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Abstract
In transfer learning, what and how to transfer are

two primary issues to be addressed, as different

transfer learning algorithms applied between a

source and a target domain result in different

knowledge transferred and thereby the perfor-

mance improvement in the target domain. Deter-

mining the optimal one that maximizes the perfor-

mance improvement requires either exhaustive ex-

ploration or considerable expertise. Meanwhile, it

is widely accepted in educational psychology that

human beings improve transfer learning skills of

deciding what to transfer through meta-cognitive

reflection on inductive transfer learning practices.

Motivated by this, we propose a novel transfer

learning framework known as Learning to Trans-
fer (L2T) to automatically determine what and

how to transfer are the best by leveraging previ-

ous transfer learning experiences. We establish

the L2T framework in two stages: 1) we learn

a reflection function encrypting transfer learning

skills from experiences; and 2) we infer what and

how to transfer are the best for a future pair of do-

mains by optimizing the reflection function. We

also theoretically analyse the algorithmic stability

and generalization bound of L2T, and empirically

demonstrate its superiority over several state-of-

the-art transfer learning algorithms.

1. Introduction
Inspired by human beings’ capabilities to transfer knowl-

edge across tasks, transfer learning aims to leverage knowl-

edge from a source domain to improve the learning per-

formance or minimize the number of labeled examples re-

quired in a target domain. It is of particular significance

when tackling tasks with limited labeled examples. Transfer

learning has proved its wide applicability in, for example,
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image classification (Long et al., 2015), sentiment classifica-

tion (Blitzer et al., 2006), dialog systems (Mo et al., 2016),

and urban computing (Wei et al., 2016).

Three key research issues in transfer learning, pointed

by Pan & Yang, are when to transfer, how to transfer, and

what to transfer. Once transfer learning from a source do-

main is considered to benefit a target domain (when to trans-

fer), an algorithm (how to transfer) discovers the transfer-

able knowledge across domains (what to transfer). Differ-

ent algorithms are likely to discover different transferable

knowledge, and thereby lead to uneven transfer learning

effectiveness which is evaluated by the performance im-

provement over non-transfer baselines in a target domain.

To achieve the optimal performance improvement for a tar-

get domain given a source domain, researchers may try

tens to hundreds of transfer learning algorithms covering

instance (Dai et al., 2007), parameter (Tommasi et al., 2014),

and feature (Pan et al., 2011) based algorithms. Such brute-

force exploration is computationally expensive and practi-

cally impossible. As a tradeoff, a sub-optimal improvement

is usually obtained from a heuristically selected algorithm,

which unfortunately requires considerable expertise in an

ad-hoc and unsystematic manner.

Exploring different algorithms is not the only way to opti-

mize what to transfer. Previous transfer learning experiences

do also help, which has been widely accepted in educational

psychology (Luria, 1976; Belmont et al., 1982). Human

beings sharpen transfer learning skills of deciding what to

transfer by conducting meta-cognitive reflection on diverse

transfer learning experiences. For example, children who

are good at playing chess may transfer mathematical skills,

visuospatial skills, and decision making skills learned from

chess to solve arithmetic problems, to solve pattern match-

ing puzzles, and to play basketball, respectively. At a later

age, it will be easier for them to decide to transfer mathemat-

ical and decision making skills learned from chess, rather

than visuospatial skills, to market investment. Unfortunate-

ly, all existing transfer learning algorithms transfer from

scratch and ignore previous transfer learning experiences.

Motivated by this, we propose a novel transfer learning

framework called Learning to Transfer (L2T). The key idea

of the L2T is to enhance the transfer learning effectiveness

from a source to a target domain by leveraging previous
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transfer learning experiences to optimize what and how to

transfer between them. To achieve the goal, we establish the

L2T in two stages. During the first stage, we encode each

transfer learning experience into three components: a pair

of source and target domains, the transferred knowledge

between them parameterized as latent feature factors, and

performance improvement. We learn from all experiences

a reflection function which maps a pair of domains and the

transferred knowledge between them to the performance

improvement. The reflection function, therefore, is believed

to encrypt transfer learning skills of deciding what and how

to transfer. In the second stage, what to transfer between

a newly arrived pair of domains is optimized so that the

value of the learned reflection function, matching to the

performance improvement, is maximized.

The contribution of this paper lies in that we propose a nov-

el transfer learning framework which opens a new door to

improve transfer learning effectiveness by taking advantage

of previous transfer learning experiences. The L2T can

discover more transferable knowledge in a systematic and

automatic fashion without requiring considerable expertise.

We have also provided theoretic analyses to its algorithmic

stability and generalization bound, and conducted compre-

hensive empirical studies showing the L2T’s superiority

over state-of-the-art transfer learning algorithms.

2. Related Work
Transfer Learning Pan & Yang identified three key re-

search issues in transfer learning as what, how, and when

to transfer. Parameters (Yang et al., 2007a; Tommasi et al.,

2014), instances (Dai et al., 2007), or latent feature fac-

tors (Pan et al., 2011) can be transferred between domains.

A few works (Yang et al., 2007a; Tommasi et al., 2014)

transfer parameters from source domains to regularize pa-

rameters of SVM-based models in a target domain. In (Dai

et al., 2007), a basic learner in a target domain is boosted by

borrowing the most useful source instances. Various tech-

niques capable of learning transferable latent feature factors
between domains have been investigated extensively. These

techniques include manually selected pivot features (Blitzer

et al., 2006), dimension reduction (Pan et al., 2011; Bak-

tashmotlagh et al., 2013; 2014), collective matrix factor-

ization (Long et al., 2014), dictionary learning and sparse

coding (Raina et al., 2007; Zhang et al., 2016), manifold

learning (Gopalan et al., 2011; Gong et al., 2012), and deep

learning (Yosinski et al., 2014; Long et al., 2015; Tzeng

et al., 2015). Unlike L2T, all existing transfer learning stud-

ies transfer from scratch, i.e., only considering the pair of

domains of interest but ignoring previous transfer learning

experiences. Better yet, L2T can even collect all algorithms’

wisdom together, considering that any algorithm mentioned

above can be applied in a transfer learning experience.

Transfer Learning

Multi-task Learning

Lifelong Learning
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Figure 1. Illustration of the differences between our work and the

other three lines of work.

Multi-task Learning Multi-task learning (Caruana, 1997;

Argyriou et al., 2007) trains multiple related tasks simultane-

ously and learns shared knowledge among tasks, so that all

tasks reinforce each other in generalization abilities. How-

ever, multi-task learning assumes that training and testing

examples follow the same distribution, as Figure 1 shows,

which is different from transfer learning we focus on.

Lifelong Learning Assuming a new learning task to lie

in the same environment as training tasks, learning to

learn (Thrun & Pratt, 1998) or meta-learning (Maurer, 2005;

Finn et al., 2017; Al-Shedivat et al., 2018) transfers the

knowledge shared among training tasks to the new task.

(Ruvolo & Eaton, 2013; Pentina & Lampert, 2015) consider

lifelong learning as online meta-learning. Though L2T and

lifelong (meta) learning both aim to improve a learning sys-

tem by leveraging histories, L2T differs from them in that

each historical experience we consider is a transfer learn-

ing task rather than a traditional learning task as Figure 1

illustrates. Thus we learn transfer learning skills instead of

task-sharing knowledge.

3. Learning to Transfer
We begin by first briefing the proposed L2T framework.

Then we detail the two stages in L2T, i.e., learning transfer

learning skills from previous transfer learning experiences

and applying those skills to infer what and how to transfer

for a future pair of source and target domains.

3.1. The L2T Framework

A L2T agent previously conducted transfer learning sev-

eral times, and kept a record of Ne transfer learning ex-

periences. We define each transfer learning experience

as Ee = (〈Se, Te〉, ae, le) in which Se = {Xs
e,y

s
e} and

Te = {Xt
e,y

t
e} denote a source domain and a target domain,

respectively. X∗
e ∈ R

n∗
e×m represents the feature matrix

if either domain has n∗
e examples in a m-dimensional fea-

ture space X ∗
e , where the superscript ∗ can be either s or

t to denote a source or a target domain. y∗
e ∈ Y∗

e denotes

the vector of labels with the length being n∗
le. The num-

ber of target labeled examples is much smaller than that of

source labeled examples, i.e., nt
le � ns

le. We focus on the
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optimize what to transfer for a target pair of source and target domains
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Figure 2. Illustration of the L2T framework: in the training stage, we have Ne transfer learning experiences {E1, · · · , ENe} from which

we learn a reflection function f encrypting transfer learning skills; in the testing stage, given the (Ne + 1)-th source-target pair and the

learned reflection function f ( 1 ), we optimize the transferred knowledge between them, i.e., W∗
Ne+1, by maximizing the value of f ( 2 ).

setting X s
e = X t

e and Ys
e �= Yt

e for each pair of domains.

ae ∈ A = {a1, · · · , aNa
} denotes a transfer learning algo-

rithm having been applied between Se and Te. Suppose that

the transferred knowledge by the algorithm ae can be param-

eterized as We. Finally, each transfer learning experience is

labeled by the performance improvement ratio le = pste /pte,

where pte is the learning performance (e.g., classification

accuracy) on a test dataset in Te without transfer and pste is

that on the same test dataset after transferring We from Se.

With Ne transfer learning experiences {E1, · · · , ENe
} as

the input, the L2T agent learns a function f such that

f(Se, Te,We) approximates le as shown in the training

stage of Figure 2. We call f a reflection function which

encrypts meta-cognitive transfer learning skills - what and

how to transfer can maximize the improvement ratio giv-

en a pair of domains. Whenever a new pair of domains

〈SNe+1, TNe+1〉 arrives, the L2T agent can optimize the

knowledge to be transferred, i.e., W∗
Ne+1, by maximizing

the value of f (see step 2 of the testing stage in Figure 2).

3.2. Parameterizing What to Transfer

Transfer learning algorithms applied can vary from expe-

rience to experience. Uniformly parameterizing “what

to transfer” for any algorithm out of the base algorithm

set A is a prerequisite for learning the reflection func-

tion. In this work, we consider A to contain algorithms

transferring single-level latent feature factors, because ex-

isting parameter-based and instance-based algorithms can-

not address the transfer learning setting we focus on (i.e.,

X e
s = X e

t and Ye
s �= Ye

t ). Though limited parameter-based

algorithms (Yang et al., 2007a; Tommasi et al., 2014) can

transfer across domains in heterogeneous label spaces, they

can only handle binary classification problems. Deep neural

network based algorithms (Yosinski et al., 2014; Long et al.,

2015; Tzeng et al., 2015) transferring latent feature factors

in multiple levels are left for our future research. As a result,

we parameterize what to transfer with a latent feature factor

matrix W which is elaborated in the following.

Latent feature factor based algorithms aim to learn domain-

invariant feature factors across domains. Consider classify-

ing dog pictures as a source domain and cat pictures as a

target domain. The domain-invariant feature factors may in-

clude eyes, mouth, tails, etc. What to transfer, in this case, is

the shared feature factors across domains. The way of defin-

ing domain-invariant feature factors dictates two groups of

latent feature factor based algorithms, i.e., common latent

space based and manifold ensemble based algorithms.

Common Latent Space Based This line of algorithms,

including but not limited to TCA (Pan et al., 2011), LS-

DT (Zhang et al., 2016), and DIP (Baktashmotlagh et al.,

2013), assumes that domain-invariant feature factors lie in

a single shared latent space. We denote by ϕ the function

mapping original feature representation into the latent space.

If ϕ is linear, it can be represented as an embedding matrix

W ∈ R
m×u where u is the dimensionality of the latent

space. Therefore, we can parameterize what to transfer we

focus on with W which describes u latent feature factors.

Otherwise, if ϕ is nonlinear, what to transfer can still be

parameterized with W. Though a nonlinear ϕ is not ex-

plicitly specified in most cases such as LSDT using sparse

coding, target examples represented in the latent space

Zt
e=ϕ(Xt

e)∈R
nt
e×u are always available. Consequently,

we obtain the similarity metric matrix (Cao et al., 2013) in

the latent space, i.e., G=(Xt
e)

†Zt
e(Z

t
e)

T [(Xt
e)

T ]†∈R
m×m

according to Xt
eG(Xt

e)
T =Zt

e(Z
t
e)

T , where (Xt
e)

† is the

pseudo-inverse of Xt
e. LDL decomposition on G = LDLT

brings the latent feature factor matrix W = LD1/2.

Manifold Ensemble Based Initiated by Gopalan et al.,

manifold ensemble based algorithms consider that a source

and a target domain share multiple subspaces (of the

same dimension) as points on the Grassmann manifold be-

tween them. The representation of target examples on u

domain-invariant latent factors turns to Z
t(nu)
e =[ϕ1(X

t
e),

· · ·, ϕnu(X
t
e)] ∈ R

nt
e×nuu, if nu subspaces on the mani-

fold are sampled. When all continuous subspaces on the

manifold are sampled, i.e., nu →∞, Gong et al. proved
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that Z
t(∞)
e (Z

t(∞)
e )T =Xt

eG(Xt
e)

T where G is the similar-

ity metric matrix. For computational details of G, please

refer to (Gong et al., 2012). W=LD1/2 with L and D ob-

tained from performing LDL decomposition on G=LDLT ,

therefore, is also qualified to represent latent feature factors

distributed in a series of subspaces on a manifold.

3.3. Learning from Experiences

The goal here is to learn a reflection function f such that

f(Se, Te,We) can approximate le for all experiences {E1,
· · · , ENe}. The improvement ratio le is closely related to

two aspects: 1) the difference between a source and a target

domain in the shared latent space, and 2) the discriminative

ability of a target domain in the latent space. The smaller

difference guarantees more overlap between domains in

the latent space, which signifies more transferable latent

feature factors and higher improvement ratios as a result.

The discriminative ability of a target domain in the latent

space is also vital to improve performances. Therefore, we

build f to take both aspects into consideration.

The Difference between a Source and a Target Domain
We follow (Pan et al., 2011) and adopt the maximum mean

discrepancy (MMD) (Gretton et al., 2012b) to measure the

difference between domains. By mapping two domains into

the reproducing kernel Hilbert space (RKHS), MMD em-

pirically evaluates the distance between the mean of source

examples and that of target examples:

d̂2e(X
s
eWe,X

t
eWe)

=

∥∥∥∥ 1

ns
e

ns
e∑

i=1

φ(xs
eiWe)−

1

nt
e

nt
e∑

j=1

φ(xt
ejWe)

∥∥∥∥
2

H

=
1

(ns
e)2

ns
e∑

i,i′=1

K(xs
eiWe,x

s
ei′We)

+
1

(nt
e)2

nt
e∑

j,j′=1

K(xt
ejWe,x

t
ej′We)

− 2

ns
ent

e

ns
e,n

t
e∑

i,j=1

K(xs
eiWe,x

t
ejWe), (1)

where xt
ej is the j-th example in Xt

e, and φ maps from

the u-dimensional latent space to the RKHS H. K(·, ·) =
〈φ(·), φ(·)〉 is the kernel function. Different kernels K lead

to different MMD distances and thereby different values

of f . Thus learning the reflection function f is equivalent

to optimizing K so that the MMD distance can well char-

acterize the improvement ratio le for all pairs of domains.

Inspired by multi-kernel MMD (Gretton et al., 2012b), we

parameterize K as a linear combination of Nk PSD kernels,

i.e., K=
∑Nk

k=1 βkKk (βk≥0, ∀k), and learn the coefficients

β=[β1,· · ·, βNk ] instead. Using β, the MMD can be rewrit-

ten as d̂2e(X
s
eWe,X

t
eWe)=

∑Nk
k=1 βkd̂

2
e(k)(X

s
eWe,X

t
eWe)=

βT d̂e, where d̂e=[d̂2e(1),· · ·, d̂2e(Nk)
] with d̂2e(k) computed by

the k-th kernel Kk. In this paper, we consider RBF kernels

Kk(a,b)=exp(−‖a−b‖2/δk) by varying the bandwidth δk.

Unfortunately, the MMD alone is insufficient to mea-

sure the difference between domains. The distance vari-

ance among all pairs of instances across domains is

also required to fully characterize the difference. A

pair of domains with small MMD but extremely high

variance still have little overlap. Equation (1) is actu-

ally the empirical estimation of d2e(X
s
eWe,X

t
eWe) =

Exs
ex

s′
e xt

ex
t′
e
h(xs

e,x
s′
e ,x

t
e,x

t′
e ) (Gretton et al., 2012b) where

h(xs
e,x

s′
e ,x

t
e,x

t′
e ) = K(xs

eWe,x
s′
e We)+K(xt

eWe,x
t′
e We)−

K(xs
eWe, x

t′
e We) − K(xs′

e We,x
t
eWe). Consequently, the

distance variance, σ2
e , equals

σ2
e(X

s
eWe,X

t
eWe) =Exs

ex
s′
e xt

ex
t′
e
[(h(xs

e,x
s′
e ,x

t
e,x

t′
e )

−Exs
ex

s′
e xt

ex
t′
e
h(xs

e,x
s′
e ,x

t
e,x

t′
e ))

2].

To be consistent with the MMD characterized with Nk PSD

kernels, we rewrite σ2
e = βTQeβ where Qe = cov(h) =[

σe(1,1) ··· σe(1,Nk)
··· ··· ···

σe(Nk,1) ···σe(Nk,Nk)

]
. Each element σe(k1,k2) = cov(hk1 ,

hk2) = E [(hk1−Ehk1)(hk2−Ehk2)]. Note that Ehk1 is

shorthand for Exs
ex

s′
e xt

ex
t′
e
hk1(x

s
e,x

s′
e ,x

t
e,x

t′
e ) where hk1

is calculated using the k1-th kernel. We detail the empirical

estimate Q̂e of Qe in the supplementary due to page limit.

The Discriminative Ability of a Target Domain In view

of limited labeled examples in a target domain, we resort

to unlabeled examples to evaluate the discriminative ability.

The principles of the unlabeled discriminant criterion are

two-fold: 1) similar examples should still be neighbours

after being embedded into the latent space; and 2) dissim-

ilar examples should be far away. We adopt the unlabeled

discriminant criterion proposed in (Yang et al., 2007b),

τe = tr(WT
e S

N
e We)/tr(WT

e S
L
e We),

where SL
e =

∑nt
e

j,j′=1

Hjj′
(nt

e)
2 (x

t
ej − xt

ej′)(x
t
ej − xt

ej′)
T

is the local scatter covariance matrix with the

neighbour information Hjj′ defined as Hjj′ ={
K(xt

ej ,x
t
ej′), if xt

ej ∈ Nr(x
t
ej′) and xt

ej′ ∈ Nr(x
t
ej)

0, otherwise
.

If xt
ej and xt

ej′ are mutual r-nearest neighbours to each

other, Hjj′ equals the kernel value K(xt
ej ,x

t
ej′). By max-

imizing the unlabeled discriminant criterion τe, the local

scatter covariance matrix guarantees the first principle, while

SN
e =

∑nt
e

j,j′=1

K(xt
ej ,x

t
ej′ )−Hjj′

(nt
e)

2 (xt
ej − xt

ej′)(x
t
ej − xt

ej′)
T ,

the non-local scatter covariance matrix, enforces the second

principle. τe also depends on kernels which in this case in-

dicate different neighbour information and different degrees

of similarity between neighboured examples. With τe(k) ob-

tained from the k-th kernel Kk, the unlabeled discriminant

criterion τe can be written as τe =
∑Nk

k=1 βkτe(k) = βT τ e

where τ e = [τe(1), · · · , τe(Nk)].
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The Optimization Problem Combining the two aspects

abovementioned to model the reflection function f , we fi-

nally formulate the optimization problem as follows,

β∗, λ∗, μ∗, b∗ =

arg min
β,λ,μ,b

Ne∑
e=1

Lh

(
βT d̂e + λβT Q̂eβ +

μ

βT τ e

+ b,
1

le

)

+ γ1R(β, λ, μ, b),

s.t. βk ≥ 0, ∀k ∈ {1, · · · , Nk}, λ ≥ 0, μ ≥ 0, (2)

where 1/f = βT d̂e + λβT Q̂eβ + μ
βT τe

+ b and Lh(·) is the

Huber regression loss (Huber et al., 1964) constraining the

value of 1/f to be as close to 1/le as possible. γ1 con-

trols the complexity of the parameters by l2-regularization.

Minimizing the difference between domains, including the

MMD distance βT d̂e and the distance variance βT Q̂eβ, and

meanwhile maximizing the discriminant criterion βT τ e in

the target domain will contribute a large performance im-

provement ratio le (i.e., a small 1/le). λ and μ balance the

importance of the three terms in f , and b is the bias term.

3.4. Inferring What to Transfer

Once the L2T agent has learned the reflection function

f(S, T ,W;β∗, λ∗, μ∗, b∗), it takes advantage of the func-

tion to optimize what to transfer, i.e., the latent feature factor

matrix W, for a newly arrived source domain SNe+1 and

a target domain TNe+1. The optimal latent feature factor

matrix W∗
Ne+1 should maximize the value of f . To this

end, we optimize the following objective with regard to W,

W
∗
Ne+1 =argmax

W
f(SNe+1, TNe+1,W;β

∗
, λ

∗
, μ

∗
, b

∗
) − γ2‖W‖2

F

=argmin
W

(β
∗
)
T
d̂W + λ

∗
(β

∗
)
T
Q̂Wβ

∗
+ μ

∗ 1

(β∗)T τW

+ γ2‖W‖2
F , (3)

where ‖ · ‖F denotes the matrix Frobenius norm and γ2
controls the complexity of W. The first and second terms

in problem (3) can be calculated as

(β
∗
)
T
d̂W =

Nk∑
k=1

β
∗
k

[
1

a2

a∑
i,i′=1

Kk(viW,vi′W)+

1

b2

b∑
j,j′=1

Kk(wjW,wj′W) − 2

ab

a,b∑
i,j=1

Kk(viW,wjW)

]
,

(β
∗
)
T
Q̂Wβ

∗
=

1

n2 − 1

n∑
i,i′=1

Nk∑
k=1

{
β
∗
k

[
Kk(viW,vi′W)+

Kk(wiW,wi′W) − 2Kk(viW,wi′W) − 1

n2

n∑
i,i′=1

(
Kk(viW,vi′W)

+ Kk(wiW,wi′W) − 2Kk(viW,wi′W)

)]}2

,

where the shorthand vi = xs
(Ne+1)i, vi′ = xs

(Ne+1)i′ , wj =

xt
(Ne+1)j , wj′ =xt

(Ne+1)j′ , a=ns
Ne+1, and b=nt

Ne+1 are used

due to space limit. Note that n=min(ns
Ne+1, n

t
Ne+1). The

third term in problem (3) can be computed as (β∗)T τW =∑Nk

k=1 β
∗
k

tr(WTSN
k W)

tr(WTSL
kW)

. We optimize the non-convex prob-

lem (3) w.r.t W by employing a conjugate gradient method

in which the gradient is listed in the supplementary material.

4. Stability and Generalization Bounds
In this section, we would theoretically investigate how previ-

ous transfer learning experiences influence a transfer learn-

ing task of interest. We also provide and prove the algo-

rithmic stability and generalization bound for latent feature

factor based transfer learning algorithms without experi-

ences considered in the supplementary.

Consider S = {〈S1, T1〉,· · ·, 〈SNe , TNe〉} to be Ne transfer

learning experiences or the so-called meta-samples (Maurer,

2005). Let L(S) be our algorithm that learns meta-cognitive

knowledge from Ne transfer learning experiences in S and

applies the knowledge to the (Ne+1)-th transfer learning

task 〈SNe+1, TNe+1〉. To analyse the stability and give the

generalization bound, we make an assumption on the dis-

tribution from which all Ne transfer learning experiences

as meta-samples are sampled. For every environment E
we have, all Ne pairs of source and target domains in S
are drawn according to an algebraic β-mixing stationary

distribution (DE)Ne , which is not i.i.d.. Intuitively, the al-

gebraical β-mixing stationary distribution (see Definition

2 in (Mohri & Rostamizadeh, 2010)) with the β-mixing

coefficient β(m)≤β0/m
r models the dependence between

future samples and past samples by a distance of at least m.

The independent block technique (Bernstein, 1927) has been

widely adopted to deal with non-i.i.d. learning problems.

Under this assumption, L(S) is uniformly stable.

Theorem 1. Suppose that for any xt
e and for any yte we

have ‖xt
e‖2≤rx and |yt

e|≤B. Meanwhile, for any e-th trans-
fer learning experience, we assume that the latent feature
factor matrix ‖We‖≤ rW . To meet the assumption above,
we reasonably simplify L(S) so that the latent feature fac-
tor matrix for the (Ne+1)-th transfer learning task is a
linear combination of all Ne historical latent factor feature
matrices plus a noisy latent feature matrix Wε satisfying
‖Wε‖≤rε, i.e., WNe+1=

∑Ne
e=1 ceWe+Wε with each coef-

ficient 0≤ce≤1. Our algorithm L(S) is uniformly stable.
For any 〈S, T 〉 as the coming transfer learning task, the
following inequality holds:∣∣lemp(L(S), (S, T ))− lemp(L(S

e0), (S, T ))
∣∣

≤ 4(4Ne − 3 + rε/rW )B2rx
λN2

e

∼ O
(
B2rx
λNe

)
, (4)

where S = {〈S1, T1〉, · · · , 〈Se0−1, Te0−1〉, 〈Se0 , Te0〉, 〈Se0+1,

Te0+1〉, · · · , 〈SNe , TNe〉} denotes the full set of meta-samples,
and Se0 = {〈S1, T1〉, · · · , 〈Se0−1, Te0−1〉, 〈Se′0 , Te′0〉, 〈Se0+1,

Te0+1〉, · · · , 〈SNe , TNe〉} represents the meta-samples with
the e0-th meta-example replaced as 〈Se′0 , Te′0〉.
By generalizing S to be meta-samples S and hS to be L2T

L(S), we apply Corollary 21 in (Mohri & Rostamizadeh,
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2010) to give the generalization bound of our algorithm

L(S) in Theorem 2.

Theorem 2. Let δ′ = δ−(Ne)
1

2(r+1)
− 1

4 (r > 1 is required).
Then for any sample S of size Ne drawn according to an
algebraic β-mixing stationary distribution, and δ ≥ 0 such
that δ′ ≥ 0, the following generalization bound holds with
probability at least 1− δ:

∣∣R(L(S))−RNe(L(S))
∣∣ < O

(
(Ne)

1
2(r+1)

− 1
4

√
log(

1

δ′
)

)
,

where R(L(S)) and RNe
(L(S)) denote the expected risk

and the empirical risk of L2T over meta-samples, respec-
tively. A larger mixing parameter r, indicating more inde-
pendence, would lead to a tighter bound.

Theorem 2 tells that as the number of transfer learning

experiences, i.e., Ne, increases, L2T tends to produce a

tighter generalization bound. This fact lays the foundation

for further conducting L2T in an online manner which can

gradually assimilate transfer learning experiences and con-

tinuously improve. The detailed proofs for Theorem 1 and 2

can be found in the supplementary.

5. Experiments
Datasets We evaluate the L2T framework on two image

datasets, Caltech-256 (Griffin et al., 2007) and Sketch-

es (Eitz et al., 2012). Caltech-256, collected from Google

Images, contains a total of 30,607 images in 256 categories.

The Sketches dataset, however, consists of 20,000 unique

sketches by human beings that are evenly distributed over

250 different categories. We construct each pair of source

and target domains by randomly sampling three categories

from Caltech-256 as the source domain and randomly sam-

pling three categories from Sketches as the target domain,

which we give an example in the supplementary material.

Consequently, there are 20, 000/250× 3 = 720 examples

in a target domain of each pair. In total, we generate 1,000

training pairs for preparing transfer learning experiences,

500 validation pairs to determine hyperparameters of the

reflection function, and 500 testing pairs to evaluate the

reflection function. We characterize each image from both

datasets with 4,096-dimensional features extracted by a con-

volutional neural network pre-trained by ImageNet.

In this paper we generate transfer learning experiences by

ourselves, because we are the first to consider transfer learn-

ing experiences and there exists no off-the-shelf datasets. In

real-world applications, either the number of labeled exam-

ples in a target domain or the transfer learning algorithm

could vary from experience to experience. In order to mimic

the real environment, we prepare each transfer learning ex-

perience by randomly selecting a transfer learning algorithm

from a base set A and randomly setting the number of la-

beled target examples in the range of [3, 120]. The randomly

generated training experiences, lying in the same environ-

ment (generated by one dataset), are non i.i.d., which fit the

algebraical β-mixing assumption theoretically in Section 4.

Baselines and Evaluation Metrics We compare L2T with

the following nine baseline algorithms in three classes:

• Non-transfer: Original builds a model using labeled

data in a target domain only.

• Common latent space based transfer learning algo-

rithms: TCA (Pan et al., 2011), ITL (Shi & Sha, 2012),

CMF (Long et al., 2014), LSDT (Zhang et al., 2016),

STL (Raina et al., 2007), DIP (Baktashmotlagh et al.,

2013) and SIE (Baktashmotlagh et al., 2014).

• Manifold ensemble based algorithms: GFK (Gong

et al., 2012).

The eight feature-based transfer learning algorithms also

constitute the base set A. Based on feature representa-

tions obtained by different algorithms, we use the nearest-

neighbor classifier to perform three-class classification for

the target domain.

One evaluation metric is classification accuracy on testing

examples of a target domain. However, accuracies are in-

comparable for different target domains at different levels

of difficulty. The other evaluation metric we adopt is the

performance improvement ratio defined in Section 3.1, so

as to compare the L2T over different pairs of domains.
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Figure 4. Average performance improvement ratio comparison

over 500 testing pairs of source and target domains.

Performance Comparison In this experiment, we learn

a reflection function from 1,000 transfer learning experi-

ences, and evaluate the reflection function on 500 testing

pairs of source and target domains by comparing the av-

erage performance improvement ratio to the baselines. In

building the reflection function, we use 33 RBF kernels

with the bandwidth δk in the range of [2−8η : 20.5η : 28η]

where η = 1
ns
en

t
eNe

∑Ne
e=1

∑ns
e,n

t
e

i,j=1 ‖xs
eiW − xt

ejW‖22 follows

the median trick (Gretton et al., 2012a). As Figure 4 shows,

on average the proposed L2T framework outperforms the

baselines up to 10% when varying the number of labeled

samples in the target domain. As the number of labeled

target examples increases from 3 to 120, the performance

improvement ratio becomes smaller because the accuracy

of Original without transfer tends to increase. The baseline



Transfer Learning via Learning to Transfer

0 15 30 45 60 75 90 105 120
The number of labeled examples

in a target domain

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

 Original
 TCA
 ITL
 CMF
 LSDT

 GFK
 STL
 DIP
 SIE
 L2T

(a) galaxy / harpsichord / saturn
→ kangaroo / standing-bird / sun
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(b) bat / mountain-bike / saddle
→ bush / person / walkie-talkie
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(c) microwave / spider / watch
→ spoon / trumpet / wheel
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(d) bridge / harp / traffic-light
→ door-handle / hand / present
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(e) bridge / helicopter / tripod
→ key / parrot / traffic-light
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(f) caculator / straw / french-horn
→ doorknob / palm-tree / scissors

Figure 3. Classification accuracies on six pairs of source and target domains.

algorithms behave differently. The transferable knowledge

learned by LSDT helps a target domain a lot when train-

ing examples are scarce, while GFK performs poorly until

training examples become more. STL is almost the worst

baseline because it learns a dictionary from the source do-

main only but ignores the target domain. It runs at a high

risk of failure especially when two domains are distant. DIP

and SIE, which minimize the MMD and Hellinger distance

between domains subject to manifold constraints, are com-

petent. Note that we have run the paired t-test between L2T

and each baseline with all the p-values in the order of 10−12,

concluding that the L2T is significantly superior.

We also randomly select six of the 500 testing pairs and

compare classification accuracies by different algorithms

for each pair in Figure 3. The performance of all baselines

varies from pair to pair. Among all the baseline methods,

TCA performs the best when transferring between domains

in Figure 3a and LSDT is the most superior in Figure 3c.

However, L2T consistently outperforms the baselines on

all the settings. For some pairs, e.g., Figures 3a, 3c and 3f,

the three classes in a target domain are comparably easy

to tell apart, hence Original without transfer can achieve

even better results than some transfer learning algorithms.

In this case, L2T still improves by discovering the best

transferable knowledge from the source domain, especially

when the number of labeled examples is small (see Figure 3c

and 3f). If two domains are very related, e.g., the source

with “galaxy” and “saturn” and the target with “sun” in

Figure 3a, L2T even finds out more transferable knowledge

and contributes more significant improvement.

Varying the Experiences We further investigate how trans-

fer learning experiences used to learn the reflection function

influence the performance of L2T. In this experiment, we

evaluate on 50 randomly sampled pairs out of the 500 testing

pairs in order to efficiently investigate a wide range of cases

in the following. The sampled set is unbiased and sufficient

to characterize such influence, evidenced by the asymptotic

consistency between the average performance improvement

ratio on the 500 pairs in Figure 4 and that on the 50 pairs

in the last line of Table 1. First, we fix the number of trans-

fer learning experiences to be 1,000 and vary the set of

base transfer learning algorithms. The results are shown in

Table 1. Even with experiences generated by single base al-

gorithm, e.g., ITL or DIP, the L2T can still learn a reflection

function that significantly better (p-value < 0.05) decides

what to transfer than using ITL or DIP directly. With more

base algorithms involved, the transfer learning experiences

are more diverse to cover more situations of source-target

pairs and the knowledge transferred between them. As a

result, the L2T learns a better reflection function and there-

by achieves higher performance improvement ratios, which

coincides with Theorem 2 where a larger r indicating more

independence between experiences gives a tighter bound.

Second, we fix the set of base algorithms to include all the

eight baselines and vary the number of transfer learning

experiences used for training. As shown in Figure 5, the

average performance improvement ratio achieved by L2T

tends to increase as the number of labeled examples in the

target domain decreases, given that Original without trans-

fer performs extremely poor with scarce labeled examples.
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Table 1. The performance improvement ratios by varying different approaches used to generate transfer learning experiences. For example,

“ITL+L2T” denotes the L2T learning from experiences generated by ITL only, and the second line of results for “ITL+L2T” is the p-value

compared to ITL.

# of labeled

examples
3 15 30 45 60 75 90 105 120

TCA 1.0181 1.0024 0.9965 0.9973 0.9941 0.9933 0.9938 0.9927 0.9928

ITL 1.0188 1.0248 1.0250 1.0254 1.0250 1.0224 1.0232 1.0224 1.0224

CMF 0.9607 1.0203 1.0224 1.0218 1.0190 1.0158 1.0144 1.0142 1.0125

LSDT 1.0828 1.0168 0.9988 0.9940 0.9895 0.9867 0.9854 0.9834 0.9837

GFK 0.9729 1.0180 1.0232 1.0243 1.0246 1.0219 1.0239 1.0229 1.0225

STL 0.9973 0.9771 0.9715 0.9713 0.9715 0.9694 0.9705 0.9693 0.9693

DIP 1.0875 1.0633 1.0518 1.0465 1.0425 1.0372 1.0365 1.0343 1.0317

SIE 1.0745 1.0579 1.0485 1.0448 1.0412 1.0359 1.0359 1.0334 1.0318

ITL + L2T
1.1210 1.0737 1.0577 1.0506 1.0456 1.0398 1.0394 1.0361 1.0359

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0002

DIP + L2T
1.1605 1.0927 1.0718 1.0620 1.0562 1.0500 1.0483 1.0461 1.0451

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(LSDT/GFK

/SIE) + L2T

1.1660 1.0973 1.0746 1.0652 1.0573 1.0506 1.0485 1.0451 1.0429

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(TCA/ITL/CMF/GFK

/LSDT/SIE/) + L2T

1.1712 1.0954 1.0707 1.0607 1.0529 1.0469 1.0449 1.0421 1.0416

0.0000 0.0000 0.0001 0.0001 0.0106 0.0019 0.0002 0.0047 0.0106

all + L2T 1.1872 1.1054 1.0795 1.0699 1.0616 1.0551 1.0531 1.0500 1.0502
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Figure 5. Varying the number of transfer

learning experiences.
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More importantly, it increases as the number of experiences

increases, which coincides with Theorem 2.

Varying the Reflection Function We also study the influ-

ence of different configurations of the reflection function on

the performance of L2T. First, we vary the components to

be considered in building the reflection function f as shown

in Figure 6. Considering single type, either MMD, variance,

or the discriminant criterion, brings inferior performance

and even negative transfer. L2T taking all the three factors

into consideration outperforms the others, demonstrating

that the three components are all necessary and mutually

reinforcing. With all the three components included, we

plot values of the learned β∗ in the supplementary materi-

al. Second, we change the kernels used. In Figure 7, we

present results by either narrowing down or extending the

range [2−8η : 20.5η : 28η]. Obviously, more kernels (e.g.,

[2−12η : 20.5η : 212η]), capable of encrypting better trans-

fer learning skills in the reflection function, achieve larger

performance improvement ratios.

6. Conclusion
In this paper, we propose a novel L2T framework for transfer

learning which automatically optimizes what and how to

transfer between a source and a target domain by leveraging

previous transfer learning experiences. In particular, L2T

learns a reflection function mapping a pair of domains and

the knowledge transferred between them to the performance

improvement ratio. When a new pair of domains arrives,

L2T optimizes what and how to transfer by maximizing the

value of the learned reflection function. We believe that L2T

opens a new door to improve transfer learning by leveraging

transfer learning experiences. Many research issues, e.g.,

incorporating hierarchical latent feature factors as what to

transfer and designing online L2T, can be further examined.
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