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Abstract
We show that training a deep network using batch
normalization is equivalent to approximate infer-
ence in Bayesian models. We further demon-
strate that this finding allows us to make mean-
ingful estimates of the model uncertainty us-
ing conventional architectures, without modifi-
cations to the network or the training proce-
dure. Our approach is thoroughly validated by
measuring the quality of uncertainty in a series
of empirical experiments on different tasks. It
outperforms baselines with strong statistical sig-
nificance, and displays competitive performance
with recent Bayesian approaches.

1. Introduction
Deep learning has dramatically advanced the state of the
art in a number of domains. Despite their unprecedented
discriminative power, deep networks are prone to make
mistakes. Nevertheless, they can already be found in set-
tings where errors carry serious repercussions such as au-
tonomous vehicles (Chen et al., 2016) and high frequency
trading. We can soon expect automated systems to screen
for various types of cancer (Esteva et al., 2017; Shen, 2017)
and diagnose biopsies (Djuric et al., 2017). As autonomous
systems based on deep learning are increasingly deployed
in settings with the potential to cause physical or economic
harm, we need to develop a better understanding of when
we can be confident in the estimates produced by deep net-
works, and when we should be less certain.

Standard deep learning techniques used for supervised
learning lack methods to account for uncertainty in the
model. This can be problematic when the network en-
counters conditions it was not exposed to during training,
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or if the network is confronted with adversarial examples
(Goodfellow et al., 2014). When exposed to data outside
the distribution it was trained on, the network is forced to
extrapolate, which can lead to unpredictable behavior.

If the network can provide information about its uncer-
tainty in addition to its point estimate, disaster may be
avoided. In this work, we focus on estimating such pre-
dictive uncertainties in deep networks (Figure 1).

The Bayesian approach provides a theoretical framework
for modeling uncertainty (Ghahramani, 2015), which has
prompted several attempts to extend neural networks (NN)
into a Bayesian setting. Most notably, Bayesian neural net-
works (BNNs) have been studied since the 1990’s (Neal,
2012), but do not scale well and struggle to compete with
modern deep learning architectures. Recently, (Gal &
Ghahramani, 2015) developed a practical solution to obtain
uncertainty estimates by casting dropout training in con-
ventional deep networks as a Bayesian approximation of a
Gaussian Process (its correspondence to a general approx-
imate Bayesian model was shown in (Gal, 2016)). They
showed that any network trained with dropout is an ap-
proximate Bayesian model, and uncertainty estimates can
be obtained by computing the variance on multiple predic-
tions with different dropout masks.

The inference in this technique, called Monte Carlo
Dropout (MCDO), has an attractive quality: it can be ap-
plied to any pre-trained networks with dropout layers. Un-
certainty estimates come (nearly) for free. However, not all
architectures use dropout, and most modern networks have
adopted other regularization techniques. Batch normaliza-
tion (BN), in particular, has become widespread thanks to
its ability to stabilize learning with improved generalization
(Ioffe & Szegedy, 2015).

An interesting aspect of BN is that the mini-batch statis-
tics used for training each iteration depend on randomly
selected batch members. We exploit this stochasticity and
show that training using batch normalization, like dropout,
can be cast as an approximate Bayesian inference. We
demonstrate how this finding allows us to make meaning-
ful estimates of the model uncertainty in a technique we
call Monte Carlo Batch Normalization (MCBN) (Figure 1).
The method we propose can be applied to any network us-
ing standard batch normalization.
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Figure 1. Training a deep network using batch normalization
is equivalent to approximate inference in Bayesian models.
Thus, uncertainty estimates can be obtained from any network
using BN through a simple procedure. At inference, several mini-
batches are constructed by taking random samples to accompany
the query. The mean and variance of the outputs are used to esti-
mate the predictive distribution (MCBN). Here, we show results
on a toy dataset from a network with three hidden layers (30 units
per layer). Training data is depicted as dots. The solid line is the
predictive mean of 500 stochastic forward passes and the shaded
areas represent the model’s uncertainty. The dashed lines depict a
minimal baseline for uncertainty (CUBN), see Section 4.1.

We validate our approach by empirical experiments on a
variety of datasets and tasks, including regression and im-
age classification. We measure uncertainty quality relative
to a baseline of fixed uncertainty, and show that MCBN
outperforms the baseline on nearly all datasets with strong
statistical significance. We also show that the uncertainty
quality of MCBN is on par with other recent approximate
Bayesian networks.

2. Related Work
Bayesian models provide a natural framework for model-
ing uncertainty, and several approaches have been devel-
oped to adapt NNs to Bayesian reasoning. A common ap-
proach is to place a prior distribution (often a Gaussian)
over each parameter. The resulting model corresponds to
a Gaussian process for infinite parameters (Neal, 1995),
and a Bayesian NN (MacKay, 1992) for a finite number of
parameters. Inference in BNNs is difficult however (Gal,
2016), so focus has thus shifted to techniques that approx-
imate the posterior, approximate BNNs. Methods based on
variational inference (VI) typically rely on a fully factor-
ized approximate distribution (Kingma & Welling, 2014;
Hinton & Van Camp, 1993), but often do not scale. To alle-
viate these difficulties, (Graves, 2011) proposed a model
using sampling methods to estimate a factorized poste-
rior. Probabilistic backpropagation (PBP), estimates a fac-
torized posterior via expectation propagation (Hernández-
Lobato & Adams, 2015).

Using several strategies to address scaling issues, Deep

Gaussian Processes show superior performance in terms of
RMSE and uncertainty quality compared to state-of-the-art
approximate BNNs (Bui et al., 2016)1. Another recent ap-
proach to Bayesian learning, Bayesian hypernetworks, use
a NN to learn a distribution of parameters over another net-
work (Krueger et al., 2017). Multiplicative Normalizing
Flows for variational Bayesian networks (MNF) (Louizos
& Welling, 2017) is a recent model that formulates a pos-
terior dependent on auxiliary variables. MNF achieves a
highly flexible posterior by the application of normalizing
flows to the auxiliary variables.

Although these recent techniques address some of the dif-
ficulties with approximate BNNs, they all require modifi-
cations to the architecture or the way networks are trained,
as well as specialized knowledge from practitioners. Re-
cently, (Gal & Ghahramani, 2015) showed that a network
trained with dropout implicitly performs the VI objective.
Therefore any network trained with dropout can be treated
as an approximate Bayesian model by making multiple
predictions through the network while sampling different
dropout masks for each prediction. The mean and variance
of the predictions are used in the estimation of the mean
and variance of the predictive distribution 2.

3. Method
In the following, we introduce Bayesian models and a vari-
ational approximation using Kullback-Leibler (KL) diver-
gence following (Gal, 2016). We continue by showing that
a batch normalized deep network can be seen as an ap-
proximate Bayesian model. Employing theoretical insights
and empirical analysis, we study the induced prior on the
parameters when using batch normalization. Finally, we
describe the procedure for estimating the uncertainty of a
batch normalized network’s output.3

3.1. Bayesian Modeling

We assume a finite training set D = {(xi,yi)}i=1:N where
each (xi,yi) is a sample-label pair. Using D, we are inter-
ested in learning an inference function fω(x,y) with pa-
rameters ω. In deterministic models, the estimated label ŷ
is obtained as follows:

ŷ = arg max
y

fω(x,y)

In probabilistic models we let fω(x,y) = p(y|x,ω). In
Bayesian modeling, in contrast to finding a point estimate

1By uncertainty quality, we refer to predictive probability dis-
tributions as measured by PLL and CRPS.

2This technique is referred to as “MC Dropout” in the original
work, though we refer to it here as MCDO.

3While the method applies to FC or Conv layers, the induced
prior from weight decay (Section 3.3) is studied for FC layers.
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of the model parameters, the idea is to estimate an (ap-
proximate) posterior distribution of the model parameters
p(ω|D) to be used for probabilistic prediction:

p(y|x,D) =

∫
fω(x,y)p(ω|D)dω

The predicted label, ŷ, can then be accordingly obtained by
sampling p(y|x,D) or taking its maxima.

Variational Approximation In approximate Bayesian
modeling, a common approach is to learn a parame-
terized approximating distribution qθ(ω) that minimizes
KL(qθ(ω)||p(ω|D)); the Kullback-Leibler divergence of
the true posterior w.r.t. its approximation. Minimizing this
KL divergence is equivalent to the following minimization
while being free of the data term p(D) 4:

LVA(θ) :=−
N∑
i=1

∫
qθ(ω) ln fω(xi,yi)dω

+ KL(qθ(ω)||p(ω))

During optimization, we want to take the derivative of the
expected likelihood w.r.t. the learnable parameters θ. We
use the same MC estimate as in (Gal, 2016) (explained in
Appendix Section 1.1), such that one realized ω̂i is taken
for each sample i 5. Optimizing over mini-batches of size
M , the approximated objective becomes:

L̂VA(θ) := −N
M

M∑
i=1

ln fω̂i(xi,yi) + KL(qθ(ω)||p(ω)) (1)

The first term is the data likelihood and the second term
is the divergence of the prior w.r.t. the approximated poste-
rior.

3.2. Batch Normalized Deep Nets as Bayesian Modeling

We now describe the optimization procedure of a deep net-
work with batch normalization and draw the resemblance
to the approximate Bayesian modeling in Eq (1).

The inference function of a feed-forward deep network
with L layers can be described as:

fω(x) = WLa(WL−1...a(W2a(W1x))

4Achieved by constructing the Evidence Lower Bound, called
ELBO, and assuming i.i.d. observation noise; details can be found
in Appendix Section 1.1.

5While a MC integration using a single sample is a weak ap-
proximation, in an iterative optimization for θ several samples
will be taken over time.

where a(.) is an element-wise nonlinearity function and
Wl is the weight vector at layer l. Furthermore, we de-
note the input to layer l as xl with x1 = x and we then set
hl = Wlxl. Parenthesized super-index for matrices (e.g.
W(j)) and vectors (e.g. x(j)) indicates jth row and element
respectively. Super-index u refers to a specific unit at layer
l, (e.g. Wu = Wl,(j), hu = hl,(j)). 6

Batch Normalization Each layer of a deep network is
constructed by several linear units whose parameters are
the rows of the weight matrix W. Batch normalization is
a unit-wise operation proposed in (Ioffe & Szegedy, 2015)
to standardize the distribution of each unit’s input. For FC
layers, it converts a unit’s input hu in the following way:

ĥu =
hu − E[hu]√

Var[hu]

where the expectations are computed over the training
set during evaluation, and mini-batch during training (in
deep networks, the weight matrices are often optimized us-
ing back-propagated errors calculated on mini-batches of
data)7. Therefore, during training, the estimated mean and
variance on the mini-batch B is used, which we denote by
µB and σB respectively. This makes the inference at train-
ing time for a sample x a stochastic process, varying based
on other samples in the mini-batch.

Loss Function and Optimization Training deep net-
works with mini-batch optimization involves a (regular-
ized) risk minimization with the following form:

LRR(ω) :=
1

M

M∑
i=1

l(ŷi,yi) + Ω(ω)

where the first term is the empirical loss on the training
data and the second term is a regularization penalty act-
ing as a prior on model parameters ω. If the loss l is
cross-entropy for classification or sum-of-squares for re-
gression problems (assuming i.i.d. Gaussian noise on la-
bels), the first term is equivalent to minimizing the negative
log-likelihood:

LRR(ω) := − 1

Mτ

M∑
i=1

ln fω(xi,yi) + Ω(ω)

6For a (softmax) classification network, fω(x) is a vector with
fω(x,y) = fω(x)(y), for regression networks with i.i.d. Gaus-
sian noise we have fω(x,y) = N (fω(x), τ−1I).

7It also learns an affine transformation for each unit with pa-
rameters γ and β, omitted for brevity: x̂(j)affine = γ(j)x̂(j) + β(j).
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with τ = 1 for classification. In a network
with batch normalization, the model parameters include
{W1:L,γ1:L,β1:L,µ1:L

B ,σ1:L
B }. If we decouple the learn-

able parameters θ = {W1:L,γ1:L,β1:L} from the stochas-
tic parameters ω = {µ1:L

B ,σ1:L
B }, we get the following ob-

jective at each step of the mini-batch optimization:

LRR(θ) := − 1

Mτ

M∑
i=1

ln f{θ,ω̂i}(xi,yi) + Ω(θ) (2)

where ω̂i is the means and variances for sample i’s mini-
batch at a certain training step. Note that while ω̂i formally
needs to be i.i.d. for each training example, a batch normal-
ized network samples the stochastic parameters once per
training step (mini-batch). For a large number of epochs,
however, the distribution of sampled batch members for a
given training example converges to the i.i.d. case.

In a batch normalized network, qθ(ω) corresponds to the
joint distribution of the weights, induced by the random-
ness of the normalization parameters µ1:L

B ,σ1:L
B , as im-

plied by the repeated sampling from D during training.
This is an approximation of the true posterior, where we
have restricted the posterior to lie within the domain of
our parametric network and source of randomness. With
that, we can estimate the uncertainty of predictions from
a trained batch normalized network using the inherent
stochasticity of BN (Section 3.4).

3.3. Prior p(ω)

Equivalence between the VA and BN training procedures
requires ∂

∂θ of Eq. (1) and Eq. (2) to be equivalent up to a
scaling factor. This is the case if ∂

∂θKL(qθ(ω)||p(ω)) =

Nτ ∂
∂θΩ(θ).

To reconcile this condition, one option is to let the prior
p(ω) imply the regularization term Ω(θ). Eq. (1) reveals
that the contribution of KL(qθ(ω)||p(ω)) to the optimiza-
tion objective is inversely scaled with N . For BN, this cor-
responds to a model with a small Ω(θ) when N is large. In
the limit as N →∞, the optimization objectives of Eq. (1)
and Eq. (2) become identical with no regularization.8

Another option is to let some Ω(θ) imply p(ω). In Ap-
pendix Section 1.4 we explore this with L2-regularization,
also called weight decay (Ω(θ) = λ

∑
l=1:L ||W l||2). We

find that unlike in MCDO (Gal, 2016), some simplifying

8To prove the existence and find an expression of
KL(qθ(ω)||p(ω)), in Appendix Section 1.3 we find that BN ap-
proximately induces Gaussian distributions over BN units’ means
and standard deviations, centered around the population values
given by D. We assume a factorized distribution and Gaussian
priors, and find the corresponding KL(qθ(ω)||p(ω)) components
in Appendix Section 1.4 Eq. (7). These could be used to construct
a custom Ω(θ) for any Gaussian choice of p(ω).

assumptions are necessary to reconcile the VA and BN ob-
jectives with weight decay: no scale and shift applied to
BN layers, uncorrelated units in each layer, BN applied on
all layers, and large N and M . Given these conditions:

p(µuB) = N (µµ,p, σµ,p)

p(σuB) = N (µσ,p, σσ,p)

where µµ,p = 0, σµ,p →∞, µσ,p = 0 and σσ,p → 1
2Nτλl

.

This corresponds to a wide and narrow distribution on BN
units’ means and std. devs respectively, where N accounts
for the narrowness of the prior. Due to its popularity in
deep learning, our experiments in Section 4 are performed
with weight decay.

3.4. Predictive Uncertainty in Batch Normalized Deep
Nets

In the absence of the true posterior, we rely on the approx-
imate posterior to express an approximate predictive distri-
bution:

p∗(y|x,D) :=

∫
fω(x,y)qθ(ω)dω

Following (Gal, 2016) we estimate the first (for regression
and classification) and second (for regression) moments of
the predictive distribution empirically (see Appendix Sec-
tion 1.5 for details):

Ep∗ [y] ≈ 1

T

T∑
i=1

fω̂i
(x)

Covp∗ [y] ≈ τ−1I +
1

T

T∑
i=1

fω̂i
(x)ᵀfω̂i

(x)

− Ep∗ [y]ᵀEp∗ [y]

where each ω̂i corresponds to sampling the net’s stochas-
tic parameters ω = {µ1:L

B ,σ1:L
B } the same way as during

training. Sampling ω̂i therefore involves sampling a batch
B from the training set and updating the parameters in the
BN units, just as if we were taking a training step with B.
From a VA perspective, training the network amounted to
minimizing KL(qθ(ω)||p(ω|D)) wrt θ. Sampling ω̂i from
the training set, and keeping the size of B consistent with
the mini-batch size used during training, ensures that qθ(ω)
during inference remains identical to the approximate pos-
terior optimized during training.

The network is trained just as a regular BN network, but
instead of replacing ω = {µ1:L

B ,σ1:L
B } with population

values from D for inference, we update these parameters
stochastically, once for each forward pass.9 Pseudocode
for estimating predictive mean and variance is given in Al-
gorithm 1.

9As an alternative to using the training set D to sample ω̂i,
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Algorithm 1 MCBN Algorithm
Input: sample x, number of inferences T , batchsize b
Output: mean prediction ŷ, predictive uncertainty σ2

1: y = {}
2: loop for T iterations
3: B ∼ D // mini batch
4: ω̂ = {µB ,σB} // mini batch mean and variance
5: y = y ∪ fω̂(x)
6: end loop
7: ŷ = E[y]
8: σ2 = Cov[y] + τ−1I // for regression

4. Experiments and Results
We assess the uncertainty quality of MCBN quantitatively
and qualitatively. Our quantitative analysis relies on CI-
FAR10 for image classification and eight standard regres-
sion datasets, listed in Appendix Table 1. Publicly avail-
able from the UCI Machine Learning Repository (Univer-
sity of California, 2017) and Delve (Ghahramani, 1996),
these datasets have been used to benchmark comparative
models in recent related literature (see (Hernández-Lobato
& Adams, 2015), (Gal & Ghahramani, 2015), (Bui et al.,
2016) and (Li & Gal, 2017)). We report results using
standard metrics, and also propose useful upper and lower
bounds to normalize these metrics for an easier interpreta-
tion in Section 4.2.

Our qualitative results include the toy dataset in Figure 1
in the style of (Karpathy, 2015), a new visualization of un-
certainty quality that plots test errors sorted by predicted
variance (Figure 2 and Appendix), and image segmentation
results (Figure 2 and Appendix).

4.1. Metrics

We evaluate uncertainty quality based on two standard met-
rics, described below: Predictive Log Likelihood (PLL)
and Continuous Ranked Probability Score (CRPS). To im-
prove the interpretability of the metrics, we propose to nor-
malize them by upper and lower bounds.

Predictive Log Likelihood (PLL) Predictive Log Like-
lihood is widely accepted as the main uncertainty quality
metric for regression (Hernández-Lobato & Adams, 2015;
Gal & Ghahramani, 2015; Bui et al., 2016; Li & Gal, 2017).
A key property of PLL is that it makes no assumptions
about the form of the distribution. The measure is defined
for a probabilistic model fω(x) and a single observation

we could sample from the implied qθ(ω) as modeled in the Ap-
pendix. This would alleviate having to store D for use during
prediction. In our experiments we used D to sample ω̂i however,
and leave the evaluation of the modeled qθ(ω) for future research.

(yi,xi) as:

PLL(fω(x), (yi,xi)) = log p(yi|fω(xi))

where p(yi|fω(xi)) is the model’s predicted PDF evalu-
ated at yi, given the input xi. A more detailed description
is given in the Appendix Section 1.5. The metric is un-
bounded and maximized by a perfect prediction (mode at
yi) with no variance. As the predictive mode moves away
from yi, increasing the variance tends to increase PLL (by
maximizing probability mass at yi). While PLL is an ele-
gant measure, it has been criticized for allowing outliers to
have an overly negative effect on the score (Selten, 1998).

Continuous Ranked Probability Score (CRPS) Con-
tinuous Ranked Probability Score is a measure that takes
the full predicted PDF into account with less sensitivity to
outliers. A prediction with low variance that is slightly off-
set from the true observation will receive a higher score
form CRPS than PLL. In order for CRPS to be analytically
tractable, we need to assume a Gaussian unimodal predic-
tive distribution. CRPS is defined as

CRPS(fω(xi), (yi, xi)) =

∫ ∞
−∞

(
F (y)− 1(y ≥ yi)

)2
dy

where F (y) is the predictive CDF, and 1(y ≥ yi) = 1
if y ≥ yi and 0 otherwise (for univariate distributions)
(Gneiting & Raftery, 2007). CRPS is interpreted as the sum
of the squared area between the CDF and 0 where y < yi
and between the CDF and 1 where y ≥ yi. A perfect pre-
diction with no variance yields a CRPS of 0; for all other
cases the value is larger. CRPS has no upper bound.

4.2. Benchmark models and normalized metrics

It is difficult to interpret the quality of uncertainty from
raw PLL and CRPS values. We propose to normalize the
metrics between useful lower and upper bounds. The nor-
malized measures estimate the performance of an uncer-
tainty model between the trivial solution (constant uncer-
tainty) and optimal uncertainty for each prediction. For
the lower bound, we define a baseline that predicts con-
stant variance regardless of input. The variance is set to
a fixed value that optimizes CRPS on validation data. We
call this model Constant Uncertainty BN (CUBN). It re-
flects our best guess of constant variance on test data –
thus, any improvement in uncertainty quality over CUBN
indicates a sensible estimate of uncertainty. We simi-
larly define a baseline for dropout, Constant Uncertainty
Dropout (CUDO). The modeling of variance (uncertainty)
by MCBN and CUBN are visualized in Figure 1.

An upper bound on uncertainty performance can also
be defined for a probabilistic model f with respect to
CRPS or PLL. For each observation (yi, xi), a value
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for the predictive variance Ti can be chosen that max-
imizes PLL or minimizes CRPS10. Using CUBN as a
lower bound and the optimized CRPS score as the up-
per bound, uncertainty estimates can be normalized be-
tween these bounds (1 indicating optimal performance,
and 0 indicating same performance as fixed uncer-
tainty). We call this normalized measure CRPS =

CRPS(f,(yi,xi))−CRPS(fCU ,(yi,xi))
minT CRPS(f,(yi,xi))−CRPS(fCU ,(yi,xi))

× 100, and the PLL

analogue PLL = PLL(f,(yi,xi))−PLL(fCU ,(yi,xi))
maxT PLL(f,(yi,xi))−PLL(fCU ,(yi,xi))

×100.

4.3. Test setup

Our evaluation compares MCBN to MCDO (Gal &
Ghahramani, 2015) and MNF (Louizos & Welling, 2017)
using the datasets and metrics described above. Our setup
is similar to (Hernández-Lobato & Adams, 2015), which
was also followed by (Gal & Ghahramani, 2015). How-
ever, our comparison implements a different hyperparame-
ter selection, allows for a larger range of dropout rates, and
uses larger networks with two hidden layers.

For the regression task, all models share a similar archi-
tecture: two hidden layers with 50 units each, and ReLU
activations, with the exception of Protein Tertiary Struc-
ture dataset (100 units per hidden layer). Inputs and out-
puts were normalized during training. Results were aver-
aged over five random splits of 20% test and 80% train-
ing and cross-validation (CV) data. For each split, 5-fold
CV by grid search with a RMSE minimization objective
was used to find training hyperparameters and optimal n.o.
epochs, out of a maximum of 2000. For BN-based mod-
els, the hyperparameter grid consisted of a weight decay
factor ranging from 0.1 to 1−15 by a log 10 scale, and a
batch size range from 32 to 1024 by a log 2 scale. For
DO-based models, the hyperparameter grid consisted of
the same weight decay range, and dropout probabilities
in {0.2, 0.1, 0.05, 0.01, 0.005, 0.001}. DO-based models
used a batch size of 32 in all evaluations. For MNF11, the
n.o. epochs was optimized, the batch size was set to 100,
and early stopping test performed each epoch (compared to
every 20th for MCBN, MCDO).

For MCBN and MCDO, the model with optimal training
hyperparameters was used to optimize τ numerically. This
optimization was made in terms of average CV CRPS for
MCBN, CUBN, MCDO, and CUDO respectively.

Estimates for the predictive distribution were obtained by
taking T = 500 stochastic forward passes through the net-
work. For each split, test set evaluation was done 5 times
with different seeds. Implementation was done in Tensor-
Flow with the Adam optimizer and a learning rate of 0.001.

10Ti can be found analytically for PLL, but must be found nu-
merically for CRPS.

11Where we used an adapted version of the authors’ code.

For the image classification test we use CIFAR10
(Krizhevsky & Hinton, 2009) which includes 10 object
classes with 5,000 and 1,000 images in the training and
test sets, respectively. Images are 32x32 RGB format. We
trained a ResNet32 architecture with a batch size of 32,
learning rate of 0.1, weight decay of 0.0002, leaky ReLU
slope of 0.1, and 5 residual units. SGD with momentum
was used as the optimizer.

Code for reproducing our experiments is available at
https://github.com/icml-mcbn/mcbn.

4.4. Test results

The regression experiment comparing uncertainty quality
is summarized in Table 1. We report CRPS and PLL, ex-
pressed as a percentage, which reflects how close the model
is to the upper bound, and check to see if the model signif-
icantly exceeds the lower bound using a one sample t-test
(significance level is indicated by *’s). Further details are
provided in Appendix Section 1.7.

In Figure 2 (left), we present a novel visualization of un-
certainty quality for regression problems. Data are sorted
by estimated uncertainty in the x-axis. Grey dots show the
errors in model predictions, and the shaded areas show the
model uncertainty. A running mean of the errors appears
as a gray line. If uncertainty estimation is working well,
a correlation should exist between the mean error (gray
line) and uncertainty (shaded area). This indicates that the
uncertainty estimation recognizes samples with larger (or
smaller) potential for predictive errors.

We applied MCBN on the image classification task of CI-
FAR10. The baseline in this case is the softmax distribu-
tion using the moving average for BN units. Log likeli-
hood (PLL) is the metric used to compare with the base-
line. The baseline achieves a PLL of -0.32 on the test
set, while MCBN obtains a PLL of -0.28. Table 2 shows
the performance of MCBN when using different number of
stochastic forward passes (the MCBN batchsize is fixed to
the training batch size at 32). PLL improves as the number
of the stochastic passes increases, until it is significantly
better than the softmax baseline.

To demonstrate how model uncertainty can be obtained
from an existing network with minimal effort, we applied
MCBN to an image segmentation task using Bayesian Seg-
Net with the main CamVid and PASCAL-VOC models in
(Kendall et al., 2015). We simply ran multiple forward
passes with different mini-batches randomly taken from the
train set. The models obtained from the online model zoo
have BN blocks after each layer. We recalculate mean and
variance for the first 2 blocks only and use the training
statistics for the rest of the blocks. Mini-batches of size
10 and 36 were used for CamVid and VOC respectively

https://github.com/icml-mcbn/mcbn
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Table 1. Uncertainty quality measured on eight regression datasets. MCBN, MCDO and MNF are compared over 5 random 80-20
splits of the data with 5 different random seeds each split. We report CRPS and PLL, uncertainty metrics CRPS and PLL normalized
to a lower bound of constant variance and upper bound that maximizes the metric expressed as a percentage (described in Section 4.2).
Higher numbers mean the model is closer to the upper bound. We check if the reported values for CRPS and PLL significantly exceed
the lower bound using a one sample t-test (significance level indicated by *’s). See text for further details.

CRPS PLL
Dataset MCBN MCDO MNF MCBN MCDO MNF

Boston 8.50 **** 3.06 **** 5.88 **** 10.49 **** 5.51 **** 1.76 ns
Concrete 3.91 **** 0.93 * 3.13 *** -36.36 ** 10.92 **** -2.16 ns
Energy 5.75 **** 1.37 ns 1.10 ns 10.89 **** -14.28 * -33.88 ns
Kin8nm 2.85 **** 1.82 **** 0.53 ns 1.68 *** -0.26 ns 0.42 ns
Power 0.24 *** -0.44 **** -0.89 **** 0.33 ** 3.52 **** -0.87 ****
Protein 2.66 **** 0.99 **** 0.57 **** 2.56 **** 6.23 **** 0.52 ****
Wine (Red) 0.26 ** 2.00 **** 0.94 **** 0.19 * 2.91 **** 0.83 ****
Yacht -56.39 *** 21.42 **** 24.92 **** 45.58 **** -41.54 ns 46.19 ****

due to memory limits. The results in Figure 2 (right) were
obtained from 20 stochastic forward passes, showing high
uncertainty near object boundaries. The VOC results are
more appealing because of larger mini-batches.

We provide additional experimental results in the Ap-
pendix. Appendix Tables 2 and 3 show the mean CRPS
and PLL values from the regression experiment. Table 4
provides the raw CRPS and PLL scores. In Table 5 we
provide RMSE results of the MCBN and MCDO networks
in comparison with non-stochastic BN and DO networks.
These results indicate that the procedure of multiple for-
ward passes in MCBN and MCDO show slight improve-
ments in the predictive accuracy compared to their non-
Bayesian counterparts. In Tables 6 and 7, we investigate the
effect of varying batch size while keeping other hyperpa-
rameters fixed. We see that performance deteriorates with
small batch sizes (≤16), a known issue of BN (Ioffe, 2017).
Similarly, results varying the number of stochastic forward
passes T is reported in Tables 8 and 9. While performance
benefits from large T , in some cases T = 50 (i.e. 1/10 of
T in the main evaluation) performs well. Uncertainty-error
plots for all the datasets are provided in the Appendix.

5. Discussion
The results presented in Tables 1-2 and Appendix Tables
2-9 indicate that MCBN generates meaningful uncertainty

Table 2. Uncertainty quality for image classification varying
number of stochastic forward passes. Uncertainty quality for
image classification measured by PLL. ResNet32 is trained on
CIFAR10 with batch size 32. PLL improves as the sampling in-
creases until it is significantly better than the softmax baseline
(-0.32).

Number of stochastic forward passes
1 2 4 8 16 32 64 128

PLL -.36 -.32 -.30 -.29 -.29 -.28 -.28 -.28

estimates that correlate with actual errors in the model’s
prediction. In Table 1, we show statistically significant
improvements over CUBN in the majority of the datasets,
both in terms of CRPS and PLL. The visualizations in
Figure 2 and in the Appendix Figures 2-3 show correla-
tions between the estimated model uncertainty and errors
of the network’s predictions. We perform the same exper-
iments using MCDO and MNF, and find that MCBN gen-
erally performs on par with both methods. Looking closer,
MCBN outperforms MCDO and MNF in more cases than
not, measured by CRPS. However, care must be used. The
learned parameters are different, leading to different pre-
dictive means and confounding direct comparison.

The results on the Yacht Hydrodynamics dataset seem con-
tradictory. The CRPS score for MCBN are extremely neg-
ative, while the PLL score is extremely positive. The op-
posite trend is observed for MCDO. To add to the puzzle,
the visualization in Figure 2 depicts an extremely promis-
ing uncertainty estimation that models the predictive errors
with high fidelity. We hypothesize that this strange behav-
ior is due to the small size of the data set, which only con-
tains 60 test samples, or due to the Gaussian assumption
of CRPS. There is also a large variability in the model’s
accuracy on this dataset, which further confounds the mea-
surements for such limited data.

One might criticize the overall quality of uncertainty es-
timates observed in all the models we tested, due to the
magnitude of CRPS and PLL in Table 1. The scores rarely
exceed 10% improvement over the lower bound. However,
we caution that these measures should be taken in context.
The upper bound is very difficult to achieve in practice –
it is optimized for each test sample individually – and the
lower bound is a quite reasonable estimate.

The study of MCBN sensitivity to batch size revealed that a
certain batch size is required for the best performance, de-
pendent on the data. When doing inference on a GPU, large
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Data sorted by estimated uncertainty Data sorted by estimated uncertainty Image segmentation uncertainty (CamVid and PASCAL-VOC)

Figure 2. Uncertainty-error plots (left) and segmentation and uncertainty results applying MCBN to Bayesian SegNet (right).
(left) Errors in predictions (gray dots) sorted by estimated uncertainty on select datasets. The shaded areas show model uncertainty for
MCBN (blue), MNF (violet) and MCDO (red). The light area indicates 95% CI, dark area 50% CI. Gray dots show absolute prediction
errors on the test set, and the gray line depicts a running mean of the errors. The dashed line indicates the optimized constant uncertainty.
A correlation between estimated uncertainty (shaded area) and mean error (gray) indicates the uncertainty estimates are meaningful
for estimating errors. (right) Applying MCBN to Bayesian SegNet (Kendall et al., 2015) on scenes from CamVid (3rd column) and
PASCAL-VOC (4th column). Top: original image. Middle: the Bayesian estimated segmentation. Bottom: estimated uncertainty using
MCBN for all classes. The uncertainty maps for both datasets are reasonable, but qualitatively better for PASCAL-VOC due to the larger
mini-batch size (36) compared to CamVid (10). Smaller batch sizes were used for CamVid due to memory limitations (CamVid images
are 360x480 while VOC are 224x224). See Appendix for complete results.

batch sizes may cause memory issues for cases where the
input is large and the network has a large number of param-
eters, as is common for state-of-the-art image classification
networks. However, there are various workarounds to this
problem. One can store BN statistics, instead of batches, to
reduce memory issues. Furthermore, we can use the Gaus-
sian estimate of the BN statistics as discussed previously,
which makes memory and computation extremely efficient.

6. Conclusion
In this work, we have shown that training a deep network
using batch normalization is equivalent to approximate in-
ference in Bayesian models. We show evidence that the
uncertainty estimates from MCBN correlate with actual er-
rors in the model’s prediction, and are useful for practical

tasks such as regression, image classification, and image
segmentation. Our experiments show that MCBN yields
a significant improvement over the optimized constant un-
certainty baseline, on par with MCDO and MNF. Our eval-
uation also suggests new normalized metrics based on use-
ful upper and lower bounds, and a new visualization which
provides an intuitive explanation of uncertainty quality.

Finally, it should be noted that over the past few years,
batch normalization has become an integral part of most –
if not all – cutting edge deep networks. We have shown that
it is possible to obtain meaningful uncertainty estimates
from existing models without modifying the network or the
training procedure. With a few lines of code, robust uncer-
tainty estimates can be obtained by computing the variance
of multiple stochastic forward passes through an existing
network.
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