dataset used
for domain adaptation. It contains three distinct domain-
s: Amazon (A) with 2817 images, Webcam (W) with 795
images and DSLR (D) with 498 images. Each domain
contains 31 categories. We examine our methods by em-
ploying the frequently used network structures: AlexNet
(Krizhevsky et al., 2012). For fair comparison, we report
results of methods that are also based on AlexNet.

ImageCLEF-DA is a benchmark dataset for ImageCLE-
F 2014 domain adaptation challenges. Three domains in-
cluding Caltech-256 (C), ImageNet ILSVRC 2012 (I) and
Pascal VOC 2012 (P) share 12 categories. Each domain

contains 600 images and 50 images for each category. Im-
ages in ImageCLEF-DA are of equal size. This dataset has
been used by JAN (Long et al., 2017b). Same, we also ex-
amine our method in AlexNet (Krizhevsky et al., 2012).

MNIST-USPS-SVHN. We explore three digits datasets of
varying difficulty: MNIST (LeCun et al., 1998), USPS and
SVNH (Netzer et al., 2011). Different from Office-31, M-
NIST consists grey digits images of size 28x28, USPS con-
tains 16x16 grey digits and SVHN composes color 32x32
digits images which might contain more than one digit in
each image. MNIST-USPS-SVHN makes a good comple-
ment to previous datasets for diverse domain adaptation s-
cenarios. We conduct experiments in a resolution-going-
down way, SVHN— MNIST and MNIST —USPS.

Baseline Methods For Office-31 and ImageCLEF-DA
datasets, we compare with state-of-art transfer learn-
ing methods: Deep Domain Confusion (DDC) (Tzeng
et al, 2014), Deep Reconstruction Classification Net-
work (DRCN) (Ghifary et al., 2016), Gradient Reversal
(RevGrad) (Ganin & Lempitsky, 2015), Residual Trans-
fer Network (RTN) (Long et al., 2016), Joint Adaptation
Network (JAN) (Long et al., 2017b), Automatic Domain
Alignment Layer (AutoDIAL) (Carlucci et al., 2017). We
cite the results of AlexNet, DDC, RevGrad, RTN, JAN
from (Long et al., 2017b). For DRCN and AutoDIAL, we
cite the results in their papers. For ImageCLEF-DA, we
compare with AlexNet, RTN, RevGrad and JAN. Results
are cited from (Long et al., 2017a). To further validate our
method, we also conduct experiments on MNIST-USPS-
SVHN. We compare with Domain of Confusion (DOC)
(Tzengetal., 2014), RevGrad (Ganin & Lempitsky, 2015),
Asymmetric Tri-Training (AsmTri) (Saito et al., 2017a),
Couple GAN (CoGAN) (Liu & Tuzel, 2016), Label Effi-
cient Learning (LEL) (Luo et al., 2017) and Adversarial
Discriminative Domain Adaptation (ADDA) (Tzeng et al.,
2017). Results of source only, DOC, RevGrad, CoGAN
and ADDA are cited from (Tzeng et al., 2017). For the
rest, we cite the result in their papers respectively.

We follow standard evaluation protocols for unsupervised
domain adaptation as (Long et al., 2015; Ganin & Lempit-
sky, 2015; Long et al., 2017b). We use all labeled source
examples and all unlabeled target examples. We repeat
each transfer task three times and report the mean accuracy
as well as the standard error.

4.2. Implementation Detail

CNN architecture. In our experiments on Office and
ImageCLEF-DA, we employed the AlexNet architecture.
Following RTN (Long et al., 2016) and RevGrad (Ganin
& Lempitsky, 2015), a bottleneck layer fcb with 256 units
is added after the fc7 layer for safer transfer representa-
tion learning. We use fcb as inputs to the discriminator
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Table 1. Classification accuracies (%) on office-31 datasets.(AlexNet)

Method A—-W D—-W W=D A—=D D—A W—=A Avg
AlexNet (Krizhevsky et al., 2012) 61.6£0.5 954£0.3 99.0£0.2 63.840.5 51.1£0.6 49.840.4 70.1
DDC (Tzeng et al., 2014) 61.8+0.4 95.0+0.5 98.5+0.4 64.44+0.3 52.1+0.6 52.2+0.4 70.6
DRCN (Ghifary et al., 2016) 68.7£0.3 96.4+0.3 99.0+0.2 66.840.5 56.0+0.5 54.94+0.5 73.6
RevGrad (Ganin & Lempitsky, 2015) 73.0+0.5 96.4+0.3 99.2+0.3 72.3+0.3 53.44+04 51.240.5 74.3
RTN (Long et al., 2016) 73.3+£0.3 96.840.2 99.64+0.1 71.0+0.2 50.5+0.3 51.0+0.1 73.7
JAN (Long et al., 2017b) 749403 96.64+0.2 99.5+0.2 71.840.2 58.3+0.3 55.0+0.4 76.0
AutoDIAL (Carlucci et al., 2017) 75.5 96.6 99.5 73.6 58.1 594 77.1
MSTN (centroid from scratch,ours) 80.3+0.7 96.8+0.1 100+0.1 73.8£0.1 60.7£0.1 59.94+0.3 78.6
MSTN (ours) 80.5+0.4 96.9+0.1 99.9+0.1 74.5+0.4 62.5+0.4 60.0+0.6 79.1
Table 2. Classification accuracies (%) on ImageCLEF-DA datasets.(AlexNet)
Method I1—-P P—1 I1—-C C—1 C—P P—C Avg
AlexNet (Krizhevsky et al., 2012) 66.2+0.2 70.0£0.2 84.3+0.2 71.3+0.4 59.3+0.5 84.5+0.3 73.9
RTN (Long et al., 2016) 67.4+0.3 81.3£0.3 89.5+0.4 78.0+0.2 62.0+0.2 89.1+0.1 77.9
RevGrad (Ganin & Lempitsky, 2015) 66.5+0.5 81.8+0.4 89.0+0.5 79.840.5 63.5+0.4 88.7+0.4 78.2
JAN (Long et al., 2017b) 67.2+0.5 82.8+0.4 91.3+0.5 80.0+0.5 63.5+0.4 91.0+04 79.3
MSTN (ours ) 67.3+0.3 82.8+0.2 91.5+0.1 81.7+0.3 65.3+0.2 91.24+0.2 80.0

as well as the centroid computation. Image random flip-
ping and cropping are adopted following JAN (Long et al.,
2017b). For a fair comparison with other methods, we also
finetune the convl, conv2, conv3, convd, convb, fcb, fcT
layers with pretrained AlexNet. For discriminator, we
use same architecture with RevGrad, x—1024—1024—1,
dropout is used.

For digit classification datasets, we use same architecture
with ADDA (Tzeng et al., 2017): two convolution layers
followed by max pool layers and two fully connected layers
are placed behind. Digit images are also cast to 28x28x1 in
all experiments for fair comparison. For discriminator, we
also use same architecture with ADDA, x—500—500—1.
Batch Normalization is inserted in convolutional layers.

Hyper-parameters tuning. A good unsupervised domain
adaptation method should provide ways to tune hyper-
parameters in an unsupervised way. Therefore, no labeled
target samples are referred for tuning hyper-paramters. We
essentially tune the three hyper-parameters: weight balance
parameter )\, v and moving average coefficient 6. For 6, we
first apply reverse validation (Ganin & Lempitsky, 2015)
on the experiments MNIST—USPS. Then we use the op-
timal value for € in all experiments. We set #=0.7 in all
our experiments. For the weight balance parameter, we set
A= m — 1, where v is set to 10 and p is training
progress changing from O to 1. It is optimized by (Ganin
& Lempitsky, 2015) to suppress noisy signal from the dis-
criminator at the early stages of training. Considering that
our pseudo-labeled semantic loss would be inaccurate in
early training phase, we also set v = A to suppress the
noisy information brought by false labels. Stochastic gra-

dient descent with 0.9 momentum is used. The learning
rate is annealed by i, = (1#!70.11)/3, where 10=0.01, a=10
and =0.75 (Ganin & Lempitsky, 2015). We set the learn-
ing rate for finetuned layers to be 0.1 times of that from
scratch. We set the batch size to 128 for each domain. Do-
main adversarial loss is scaled by 0.1 following (Ganin &

Lempitsky, 2015).

4.3. Results
We now discuss the experiment settings and results.

Office-31 We follow the fully transductive evaluation pro-
tocol in (Ganin & Lempitsky, 2015). Results of office-31
are shown in Table 1. The proposed model outperforms all
comparison methods on all transfer tasks. It is notewor-
thy that MSTN results in improved accuracies on four hard
transfer task: A—W, A—D, D—A and W—A. On these
four difficult tasks, our method promote classification ac-
curacies substantially. The encouraging improvement on
hard transfer tasks proves the importance of semantic align-
ment and suggests that our method is able to learn semantic
representations effectively despite of its simplicity.

The results reveal several interesting observations. (1)
Deep transfer learning methods outperform standard deep
learning methods. It validates that the idea that domain
shift in two distributions can not be removed by deep net-
works (Yosinski et al., 2014). (2) DRCN (Ghifary et al.,
2016) trains an extra decoder to enforce the extracted fea-
tures contain semantic information and thus outperformed
standard deep learning methods by about 5%. This im-
provement also indicates the importance to learn seman-
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Figure 2. SVHN—MNIST and D— A. We confirmed the effects our method through a visualization of the learned representations using t-
distributed stochastic neighbor embedding (t-SNE) (Maaten & Hinton, 2008). Blue points are source samples and red are target samples.
(a) are trained without any adaptation. (b)(d) are trained with previous adversarial domain adaptation methods. (c)(e) Adaptation using
our proposed method. As we can see, compared to non-adapted method, adversarial adaptation methods successfully fuse the source
features and target features. But semantic information are ignored and ambiguous features are generated near class boundary, which is
catastrophic for classification task. Our model attempts to fuse features in the same class while separate features in different classes.

tic representations. (3) Separately, distribution matching
methods RevGrad, RTN and JAN, also bring significan-
t improvement over source only. Our method combines the
advantages of DRCN and distribution matching methods
in a very simple form. In particular, in contrast to using a
decoder to extract semantic information, our method also
ensures that the features in same classes but different do-
mains are similar, which has not been addressed by any ex-
isting methods. For completeness, we also conduct a visu-
alization over transfer task D— A for comparison between
our learned representation and prior adversarial adaptation
method RevGrad (Ganin & Lempitsky, 2015). See Fig (2d)
and (2e). Representations learned by our model are better
behaved compared to RevGrad and representations in dif-
ferent classes are dispersed instead of mixing up.

To dive deeper into our method, we present the results of
one variants of MSTN: MSTN with centroid from scratch.
We try to align the centroids directly computed in each it-
eration instead of using moving average. The results are
interesting, for the simple transfer task D—W, W—D, this
variant are comparable or outperforms the moving average.
This phenomenon is plausible since the prediction accura-
cy for target domains is already very high and introduc-
ing the past semantic information might introduce noisy
information too. But take a look at the hard transfer task
D—A and A—D, the improvement carried by the moving
average centroid is obvious. This curious result provides
us two training instructions: (1) for easy transfer tasks or
large batch size, one could just align the centroids direct-
ly to learn semantic representation in each iteration. (2) for
hard transfer tasks or small batch size, one could effectively
pass the semantic information by aligning the moving av-
erage centroids. Note that our method does not introduce
any extra network architecture but only few memory that
are used to keep these global centroids.

ImageCLEF-DA For ImageCLEF-DA, results are shown
in Table 2. Images are balanced in ImageCLEF-DA, so

Table 3. Classification accuracies (%) on digit recognitions tasks

Source SVHN  MNIST
Target MNIST USPS
Source Only 60.1+1.1 75.2+1.6
DOC (Tzeng et al., 2014) 68.1£0.3 79.1£0.5
RevGrad (Ganin & Lempit- 73.9 77.1+1.8
sky, 2015)

AsmTri (Saito et al., 2017a) 86.0 -

coGAN (Liu & Tuzel, 2016) - 91.2+0.8
ADDA (Tzeng et al., 2017) 76.0£1.8 89.4£0.2
LEL (Luo et al., 2017) 81.0£0.3 -

MSTN (ours) 91.7£1.5 929+1.1

our model could be more focused on transfer learning by
avoiding the class imbalance problem. But the domain size
is limited to 600, which might not be sufficient for training
the network. Our model outperforms existing methods in
most transfer tasks, but with less improvement compared
to Office-31. This result also validates hypothesis in (Long
et al., 2017b) that the domain size may cause shift.

MNIST-USPS-SVHN We follow the protocols in (Tzeng
et al., 2017): For adaptation between SVHN and MNIST,
we use the training set of SVHN and test set of MNIST
for evaluation. For adaptation between MNIST and USPS,
we randomly sample 2000 images from MNIST and 1800
from USPS. For SVHN—MNIST, the transfer gap is huge
since images in SVHN might contain multiple digits. Thus,
to avoid ending up in a local minimum, we do not use the
learning rate annealing as suggested by (Ganin & Lempit-
sky, 2015).

Results of MNIST-USPS-SVHN are shown in Table 3. It
shows that our model outperforms all comparison method-
s. For MNIST — USPS, our method obtains a desirable
performance. On the difficult transfer task SVHN — M-
NIST, Our model outperforms existing methods by about
6.6%. In Fig. 2, the representations in SVHN—MNIST
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Figure 3. Standard CNN in grey, Revgrad (Ganin & Lempitsky, 2015) in green, our model MSTN in red. (a)(c): Comparison of Jensen-
Shannon divegence (JSD) estimate during training for RevGrad and our proposed method MSTN. Our model stabilizes and accelerates
the adversarial learning process. (b)(d): Comparison of testing accuracies of different models. (e): Comparison of .A-distance of

different models.

are visualized. Fig (2a) shows the representations without
any adapt. As we can see, the distributions are separat-
ed between domains. This highlights the importance for
transfer learning. Fig (2b) shows the result for RevGrad
(Ganin & Lempitsky, 2015), a typical adversarial domain
adaptation method. Features are successfully fused but it
also exhibits a serious problem: features generated are near
class boundary. Features of digit 1 in target domain could
be easily mapped to the intermediate space between class
1 and class 2, which is obviously a damage to classifica-
tion tasks. In contrast, Fig (2c) shows the representations
that learned by our method. Features in the same class are
mapped closer. In particular, features with different class-
es are dispersed, making the features more discriminative.
The well-behaved learned features suggests that our mod-
el successfully pass the semantic information to the feature
generator and our model is capable to learn semantic repre-
sentations without any label information for target domain.

A-distance. Based on the theory in (Ben-David et al.,
2010), A-distance is usually used to measure domain dis-
crepancy. The empirical .A-distance is simple to compute:
ds = 2(1 — 2¢), where ¢ is the generalization error of a
classifier trained with the binary classification task of dis-
criminating the source and target. Results are shown in Fig
(3e). We compared our method with domain adaptation
methods RevGrad(Ganin & Lempitsky, 2015). We use a
kernel SVM as the classifier. We compare our model to
the standard CNN and RevGrad. From this graph, we can
see that with the adversarial adaptation module embedded,
our model reduces the A distances compared to CNN. But
when compared to RevGrad, the results are close. This
finding tells us that our semantic representation module is
not focusing on reducing the global distribution discrepan-
cy. The superior performance lead by our method shows
that only reducing the global distribution discrepancy for
domain adaptation is far from enough.

Convergence As our model involves the adversarial adap-
tation module, we testify their performance on convergence
from two different aspects. The first is the testing accuracy
as shown in Fig (3b)(3d). Our model has similar conver-

gence speed as RevGrad.

Since the adversarial module in our model and RevGrad
works analogous to GAN (Goodfellow et al., 2014), we
will check our model from GAN’s perspective. We adopt
the min-max game in GAN. It has been proved that when
the discriminator is optimal, the generator involved in the
min-max game in a GAN is reducing the Jenson-Shannon
Divergence (JSD). For the discriminator in adversarial
adaptation, it is trained to maximize Lp = E,p,[logl —
D(z)] + E.wp,[logD(z)], which is a lower bound of
2JS(Dg, Dr)-2log2. Therefore, following (Arjovsky &
Bottou, 2017), we plot the quantity of %/j p + log2, which
is the lower bound of the JS distance. Results are shown
in Fig (32)(3c). We can make following observations: (1)
different from the vanishing generator gradient problem in
traditional GANSs, the manifolds where features generated
by adversarial adaptation methods lies seems to be perfect-
ly aligned. So the gradients for the feature extractor will not
vanish but towards reducing the JS distance. This justifies
the feasibility for adversarial domain adaptation methods.
(2) Compared to RevGrad, our model is more stable and
accelerate the minimization process for JSD. It indicates
that our method stabilize the notorious unstable adversarial
training through semantic alignment.

5. Conclusion

In this paper, we propose a novel method which aims at
learning semantic representations for unsupervised domain
adaptation. Unlike previous domain adaptation methods
that solely match distribution at domain-level, we propos-
es to match distribution at class-level and align features se-
mantically without any target labels. We use centroid align-
ment to guide the feature extractor to preserve class infor-
mation for target samples in aligning domains and moving
average centroid is cautiously designed to tackle the prob-
lem where a mini-batch may be insufficient for covering
all class distribution in each training step. Experiments on
three different domain adaptation scenarios testify the effi-
cacy of our proposed approach.
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